# Lecture 3 <br> Scientific Computing: Numerical Linear Algebra 

Matthew J. Zahr<br>CME 292<br>Advanced MATLAB for Scientific Computing<br>Stanford University

30th September 2014
(1) Dense vs. Sparse Matrices
(2) Direct Solvers and Matrix Decompositions

- Background
- Types of Matrices
- Matrix Decompositions
- Backslash
(3) Spectral Decompositions

4 Iterative Solvers

- Preconditioners
- Solvers


## Outline

(1) Dense vs. Sparse Matrices
(2) Direct Solvers and Matrix Decompositions

- Background
- Types of Matrices
- Matrix Decompositions
- Backslash
(3) Spectral DecompositionsIterative Solvers
- Preconditioners
- Solvers


## Assignment

- Create the following matrix (1000 rows/columns)

$$
\mathrm{A}=\left[\begin{array}{cccccc}
-2 & 1 & & & & \\
1 & -2 & 1 & & & \\
& 1 & -2 & 1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & 1 & -2 & 1 \\
& & & & 1 & -2
\end{array}\right]
$$

- Then, run the following lines of code

```
>> s = whos('A');
>> s.bytes
```

- How much storage does your matrix need?


## Sparse matrix storage formats

- Sparse matrix $=$ matrix with relatively small number of non zero entries, compared to its size.
- Let $A \in \mathbb{R}^{m \times n}$ be a sparse matrix with $n_{z}$ nonzeros.
- Dense storage requires $m n$ entries.


## Sparse matrix storage formats (continued)

- Triplet format
- Store nonzero values and corresponding row/column
- Storage required $=3 n_{z}$ ( $2 n_{z}$ ints and $n_{z}$ doubles)
- Simplest but most inefficient storage format
- General in that no assumptions are made about sparsity structure
- Used by MATLAB (column-wise)
$\left[\begin{array}{lllll}1 & 9 & 0 & 0 & 1 \\ 8 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 7 & 0 \\ 0 & 4 & 0 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \text { row }=\left[\begin{array}{llllllllll}
1 & 2 & 1 & 2 & 5 & 3 & 3 & 4 & 1 & 5
\end{array}\right] \\
& \mathrm{col}
\end{aligned}=\left[\begin{array}{lllllllll}
1 & 1 & 2 & 2 & 2 & 3 & 4 & 4 & 5
\end{array}\right]\left[\begin{array}{lllllllll} 
& & & & & & \\
\mathrm{val} & =\left[\begin{array}{llllllll}
1 & 9 & 2 & 4 & 5 & 7 & 1
\end{array}\right]
\end{array}\right.
$$

## Other sparse storage formats

- Compressed Sparse Row (CSR) format
- Store nonzero values, corresponding column, and pointer into value array corresponding to first nonzero in each row
- Storage required $=2 n_{z}+m$
- Compressed Sparse Column (CSC) format
- Storage required $=2 n_{z}+n$
- Diagonal Storage format
- Useful for banded matrices
- Skyline Storage format
- Block Compressed Sparse Row (BSR) format


## Break-even point for sparse storage

- For $A \in \mathbb{R}^{m \times n}$ with $n_{z}$ nonzeros, there is a value of $n_{z}$ where sparse vs dense storage is more efficient.
- For the triplet format, the cross-over point is defined by $3 n_{z}=m n$
- Therefore, if $n_{z} \leq \frac{m n}{3}$ use sparse storage, otherwise use dense format
- Cross-over point depends not only on $m, n, n_{z}$ but also on the data types of row, col, val
- Storage efficiency not only important consideration
- Data access for linear algebra applications
- Ability to exploit symmetry in storage


## Create Sparse Matrices

- Allocate space for $m \times n$ sparse matrix with $n_{z}$ nnz
- $S=\operatorname{spalloc}\left(m, n, n_{z}\right)$
- Convert full matrix $A$ to sparse matrix $S$
- $\mathrm{S}=$ sparse(A)
- Create $m \times n$ sparse matrix with spare for $n_{z}$ nonzeros from triplet (row,col,val)
- $S$ = spalloc(row, col, val, $m, n, n_{z}$ )
- Create matrix of 1 s with sparsity structure defined by sparse matrix $S$
- $R=$ spones (S)
- Sparse identity matrix of size $m \times n$
- I = speye $(m, n)$


## Create Sparse Matrices

- Create sparse uniformly distributed random matrix
- From sparsity structure of sparse matrix $S$
- $R=$ sprand (S)
- Matrix of size $m \times n$ with approximately $m n \rho$ nonzeros and condition number roughly $\kappa$ (sum of rank 1 matrices)
- $\mathrm{R}=\operatorname{sprand}\left(m, n, \rho, \kappa^{-1}\right)$
- Create sparse normally distributed random matrix
- $R=\operatorname{sprandn}(S)$
- $\mathrm{R}=\operatorname{sprandn}\left(m, n, \rho, \kappa^{-1}\right)$
- Create sparse symmetric uniformly distributed random matrix
- $R=\operatorname{sprandn}(S)$
- $\mathrm{R}=\operatorname{sprandn}\left(m, n, \rho, \kappa^{-1}\right)$
- Import from sparse matrix external format
- spconvert


