Graphics Handles Advanced Plotting MATLAB File Exchange Publication-Quality Graphics Animation

Lecture 2 Advanced MATLAB: Graphics

Matthew J. Zahr

CME 292

Advanced MATLAB for Scientific Computing Stanford University

25th September 2014

Announcements

- Office hours are set for 5p 7p in Durand 028 (or by drop-in/appointment)
- Homework 1 out today, due next Thursday (10/2)
- (Optional) Project

pack

pack frees up needed space by reorganizing information so that it only uses the minimum memory required. All variables from your base and global workspaces are preserved. Any persistent variables that are defined at the time are set to their default value (the empty matrix, []).

- Useful if you have a large numeric array that you *know* you have enough memory to store, but can't find enough *contiguous* memory
- Not useful if your array is too large to fit in memory

- Graphics Handles
- 2 Advanced Plotting
 - 2D Plotting
 - Grid Data
 - Scalars over Areas
 - Vector Fields
 - Scalars over Volumes
 - Vectors over Volumes
- 3 MATLAB File Exchange
- 4 Publication-Quality Graphics
- 6 Animation

Outline

- **1** Graphics Handles
- 2 Advanced Plotting
 - 2D Plotting
 - Grid Data
 - Scalars over Areas
 - Vector Fields
 - Scalars over Volumes
 - Vectors over Volumes
- 3 MATLAB File Exchange
- 4 Publication-Quality Graphics
- 5 Animation

Overview

- Graphics objects
 - Basic drawing elements used by MATLAB to display data
 - Each object instance has unique identifier, handle
 - Stored as a double
 - Objects organized in *hierarchy*

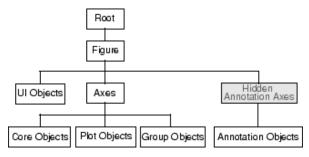


Figure: Organization of Graphics Objects (MathWorks http://www.mathworks.com/help/matlab/creating_plots/organization-of-graphics-objects.html)

Graphics Objects

Two basic types of graphics objects

- Core graphics object
 - axes, image, light, line, patch, rectangle, surface, patch
- Composite graphics object
 - Plot objects
 - areaseries, barseries, contourgroup, errorbarseries, lineseries, quivergroup, scattergroup, staircase, stemseries, surfaceplot
 - Annotation objects
 - arrow, doublearrow, ellipse, line, rectangle, textarrow, textbox
 - Group objects
 - hggroup, hgtransform
 - User Interface objects

Graphics Handle

- Similar to *pointers* in that they contain a *reference* to a particular graphics object
 - h1 = figure(2); h2 = h1;
 - Both h1, h2 point to figure 2
- Best way to obtain graphics handle is from the call that creates the graphics object, i.e.

```
e figH = figure('pos',[141,258,869,523]);
e axH = axes();
e ax1H = subplot(2,2,3);
e sinH = plot(sin(linspace(0,2*pi,100)))
e [c,contH] = contour(peaks);
```

- Alternatively, obtain graphics handle manually
 - Select figure/axes/object of interest with mouse
 - Use gcf, gca, gco
- Graphics handles stored as double

Handle stored as double

The value of the double really is the *only* identifier of the graphics object

```
>> format long
>> ax1 = gca % Copy/paste output to ax2
>> ax2 = 1.197609619140625e+03
>> ishandle(ax2)
ans =
     1
```


Specifying Figure or Axes to Use

Handles can be used to specify which figure or axes is used when new graphics objects generated

- Specify figure in which to create new axes object
 - for i = 1:10, fHan(i)=figure(); end
 - ax = axes('Parent', fHan(4))
- Specify axes in which to create new graphics object
 - Most, if not all, plotting commands accept an axes handle as the first argument
 - Graphics object generated in axes object corresponding to handle passed
 - If axes handle not specified, gca used
 - [C,objHan] = contourf(ax,peaks)
- By default, MATLAB uses gcf (handle of current figure) or gca (handle of current axes)

Exercise

- You are provided a fairly useless piece of code below (which_plot_ex.m)
- Your task is to alter the code below such that
 - sin(k*x) is plotted vs x for k even in a single figure
 - sin(k*x) is plotted vs x for k odd in a single figure (different figure from the one above)

```
figure;
axes(); hold on;

figure;
axes(); hold on;

x = linspace(0,2*pi,1000);
for k = 1:10
    plot(x,sin(k*x));
end
```


Working with Graphics Objects

Command	Description
gca	Return handle of current axes
gcf	Return handle of current figure
gco	Return handle of current object
get	Query values of object's properties
ishandle	True if value is valid object handle
set	Set values of an object's properties

