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Abstract. We present a new fast approach for surface segmenta-
tion of thin structures, like vessels and vascular trees, based on Fast-
Marching and Level Set methods. Fast-Marching allows segmenta-
tion of tubular structures inflating a “long balloon” from a user-given
single point. However, when the tubular shape is rather long, the
front propagation may blow up through the boundary of the desired
shape close to the starting point. Our contribution is focused on a
way to go on front propagation only on the actually moving front and
freezing other points. We demonstrate the ability to build a fast and
accurate segmentation for those tubular and tree structures. We also
develop a useful stopping criterion for the causal front propagation.
We illustrate our algorithms by applications to the segmentation of
vessels in 3D medical images. The minimal paths obtained from Fast-
Marching together with the segmentation allow automatic virtual en-
doscopy through the tree structure.

§1. Introduction

We are interested in this paper in segmentation of tubular surfaces from
3D images, motivated by medical applications related to vessels and the
vascular tree. These surfaces can therefore have several branches. Much
work has been done on surface segmentation since the introduction of de-
formable models (see references in [1]). The recent trend of deformable
surfaces makes use of Level Set methods (for example [2]). A major draw-
back of level set methods is their huge computation time, even when using
a narrow band. Fast-Marching, introduced in [3], allows fast surface seg-
mentation when the evolution is always outwards like a balloon [4,5]. Using
the Fast-Marching algorithm as a region-growing method [6] to propagate
a wave front inside a colon CT scanner, we can extract the surface of the
colon, starting from an initial seed point. We have developed an algorithm
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that can be the basis of this kind of tubular shape extraction object: a
technique to evolve a front inside an object of interest and compute at the
same time the geodesic distance to the starting point inside the object.
This distance can be used to stop the front propagation inside the desired
object. The result of this technique is shown in Figure 1. The top image is
the 3D CT scanner, and the bottom images show some steps of the front
propagation in the 3D dataset.

However, classical segmentation problems do not provide an excellent
contrast like the air-filled colon on a CT scanner, and the propagation
cannot stick to the object walls for long and thin objects. We show in this
article how the Fast-Marching surface segmentation, which is not tuned
for this kind of thin and long objects, can be specifically optimized for this
target. Another by-product of the method is to extract minimal paths in
the image. We extend this technique to extract a trajectory in each branch
of the vascular objects, and show applications to virtual endoscopy.

§2. Minimal Paths, Fast-Marching and Surface Segmentation
2.1 Minimal paths extraction

We present in this section the basic ideas of the method introduced by
Cohen and Kimmel (see [7,9] for details) to find the global minimum of
the active contour energy using minimal paths. The energy to minimize is
similar to classical deformable models (see [8]) where it combines smooth-
ing terms and image features attraction term (Potential P):

E(C) = /Q {w+ P(C(s))}ds,

where C(s) represents a curve drawn on a 2D image, Q = [0, L] is its
domain of definition, and L is the length of the curve. It reduces the user
initialization to giving the two end points of the contour C. The problem
is transformed in a way to find the global minimum, avoiding getting stuck
at local minima. We now have an expression in which the internal forces
are included in the external potential. The regularization is now achieved
by the constant w > 0. Given a potential P > 0 that takes lower values
near desired features, we are looking for paths along which the integral of
P = P + w is minimal. We can define the surface of minimal action T as
the minimal energy integrated along a path between a starting point p,
and any point p:

T(p) = inf E(C)= inf { /Q P(C(s))ds}, (1)

Ap,.p Ap,.p
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Fig. 1. Segmenting the colon volume with simple front propagation.

where Apmp is the set of all paths between p, and p. The minimal path
between p, and any point p, in the image can be easily deduced from this
action map by back-propagation (see [7]).

In order to compute this map 7', a front-propagation equation related
to equation (1) is solved : %—? = %ﬁ. It evolves a front starting from
an infinitesimal circle shape around p, until each point inside the image
domain is assigned a value for T'. The value of T'(p) is the time ¢ at which
the front passes over the point p. Then it represents the minimal path
energy to reach the start point from any point in the image. The Fast-
Marching technique, introduced by Sethian (see [3]), was used by Cohen
and Kimmel [7] noticing that the map T satisfies the Eikonal equation
|VT|| = P. Classic finite difference schemes for this equation tend to
overshoot and are unstable. Following Sethian [3] we use the up-wind
scheme, where at each voxel (i, j, k), the unknown u satisfies:

(max{u — T;_1jk,  — Tig1,4,k, 0}) %+
(max{u — Ti,j—l,ka u— Ti,j+1,k, 0})2—}— (3)

(max{u — T; jk—1,w — Ty j k41, 01)* = PPy 1,

giving the correct viscosity-solution u for Tj ; ;. The improvement made
by Fast Marching is to introduce order in the selection of the grid points.
This order is based on the fact that information is propagating outward,
because action can only grow. The algorithm is detailed in Table 1.