## Create Sparse Matrices (continued)

- Create sparse matrices from diagonals (spdiags)
- Far superior to using diags
- More general
- Doesn't require creating unnecessary zeros
- Extract nonzero diagonals from matrix
- $[B, d]=$ spdiags (A)
- Extract diagonals of $A$ specified by $d$
- $B=$ spdiags $(A, d)$
- Replaces the diagonals of $A$ specified by $d$ with the columns of $B$
- $A=\operatorname{spdiags}(B, d, A)$
- Create an $m \times n$ sparse matrix from the columns of $B$ and place them along the diagonals specified by $d$
- $A=\operatorname{spdiags}(B, d, m, n)$


## Assignment

- Create the following matrix (1000 rows/columns)

$$
\mathrm{A}=\left[\begin{array}{cccccc}
-2 & 1 & & & & \\
1 & -2 & 1 & & & \\
& 1 & -2 & 1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & 1 & -2 & 1 \\
& & & & 1 & -2
\end{array}\right]
$$

using spdiags

- Then, run the following lines of code

```
>> s = whos('A');
>> s.bytes
```

- How much storage does your matrix need?


## Sparse storage information

Let $S \in \mathbb{R}^{m \times n}$ sparse matrix

- Determine if matrix is stored in sparse format
- issparse(S)
- Number of nonzero matrix elements
- $n z=n n z(S)$
- Amount of nonzeros allocated for nonzero matrix elements
- nzmax (S)
- Extract nonzero matrix elements
- If (row, col, val) is sparse triplet of $S$
- val $=$ nonzeros (S)
- [row, col,val] = find (S)


## Sparse and dense matrix functions

Let $S \in \mathbb{R}^{m \times n}$ sparse matrix

- Convert sparse matrix to dense matrix
- A = full(S)
- Apply function (described by function handle func) to nonzero elements of sparse matrix
- $F=\operatorname{spfun}(f u n c, S$ )
- Not necessarily the same as func (S)
- Consider func $=$ @exp
- Plot sparsity structure of matrix
- spy (S)


Figure: spy plot

## Reordering Functions

| Command | Description |
| :--- | :---: |
| amd | Approximate minimum degree permutation |
| colamd | Column approximate minimum degree <br> permutation |
| colperm | Sparse column permutation based on nonzero <br> count |
| dmperm | Dulmage-Mendelsohn decomposition |
| randperm | Random permutation |
| symamd | Symmetric approximate minimum degree <br> permutation |
| symrcm | Sparse reverse Cuthill-McKee ordering |

## Sparse Matrix Tips

- Don't change sparsity structure (pre-allocate)
- Dynamically grows triplet
- Each component of triplet must be stored contiguously
- Accessing values (may be) slow in sparse storage as location of row/columns is not predictable
- If $S(i, j)$ requested, must search through row, col to find i, j
- Component-wise indexing to assign values is expensive
- Requires accessing into an array
- If $S(i, j)$ previously zero, then $S(i, j)=c$ changes sparsity structure


## Rank

- Rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$
- Defined as the number of linearly independent columns
- rank $\mathbf{A} \leq \min \{m, n\}$
- Full rank $\Longrightarrow \operatorname{rank} \mathbf{A}=\min \{m, n\}$
- MATLAB: rank
- Rank determined using SVD

```
>> [rank(rand(100,34)), rank(rand(100,1)*rand(1,34))]
ans =
    34
    1
```


## Norms

- Gives some notion of size/distance
- Defined for both vectors and matrices
- Common examples for vector, $\mathbf{v} \in \mathbb{R}^{m}$
- 2-norm: $\|\mathbf{v}\|_{2}=\sqrt{\mathbf{v}^{T} \mathbf{v}}$
- p-norm: $\|\mathbf{v}\|_{p}=\left(\sum_{i=1}^{m}\left|\mathbf{v}_{i}\right|^{p}\right)^{1 / p}$
- $\infty$-norm: $\|\mathbf{v}\|_{\infty}=\max \left|\mathbf{v}_{i}\right|$
- MATLAB: norm (X,type)
- Common examples for matrices, $\mathbf{A} \in \mathbb{R}^{m \times n}$
- 2-norm: $\|\mathbf{A}\|_{2}=\sigma_{\max }(\mathbf{A})$
- Frobenius-norm: $\|\mathbf{A}\|_{\mathrm{F}}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|\mathbf{A}_{i j}\right|^{2}}$
- MATLAB: norm (X,type)
- Result depends on whether $X$ is vector or matrix and on value of type
- MATLAB: normest
- Estimate matrix 2-norm
- For sparse matrices or large, full matrices