Working with Graphics Objects

Command	Description
allchild	Return all children of objects
ancestor	Return ancestor of object
copyobj	Copy graphics object
delete	Delete an object
findall	Return all graphics objects
findobj	Return handles of objects with
	specified property

Query/Modify Graphics Object Properties

- get to query properties and values for any graphics handle
 - get (han)
 - Display all properties and values to screen
 - o get(han, 'Property')
 - Display Property value to screen
 - V = get(han)
 - Store all properties-value pairs in structure V
 - V = get(han, 'Property')
 - Store Property value in V
- set to set properties for any graphics handle
 - set(han, 'Prop-1', Val-1, 'Prop-2', Val-2...)
 - Set Prop−j's value to Val−j
 - set(han,s)%s structure
 - Set property-value pairs from s
 - set(han,pn,pv)%pn, pv cell arrays
 - Set value of property pn{i} to pv{i}

Properties Common to All Objects

Command	Description
BeingDeleted	on when object's DeleteFcn called
BusyAction	Control callback routine interruption
ButtonDownFcn	Callback routine that executes when button pressed
Children	Handles of all object's child objects
Clipping	Enables/disables clipping
CreateFcn	Callback routine that executes when object created
DeleteFcn	Callback routine that executes when object deleted

Properties Common to All Objects

Command	Description
HandleVisibility	Allows control over object handle's visibility (command line and callbacks)
HitTest	Determines if object selectable via mouse click
Interruptible	Determines whether callback can be interrupted by subsequently called callback
Parent	The object's parent
Selected	Indicates whether object is selected

Properties Common to All Objects

Command	Description
SelectionHighlight	Specifies whether object visually indicates selection state
Tag	User-specified object label
Туре	The type of object
UserData	Any data user associates with object
Visible	Determines whether object is visible

Figure, Axes, and Plot Objects

- Figure window
 - get (gcf) to see all properties of Figure object and defaults
 - Colormap, Position, PaperPositionMode
- Axes Object
 - Axes objects contain the lines, surfaces, and other objects that represent the data visualized in a graph
 - get (gca) to see all properties of Figure object and defaults
 - XLim, YLim, ZLim, CLim, XGrid, YGrid, ZGrid, XTick, XTickLabel, YTick, YTickLabel, ZTick, ZTickLabel, XScale, YScale, ZScale
- Plot Objects
 - Plot objects are composite graphics objects composed of one or more core objects in a group
 - XData, YData, ZData, Color, LineStyle, LineWidth

The Figure Window

- get (gcf) to see all properties of Figure object and defaults
 - Colormap
 - Defines colors used for plots
 - Must be $m \times 3$ array of m RGB values
 - PaperOrientation, PaperPosition, PaperPositionMode, PaperSize
 - Relevant for printing
 - Position
 - Position and size figure: [x, y, w, h]
 - x, y (x,y) coordinates of lower left corner of figure
 - w, h width, height of figure
 - NextPlot
 - Behavior when multiple axes object added to figure

The Axes Object

Axes objects contain the lines, surfaces, and other objects that represent the data visualized in a graph

- get (gca) to see all properties of Axes object and defaults
 - XLim, YLim, ZLim, CLim
 - Set plot limits in each dimension (including color)
 - More information on CLim here
 - XGrid, XMinorGrid, YGrid, YMinorGrid, ZGrid, ZMinorGrid
 - Toggle major and minor grid lines in each dimension
 - XTick, XTickLabel, YTick, YTickLabel, ZTick, ZTickLabel
 - Control tick locations and labels in each dimension
 - XScale, YScale, ZScale
 - Toggle between linear and log scale in each dimension
 - Camera, Fonts, Line style options

Colormap

Colormaps enable control over how MATLAB maps data values to colors in surfaces, patches, images, and plotting functions

- C = colormap(jet(128));
 - Sets colormap of current figure to jet with 128 colors
 - autumn, bone, colorcube, cool, copper, flag, gray, hot, hsv, jet, lines, pink, prism, spring, summer, white, winter
- Alternatively

```
>> fig = figure();
>> ax = axes('Parent', fig);
>> load spine; image(X);
>> colormap(ax,bone);
```

- This is a bit strange as Colormap is a property of the figure (not axes), but the axes handle is passed to colormap
 - Access to figure handle (get (ax, 'Parent'))

Plot Objects

- Plot objects are composite graphics objects composed of one or more core objects in a group
- Most common plot objects: lineseries, contourgroup
- Lineseries
 - XData, YData, ZData
 - Control x, y, z data used to plot line
 - Color, LineStyle, LineWidth
 - Control appearance of line
 - Marker, MarkerSize, MarkerEdgeColor, MarkerFaceColor
 - Control appearance of markers on line
- Contourgroup
 - XData, YData, ZData
 - Control x, y, z data used to plot line
 - LineStyle, LineWidth, LineColor
 - Fill, LevelStep