Considering a 3D surface I' moving under speed F' in its normal di-
rection, in the Level-Set formulation, it is embedded as the zero level set
of a function ¢ defined in the 3D image space, leading to evolution

¢ + F|Veg| = 0.
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Definitions:
Alve set: grid points at which the values of T have been reached and will not be changed;
Trial set: next grid points (6-connexity neighbors) to be examined. An estimate 1" of T
has been computed using discretized Eikonal Equation from Alive points only;
Far set: all other grid points, there is not yet an estimate for T.
Initialization:
Alive set: start point Py, T'(pg) = T (py) = 0; .
Trial set: six neighbors P of D with initial value T(p) = P(p) ('T(p) = Q);
Far set: all other grid points, with T=T=o0.
Loop:
1. Let P,y be the Trial point with smallest T;
2. Move it from the Trial to the Alive set;
3. For each neighbor P of P,,,...:
a.If pis Far, add it to the Trial set;
b. If p is Trial, update Tp.

Tab. 1. Fast-Marching algorithm.

In the case of I' moving with a speed F' > 0, it leads to the same Eikonal
equation that determines the evolution of the surface or arrival time T'(p)
(see [3] for details). This Eikonal equation has been used for surface ex-
traction in [8]. Discretized with an up-wind scheme, it is then solved using
Fast-Marching (Table 1), given an initial starting point p,. In practice the
front is propagated until a fixed time is reached. Figure 1 shows iterations
of this front propagation in a 3D image with potential P defined in order
to segment the colon. Evolution is stopped when a given geodesic length
has been traveled by the front [6].

Fig. 2. 3D contrast enhanced MR image of the aorta and front propagation.
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Fig. 3. Synthetic test problem.

§3. Propagation Freezing for Thin Structures

Freezing a voxel during front propagation is to consider that it has reached
the boundary of the structure. When the front propagates in a thin struc-
ture, there is only a small part of the front, which we could call the “head”
of the front, that really moves. Most of the front is located close to the
boundary of the structure and moves very slowly. For example voxels that
are close to the starting point, the “tail” of the front, are moving very
slowly. However, since the structure may be very long, in order for the
“head” voxels to reach the end of the structure, the “tail” voxels may flow
out of the boundary since their speed is always positive, and integrated
over a long time. This is illustrated in the example of Figure 2. If we
apply Fast-Marching in the dataset shown in Figure 2-top, with a poten-
tial based on the gray level with contrast enhancement, the corresponding
wave propagation looks like Figure 2-bottom. The front floods outside the
object and does not give a good segmentation.

For these reasons, it is of no use to make some voxels participate in
the computation of the arrival time in the Fikonal equation. We thus set
their speed to zero, which we call Freezing. The first step is to design the
appropriate criterion for selecting voxels of the front which need Freezing.

A synthetic example of a tree structure is shown in Figure 3. In this
case, setting an initial seed point at the left corner point, we would like
to extract in a very fast process the multiple branches of the structures.
Figure 3-right shows the result of the classical front propagation technique
with Fast-Marching. The action map 7 displayed indicates clearly that
the domain visited is a whole “blob-like” structure, where the underlying
tubular shape is somehow lost. It emphasizes the drawback of the method
in this case, without a clear constraint on the domain of points visited.

3.1 Using Weighted Distance for Freezing

The geodesic weighted distance inside the object between a point and
the starting point can be computed in the Fast-Marching process without
much extra cost as shown for a different application in [6]. This is the
Euclidean length of the minimal path (according to P, see [7]) that joins
the points. It seems “natural” to use this distance D(v) between a voxel
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v and the starting point, or relatively to the most far propagating part of
the front, since this notion is completely embedded in the topology of the
object we are trying to extract: the section of a tube-shaped object must
be small with respect to its length. We must discriminate between the
points of the front that are near the initializing seed point and other parts
of the front that are already far. This will prevent flooding in non-desired
areas of the data.

We can fix several criteria for the Freezing based on the distance. The
geodesic distance to the starting point is a measure which contains infor-
mation about the geometry of the surface extracted, and in particular its
length. Knowing the current maximum geodesic path length d,,,, in the
front propagation process we can decide that a voxel v of the propagating
front (i.e. Trial) should be removed from the front (i.e. set as Alive):

i) if D(v) < dmasz/a, with o > 1 user-defined; or
ii) if D(v) < max (dmaz— d,0), with d > 0 chosen.

A 2D example on the synthetic test is shown in Figure 4. The domain
visited by our algorithm is slightly smaller than without freezing (Fig-
ure 3-right) and this domain shortens with the distance criterion, when
we compare left and middle images in Figure 4 which are action maps with
distance criterion of respectively 100 and 50. Figure 4-right is a zoom on
the freezing map which clearly demonstrates that the Freezing principle
discriminates the points located far from the propagating fronts (frozen
parts are represented in white).

Fig. 4. Distance criterion for Freezing.