Legend

- Probably familiar with basic legend syntax
 - legend('First plotted', 'Second ... plotted', 'Location', 'Northwest')
- What if legend based on order of objects plotted is not sufficient?
 - Use handles for fine grained control
 - legend(h, 'h(1) label', 'h(2) label')
- Legend handle
 - Get handle by leg = legend()
 - Use handle to control size/location (more control that 'Location')
 - Font size/style, interpreter, line style, etc

Callback Routines

- Function associated with graphics handle that gets called in response to a specific action applied to the associated graphics object
 - Object creation, deletion
 - Mouse motion, mouse press, mouse release, scroll wheel
 - Key press, key release
 - More here
- All callback routines automatically passed two inputs
 - Handle of component whose callback is being executed
 - Event data
- Callback routines specified in many possible forms
 - String
 - Expression evaluated in base workspace
 - Function handle
 - Cell arrays to pass additional arguments to callback routine

Graphics Handles
Advanced Plotting
MATLAB File Exchange
Publication-Quality Graphics
Animation

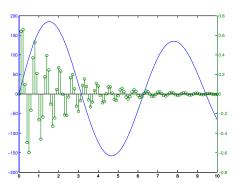
Demo & In-Class Assignment

graphics_obj_han_ex.m

Outline

- Graphics Handles
- 2 Advanced Plotting
 - 2D Plotting
 - Grid Data
 - Scalars over Areas
 - Vector Fields
 - Scalars over Volumes
 - Vectors over Volumes
- 3 MATLAB File Exchange
- 4 Publication-Quality Graphics
- 6 Animation

2D Plotting
Grid Data
Scalars over Areas
Vector Fields
Scalars over Volumes
Vectors over Volume


Line plots

Command	${f Description}$
plot	2D line plot
plotyy	2D line plot, y-axes both sides
plot3	3D line plot
loglog	2D line plot: x- and y-axis log scale
semilogx	2D line plot, x-axis log, y-axis linear
semilogy	2D line plot, x-axis linear, y-axis log
errorbar	Error bars along 2D line plot
fplot	Plot function between specified limits
ezplot	Function plotter
ezplot3	2D parametric curve plotter

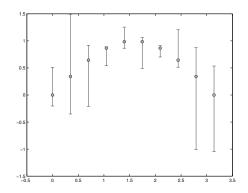

Examples: plotyy, errorbar

Figure: plotyy Plot

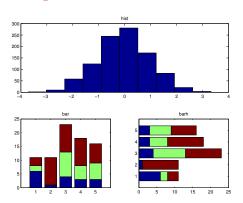
• Code: advanced_plotting_ex.m

Figure: errorbar Plot

Line plots: Examples

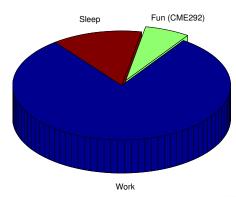
- Multiple y-axes
 - [ax, h1, h2] = plotyy (X1, Y1, X2, Y2)
 - Plot X1, Y1 using left axis and X2, Y2 using right axis
 - [ax, h1, h2] = plotyy (X1, Y1, X2, Y2, 'function')
 - Plot X1, Y1 using left axis and X2, Y2 using right axis with plotting function defined by string 'function'
 - [ax,h1,h2]=plotyy(X1,Y1,X2,Y2,'f1','f2')
 - Plot X1, Y1 using left axis with plotting function 'f1' and X2, Y2 using right axis with plotting function 'f2'
- Error plots
 - h = errorbar(X,Y,E)
 - Create 2D line plot from data X, Y with symmetric error bars defined by E
 - h = errorbar(X, Y, L, U)
 - Create 2D line plot from data X, Y with upper error bar defined by U and lower error bar defined by L

2D Plotting
Grid Data
Scalars over Areas
Vector Fields
Scalars over Volumes
Vectors over Volumes


Pie Charts, Bar Plots, and Histograms

Command	Description
bar, barh	Vertical, horizontal bar graph
bar3, bar3h	Vertical, horizontal 3D bar graph
hist	Histogram
histc	Histogram bin count (no plot)
rose	Angle histogram
pareto	Pareto chart
area	Filled area 2D plot
pie, pie3	2D, 3D pie chart

Examples: hist, bar, barh, pie3


Figure: hist/bar/barh Plot

• Code: advanced_plotting_ex.m

Figure: pie3 Plot

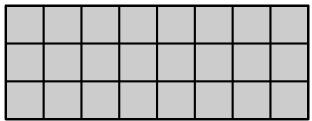
Life of a Graduate Student

2D Plotting
Grid Data
Scalars over Areas
Vector Fields
Scalars over Volume
Vectors over Volume

Discrete Data Plots

Command	Description
stem, stem3	Plot 2D, 3D discrete sequence data
stair	Stairstep graph
scatter, scatter3	2D, 3D scatter plot

2D Plotting
Grid Data
Scalars over Areas
Vector Fields
Scalars over Volume
Vectors over Volume


Polar Plots

Command	Description
polar	Polar coordinates plot
rose	Angle histogram plot
compass	Plot arrows emanating from origin
ezpolar	Polar coordinate plotter

Generating Grid Data

ullet MATLAB graphics commands work primarily in terms of N-D grids

- Use meshgrid to define grid compatible with 2D, 3D MATLAB plotting commands from discretization in each dimension
 - [X,Y] = meshgrid(x,y)
 - [X,Y,Z] = meshgrid(x,y,z)

meshgrid

- Generate 2D grid: [X,Y] = meshgrid(x,y)
 - Relationships
 - X(i,:) = x for all i
 - Y(:,j) = y for all j
 - X(:,i) = x(i) for all i
 - $Y(\dot{\gamma}, :) = y(\dot{\gamma})$ for all i
- Generate 3D grid: [X,Y,Z] = meshgrid(x,y,z)
 - Relationships
 - X(i, :, k) = x for all i, k
 - Y(:, j, k) = y for all j, k
 - Z(i,j,:) = z for all i,j
 - X(:, i, :) = x(i) for all i,
 - Y(j, :, :) = y(j) for all j
 - Z(:,:,k) = Z(k) for all k

Implication of meshgrid ordering

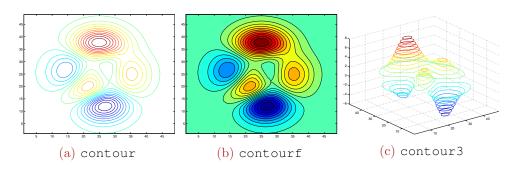
Consider the implication of meshgrid in the context of the function $\mathbf{F}(x,y) = \sin(x)\cos(y)$

- s = linspace(0, 2*pi, 100)
- \bullet [X,Y] = meshgrid(s,s)
- \bullet F = sin(X).*cos(Y)
- F(i,j) == sin(X(i,j))*cos(Y(i,j)) == sin(s(?))*cos(s(?)) == sin(s(j))*cos(s(i))

meshgrid and Plotting Functions

• In MATLAB Help documentation, grid or domain data inputs/outputs usually refer to output of meshgrid or meshgrid or ndgrid

```
surfnorm
                                                                                                   R2014a
Compute and display 3-D surface normals
                                                                                             expand all in page
Syntax
     surfnorm(Z)
     surfnorm(X,Y,Z)
     surfnorm(axes handle, ___)
     surfnorm(___,Name,Value)
     [Nx,Ny,Nz] = surfnorm(___)
Description
surfnorm(Z) plots a surface of the matrix z with surf and displays its surface normals as radiating vectors.
surfnorm(X,Y,Z) plots a surface and its surface normals from the vectors or matrices X, Y, and matrix Z, X, Y, and Z
must be the same size.
surfnorm(axes handle, ) plots into axes handle instead of gca and it can include any of the input
arguments in previous syntaxes.
surfnorm( ___, Name, Value) can be used to set the value of the specified Surface Properties.
[Nx,Ny,Nz] = surfnorm( ) returns the components of the 3-D surface normals for the surface without plotting
the surface or surface normals.
```

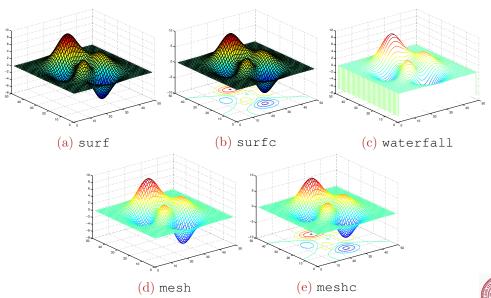


Contour Plots

- Plot scalar-valued function of two variables as lines of constant value.
 - Visualize $f(x,y) \in \mathbb{R}$ by displaying lines where f(x,y) = c for various values of c

Command	Description
contour	Contour plot
contourf	Filled contour plot
contourc	Contour plot computation (no plot)
contour3	3D contour plot
contourslice	Draw contours in volume slice planes
ezcontour	Contour plotter
ezcontourf	Filled contour plotter

Contour Plots

Code for plots generated in the remainder of the section: advanced_plotting_ex.m or lec_figs.m