3.2 Algorithm for Freezing

At each time step we insert our visited points both in the classical action
related heap, and in another min-heap data-structure where the ordering
key is the distance to the seed point, which means that the element at
the top of the heap will still be the point that is the closest Trial point
to the starting point. At each iteration, we are able to remove all the
points whose keys are lower than this criterion, starting from the minimum
element in the binary heap.
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Initialization:
setting 'T(po) = D(po) =0 and storing the seed point P in both min-heap
structures 7‘[7’ and HD;
dmam =0, CZ and dstop are user defined.

Loop: at each iteration
Let Py, in be the Trial point with the smallest action T;
Fast—Marching algorithm of Table 1, updating min-heaps 7‘[7’, H’D with the
new action values for T, D computed;
take ymaz = MaX (dmazs D(Ppmin) ) B
consider ..., the root of Hp. While ’D(qmm) < max (dma,a: —d, 0) do
1. set D(qmin) = T(qmin) = OG;
2. set g, in Alive set and delete it in both Hp and 7‘[7’;
if Aoz > dstop; exit the loop.

Tab. 2. Freezing algorithm.

In Table 2 is detailed an algorithmic implementation of the Freezing
with : Starting point p, located at the root of the tree structure; action
map 7, one min-heap structure 7+ and a penalty image P which will
drive the front propagation; distance map D to compute the minimal path
Euclidean length [6]; min-heap data structure #p, where the ordering key
for any point p is the value of D(p); a counter dp,qz, distances d, dstop.

This heuristic is to discriminate the parts of the front that are propa-
gating slowly, by recording the maximum distance which has been traveled,
and comparing it to the distance which has been traveled by these parts. If
the ratio between those two distances is superior to a given threshold, we
"freeze” those parts by setting their speed artificially to zero. It enables
to stay inside the object when it is long and thin like a tubular structure,
as shown in Figure 4.

3.3 Illustration of Vascular Tree Segmentation

The method explained previously is very useful when used for vascular
segmentation. Segmentation is therefore performed in a very fast manner
by just setting a seed point at the top of the tree hierarchy.

In Figure 5 from left-to-right, we show iterations of the segmentation
process on the former examples of Figure 2; the frozen voxels are in white
and propagating front is darker. Figure 6 displays results of this method
on three different objects.

3.4 Stopping criterion

The Freezing process provides a criterion which is independent of the num-
ber of different branches to recover. If we plot the maximum distance d,, 4
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Fig. 7. Using Distance for Stopping propagation in the Aorta.

obtained in the Freezing Algorithm as a function of iterations while prop-
agating the front, we observe the profile shown in Figure 7. We clearly
see that this distance increases linearly until a big decrease of the slope
appears. It is important to notice that this shock indicates when the front
flows out of the object at “heads” of the front. We decide to stop front
propagation at this particular time. During the first part of the plot, the
function is quasi-linear. The slope is directly related to the section area
of the tubular object. By definition of Fast-Marching, the number of iter-
ations is equal to the number of voxels that are alive, and is close to the
volume of the region inside the front. This means that passing through a
certain length in the aorta implies visiting a number of voxels proportional
to the length. This is the case in general for tubular shapes.
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Fig. 8. Endoscopic views along one trajectory showing all minimal paths.

Let us assume that the global section of our aorta is constant in our
dataset. This is approximately true in large parts, but no longer holds
in the very thin parts of the vessels and arteries. But we can assume
that the front propagates at the same speed inside the object. Therefore,
the number of voxels visited is proportional to the section area. Then the
slope collapse can be easily detected using a simple threshold on the slope,
depending on the object we want to extract. Recording the first iteration
where the slope decreases gives us the maximum distance where we must
stop propagation.

§4. Multiple Path Extraction for the Vascular Tree
and Virtual Endoscopy

Once the tubular object has been segmented, we proceed by a few steps
in order to get virtual endoscopic views along the different branches of the
vascular tree.

1) We refine the segmentation by means of a Level-Set deformable sur-
face [2]. Since our freezing method gives a very good estimate of the
surface, this step is quite fast.

2) The extremities of all branches in the vascular tree are automatically
extracted finding the bifurcations with morphological techniques.

3) The whole set of trajectories inside the object is extracted using back-
propagation from all extremities.

4) Rendering views along the different paths in the direction of the curve
(see Figure 8).Virtual endoscopy is obtained through the tree struc-
ture and the user may fly through the image in the way he decides to
go at each bifurcation.

§5. Conclusion

Concerning tree tracking application, the main improvements brought by
this method are to accelerate the computations by visiting a very small
number of voxels during propagation, and to segment thin tubular struc-
tures. Another by-product of our technique is the stopping criterion based
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on the maximum distance travelled by the front. The extraction of the
multiple trajectories, together with the segmentation step, in a single pro-
cess, enhances visualization and quantification of pathologies. Those tra-
jectories are then the input to an endoscopic tool, as shown in Figure 8.
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