Surface and Mesh Plots

• Plot scalar-valued function of two variables $f(x,y) \in \mathbb{R}$

Command	Description
surf	3D shaded surface plot
surfc	Contour plot under surf plot
surfl	Surface plot with colormap lighting
surfnorm	Compute/plot 3D surface normals
mesh	Mesh plot
meshc	Contour plot under mesh plot
waterfall	Waterfall plot
ribbon	Ribbon plot
ezsurf, ezsurfc	Colored surface plotters
ezmesh,ezmeshc	Mesh plotters

Suface/Mesh Plots

Contour/Surface/Mesh Plots

- [C,h] = contour_func(Z)
 - Contour plot of matrix Z
- [C,h] = contour_func(Z,n)
 - Contour plot of matrix Z with n contour levels
- [C,h] = contour_func(Z,v)
 - Contour plot of matrix Z with contour lines corresponding to the values in
- [C,h] = contour_func(X,Y,Z)
 - Contour plot of matrix Z over domain X, Y
- [C,h] = contour_func(X,Y,Z,n)
 - Contour plot of matrix Z over domain X, Y with n levels
- [C,h] = contour_func(X,Y,Z,v)
 - Contour plot of matrix Z over domain X, Y with contour lines corresponding to the values in v
- Similar for surface/mesh plots

Vector Fields

• Visualize vector-valued function of two or three variables $\mathbf{F}(x,y) \in \mathbb{R}^2$ or $\mathbf{F}(x,y,z) \in \mathbb{R}^3$

Command	Description
feather	Plot velocity vectors along horizontal
quiver, quiver3	Plot 2D, 3D velocity vectors from
	specified points
compass	Plot arrows emanating from origin
streamslice	Plot streamlines in slice planes
streamline	Plot streamlines of 2D, 3D vector data

Vector Fields

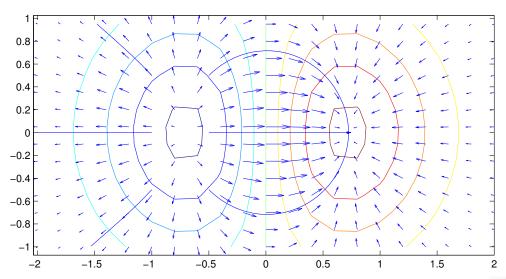


Figure: contour, quiver, streamline

Vector fields: quiver, feather, compass

- Quiver plots
 - \bullet h = quiver(X,Y,U,V)
 - Displays velocity vectors as arrows with components (u, v) at the point (x, y)
 - X, Y generated with meshgrid
 - Additional call syntaxes to control display
 - h = quiver3(X, Y, Z, U, V, W)
 - Displays velocity vectors as arrows with components (u, v, w) at the point (x, y, z)
 - X, Y, Z generated with meshgrid
 - Additional call syntaxes to control display
 - Quivergroup Properties
- feather, compass similar, but simpler (don't require X, Y)

Streamline-type plots

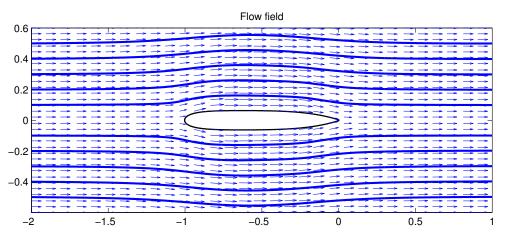


Figure: quiver, streamline, fill plots

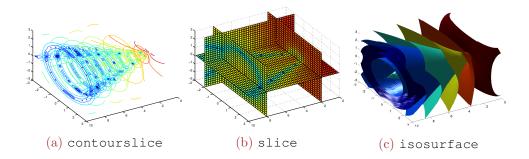
Streamline-type plots

- streamline, stream2, stream3
- Relevant for vector-valued functions of 2 or 3 variables $(\mathbf{F}(x,y))$ or $\mathbf{F}(x,y,z)$
- Requires points to initialize streamlines
- Plot the trajectory of a particle through a vector field that was placed at a given position
 - han=streamline(X,Y,Z,F1,F2,F3,StX,StY,StZ)
 - X, Y, Z grid generated with meshgrid
 - F1, F2, F3 vector components of **F** over grid
 - Stx, Sty, Stz vectors (of the same size) specifying the starting location of the particles to trace

Assignment

- Define s = linspace(0, 2*pi, 100)
- Plot $f(x,y) = \sin(xy)$ for $x,y \in [0,2\pi]$ using any contour function
 - Make sure there are contour lines at [-1.0, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, 1.0]
 - Use any colormap except jet (the default)
 - autumn, bone, colorcube, cool, copper, flag, gray, hot, hsv, jet, lines, pink, prism, spring, summer, white, winter
 - Use a colorbar
- Numerically compute $\nabla f(x,y)$ as [Fx, Fy] = gradient(F)
 - Make a quiver plot of $\nabla f(x,y)$
 - Plot streamline of $\nabla f(x,y)$ vector field, beginning at the point (2,2)

Volume Visualization - Scalar Data


• Visualize scalar-valued function of two or three variables $f(x, y, z) \in \mathbb{R}$

Command	Description
contourslice	Draw contours in volume slice planes
flow	Simple function of three variables
isocaps	Compute isosurface end-cap geometry
isocolors	Compute isosurface and patch colors
isonormals	Compute normals of isosurface vertices
isosurface	Extract isosurface data from volume data
slice	Volumetric slice plot

Volume Visualization - Scalar Data

• Visualize scalar data defined over a volume.

Slice-type plots

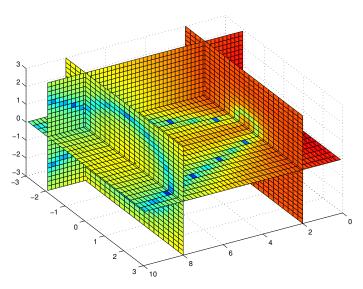
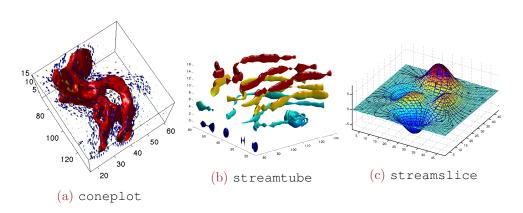


Figure: slice

Slice-type plots

- slice, contourslice, streamslice
- Relevant for scalar- or vector-valued volume functions (f(x,y,z)) or $\mathbf{F}(x,y,z)$
- Plot information in planar slices of the volumetric domain
 - han = slice (X, Y, Z, F, Sx, Sy, Sz)
 - X, Y, Z grid generated by meshgrid
 - $F = \mathbf{F}(X,Y,Z)$
 - Sx, Sy, Sz vectors specifying location of slice planes in the y-z, x-z, and x-y planes
 - han = slice(X,Y,Z,F,XI,YI,ZI)
 - XI, YI, ZI define surface (i.e. that could be plotted with surf) on which to plot F

Volume Visualization - Vector Data


• Visualize vector-valued function of three variables $\mathbf{F}(x,y,z) \in \mathbb{R}^3$

Command	Description
coneplot	Plot velocity vectors as cone
interpstreamspeed	Interpolate stream-line vertices from flow speed
stream2, stream3	Compute 2D, 3D streamline data
streamline	Plot streamlines of 2D, 3D vector data
streamparticles	Plot stream particles
streamribbon	3D stream ribbon plot
streamslice	Plot streamlines in slice planes
streamtube	Create 3D stream tube plot

Volume Visualization - Vector Data

• Visualize vector data defined over a volume.

Polygons

Command	Description
fill, fill3	Fill 2D, 3D polygon
patch	Create filled polygons
surf2patch	Convert surface data to patch data

- Patch graphics object
 - Core graphics object
 - Patch Properties

Polygons

- \bullet h = fill(X,Y,C)
- \bullet h = fill3(X,Y,Z,C)
- h = patch(X, Y, Z, C)
 - For $m \times n$ matrices X, Y, Z draws n polygons with vertices defined by each column
 - Color of each patch determined by C
 - If C is a string ('r', 'w', 'y', 'b', 'k', ...), all polygons filled with specified color
 - If C is a $1 \times n$ vector, each polygon face is flat colored by C ($\dot{\jmath}$)
 - If C is a $1 \times n \times 3$ matrix, each polygon face colored by RGB value
 - If C is a $m \times n \times 3$ matrix, each vertex colored by RGB value and face color determined by interpolation

Outline

- Graphics Handles
- 2 Advanced Plotting
 - 2D Plotting
 - Grid Data
 - Scalars over Areas
 - Vector Fields
 - Scalars over Volumes
 - Vectors over Volumes
- 3 MATLAB File Exchange
- 4 Publication-Quality Graphics
- 6 Animation

MATLAB File Exchange

The MATLAB File Exchange is a very useful forum for find solutions to many MATLAB-related problems

- 3D Visualization
- Data Analysis
- Data Import/Export
- Desktop Tools and Development Environment
- External Interfaces
- GUI Development
- Graphics
- Mathematics
- Object-Oriented Programming
- Programming and Data Types

MATLAB File Exchange

The MATLAB File Exchange is a very useful forum for sharing solutions to many MATLAB-related problems

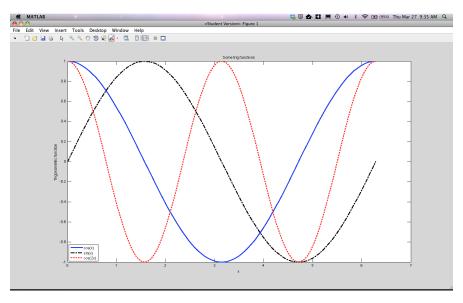
- Clean integration of MATLAB figures in LATEX documents
 - matlabfrag, figuremaker, export_fig, mcode, matrix2latex, matlab2tikz
- Plot formatting and manipulation
 - xticklabel_rotate, tight_subplot
- Interfacing to iPhone, iPad, Android, Kinect devices
- Interfacing to Google Earth and Maps
- Much more

Outline

- 1 Graphics Handles
- 2 Advanced Plotting
 - 2D Plotting
 - Grid Data
 - Scalars over Areas
 - Vector Fields
 - Scalars over Volumes
 - Vectors over Volumes
- 3 MATLAB File Exchange
- 4 Publication-Quality Graphics
- 6 Animation

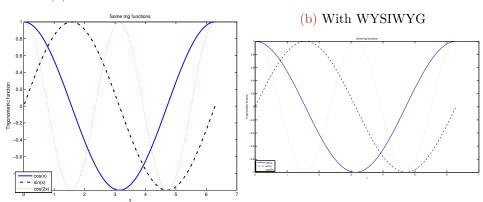
Motivation

- Generating publication quality plots in MATLAB is not a trivial task
 - Plot annotation to match font size/style of document
 - Esthetic dependent on type of publication
 - Legends can be difficult to work with
 - MATLAB figures not WYSIWYG by default
- Three fundamental approaches to generate plots for publications using MATLAB
 - Generate plots in MATLAB and import into document
 - Graphics handles to deal with esthetics
 - MATLAB File Exchange to integrate figures with LATEX
 - Generate data in MATLAB and plot in document
 - TikZ/PGF popular choice for LATEX
 - Hybrid (matlab2tikz)
- high_quality_ex.m


WYSIWYG

MATLAB is not What You See Is What You Get (WYSIWYG) by default, when it comes to plotting

- Spend time making plot look exactly as you want
- Doesn't look the same when saved to file
 - Legend particularly annoying
 - Issues amplified when figure resized
- Very frustrating
- Force WYSIWYG
 - set(gcf, 'PaperPositionMode', 'auto');


WYSIWYG Example

WYSIWYG Example

(a) Without WYSIWYG

High-Quality Graphics

This information is based on websites here and here.

- Generate plot with all lines/labels/annotations/legends/etc
- Set properties (graphics handles or interactively)
 - Figure width/height
 - Axes line width, object line width, marker size
 - Font sizes
- Save to figure to file
 - WYSIWYG
 - set(gcf, 'PaperPositionMode', 'auto');
 - Print to file for inclusion in document
 - print (gcf, '-depsc2', filename)
 - matlabfrag(filename)
 - matlab2tikz(filename)
- Fixing EPS file
 - Esthetics of dashed and dotted lines
 - fixPSlinestyle

Important Properties - Figure

- Figure properties
 - InvertHardCopy
 - Change hardcopy to black objects on white background
 - PaperPositionMode
 - Forces the figure's size and location on the printed page to directly reflect the figure's size on the screen
 - PaperOrientation, PaperPosition, PaperUnits, Position, Units
 - Allows manual mapping from figure to paper

Important Properties - Axes

- Color
 - Background color of plot
- XLabel, YLabel, ZLabel
- XScale, YScale, ZScale
- XLim, YLim, ZLim, CLim
- XTick, XTickLabel, YTick, YTickLabel, ZTick, ZTickLabel
 - Locations and labels of tick marks
- XDir, YDir, ZDir
 - Direction of axis ticks (ascending/descending)
- XAxisLocation, YAxisLocation
 - Place axis at left/right or top/bottom of axes
- NextPlot
 - Behavior when multiple objects added to axes

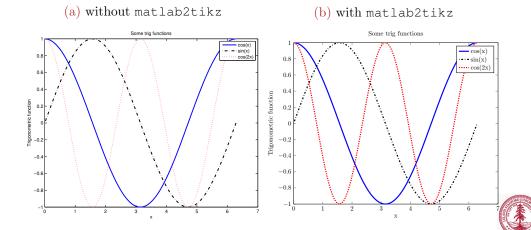
Important Properties - Other

- Line object
 - LineWidth
 - Marker
 - MarkerSize
 - MarkerEdgeColor
 - MarkerFaceColor
- Legend object
 - Position, Interpreter
 - LineStyle
 - Type of line used to box legend
- Text object
 - Position, Interpreter

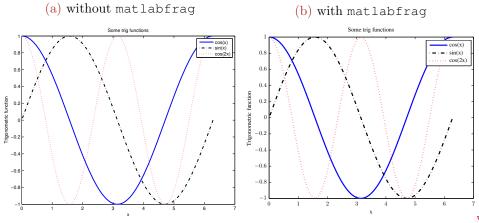
Show Mcode

Two options to modify appearance of figure

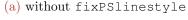
- Interactively via MATLAB Figure GUI
 - Simplest and most popular
 - Not repeatable/automated
- Command line control via graphics handles
 - Less intuitive than interactive approach
 - Highly automated
 - Annoying trial/error when it comes to positioning/sizing


A hybrid approach that combines the above options is available

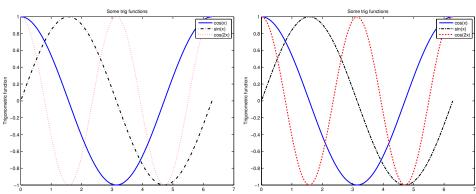
- Use GUI to interactively modify appearance of figure
- Show Mcode option to print underlying graphics handle operations to file
- Copy/paste into script for repeatability
- Demo: show_mcode_ex.m


matlab2tikz

- matlab2tikz(FileName,...)
 - Save figure in native LaTeX (TikZ/Pgfplots).
 - Import file in LATEX (\input or \includegraphics)



matlabfrag


- matlabfrag (FileName, OPTIONS)
 - Exports a matlab figure to an .eps file and a .tex file for use with psfrag in LaTeX.
 - Doesn't seem to work well with beamer

fixPSlinestyle

(b) with fixPSlinestyle

fixPSlinestyle syntax

- fixPSlinestyle(fname)
- fixPSlinestyle(old_fname, new_fname)

Outline

- 1 Graphics Handles
- 2 Advanced Plotting
 - 2D Plotting
 - Grid Data
 - Scalars over Areas
 - Vector Fields
 - Scalars over Volumes
 - Vectors over Volumes
- 3 MATLAB File Exchange
- 4 Publication-Quality Graphics
- 6 Animation

Animation

Two main types of animation

- Interactive animation
 - Generate and display animation during execution of code
- Animation movies
 - Save animation in movie format

Interactive Animation

- Generated by calling plot commands inside a loop with new data generated at each iteration
 - Before entering loop
 - Create figure and axes
 - Modify using handles to achieve desired appearance
 - Use command set (gca, 'nextplot', 'replacechildren') to ensure only *children* of axes object will be replaced upon next plot command (will not modify axes properties)
 - During loop
 - Plotting command to generate data on plot
 - Modify object using handle to achieve desired appearance
 - Use command drawnow to draw object, otherwise will not be drawn until execution is complete (MATLAB optimization as plotting is expensive)
- Alternatively, modify XData, YData, ZData properties of initial plot object

Interactive Animation

- Additionally, save sequence of plotting command as frames (getframe) and play back from MATLAB window (movie)
- animate_ex.m

Approach 1

Approach 2

```
fig=figure();
ax=axes();
obj=plot(..);
set(ax,'nextplot',...
    'replacechildren');
for j = 1:N
    obj=plot(..);
    drawnow;
end
```

```
fig=figure();
ax=axes();
obj=plot(..);
set(ax,'xlim',..,'ylim',..);
for j = 1:N
    set(obj,'xdata',..);
    set(obj,'ydata',..);
    drawnow;
end
```


Animation Movies

Saving animations as movie files can be accomplished using VideoWriter class (video_writer_ex.m)

• VideoWriter enables creation of video files from MATLAB figures, still images, or MATLAB movies

```
1 writerObj = VideoWriter('my_movie.avi'); %Video obj
2 set(writerObj, 'FrameRate',10); % Set the FPS
3 open(writerObj); % Open the video object
4 % Prepare the movie
5 figure; set(gca,'NextPlot','replaceChildren')
6 th = linspace(0,2*pi,100);
7 for j = th
8     plot(sin(th),cos(th),'k-'); hold on;
9     plot(sin(j),cos(j),'ro');
10     writeVideo( writerObj, getframe );
11 end
12 close(writerObj); % Close the video object
```

VideoWriter

- List of VideoWriter properties
 - Here on MathWorks website
 - FrameRate rate of playback (cannot change after open)
 - Quality integer between 0, 100
- VideoWriter methods
 - open Open file for writing video data
 - writeVideo Write video data to file
 - close Close file after writing video data