Dense vs. Sparse Matrices
Direct Solvers and Matrix Decompositions Spectral Decompositions Iterative Solvers

## Outline

(1) Dense vs. Sparse Matrices
(2) Direct Solvers and Matrix Decompositions

- Background
- Types of Matrices
- Matrix Decompositions
- Backslash
(3) Spectral DecompositionsIterative Solvers
- Preconditioners
- Solvers


## Determined System of Equations

Solve linear system

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
$$

by factorizing $\mathbf{A} \in \mathbb{R}^{n \times n}$

- For a general matrix, $\mathbf{A},(1)$ is difficult to solve
- If $\mathbf{A}$ can be decomposed as $\mathbf{A}=\mathbf{B C}$ then (1) becomes

$$
\begin{align*}
& \mathrm{By}=\mathrm{b} \\
& \mathrm{Cx}=\mathrm{y} \tag{2}
\end{align*}
$$

- If $\mathbf{B}$ and $\mathbf{C}$ are such that (2) are easy to solve, then the difficult problem in (1) has been reduced to two easy problems
- Examples of types of matrices that are "easy" to solve with
- Diagonal, triangular, orthogonal


## Overdetermined System of Equations

Solve the linear least squares problem

$$
\begin{equation*}
\min \frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2} \tag{3}
\end{equation*}
$$

Define

$$
f(\mathbf{x})=\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}=\frac{1}{2} \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}-\mathbf{b}^{T} \mathbf{A} \mathbf{x}+\frac{1}{2} \mathbf{b}^{T} \mathbf{b}
$$

Optimality condition: $\nabla f(\mathbf{x})=0$ leads to normal equations

$$
\begin{equation*}
\mathbf{A}^{T} \mathbf{A} \mathbf{x}=\mathbf{A}^{T} \mathbf{b} \tag{4}
\end{equation*}
$$

Define pseudo-inverse of matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ as

$$
\begin{equation*}
\mathbf{A}^{\dagger}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \in \mathbb{R}^{n \times m} \tag{5}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\mathbf{x}=\mathbf{A}^{\dagger} \mathbf{b} \tag{6}
\end{equation*}
$$

## Diagonal Matrices

$$
\left.\begin{array}{cccccc}
\alpha_{1} & 0 & 0 & \cdots & 0 & 0 \\
0 & \alpha_{2} & 0 & \cdots & 0 & 0 \\
0 & 0 & \alpha_{3} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \alpha_{n-1} & 0 \\
0 & 0 & 0 & \cdots & 0 & \alpha_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n-1} \\
b_{n}
\end{array}\right]
$$

## Triangular Matrices

$$
\left[\begin{array}{cccccc}
\alpha_{1} & 0 & 0 & \cdots & 0 & 0 \\
\beta_{1} & \alpha_{2} & 0 & \cdots & 0 & 0 \\
\times & \beta_{2} & \alpha_{3} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\times & \times & 0 & \cdots & \alpha_{n-1} & 0 \\
\times & \times & \times & \cdots & \beta_{n-1} & \alpha_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n-1} \\
b_{n}
\end{array}\right]
$$

- Solve by forward substitution
- $x_{1}=\frac{b_{1}}{\alpha_{1}}$
- $x_{2}=\frac{b_{2}-\beta_{1} x_{1}}{\alpha_{2}}$
-...
- For upper triangular matrices, solve by backward substitution


## Additional Matrices

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$

- Symmetric matrix (only for $m=n$ )
- $\mathbf{A}=\mathbf{A}^{T}$ (transpose)
- Orthogonal matrix
- $\mathbf{A}^{T} \mathbf{A}=\mathbf{I}_{n}$
- If $m=n: \mathbf{A} \mathbf{A}^{T}=\mathbf{I}_{m}$
- Symmetric Positive Definite matrix (only for $m=n$ )
- $\mathbf{x}^{T} \mathbf{A x}>0$ for all $\mathbf{x} \in \mathbb{R}^{m}$
- All real, positive eigenvalues
- Permutation matrix (only for $m=n$ ), $\mathbf{P}$
- Permutation of rows or columns of identity matrix by permutation vector p
- For any matrix $\mathbf{B}, \mathbf{P B}=\mathbf{B}(\mathbf{p},:)$ and $\mathbf{B P}=\mathbf{B}(:, \mathbf{p})$


## LU Decomposition

Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ be a non-singular matrix.

$$
\begin{equation*}
\mathbf{A}=\mathbf{L U} \tag{7}
\end{equation*}
$$

where $\mathbf{L} \in \mathbb{R}^{m \times m}$ lower triangular and $\mathbf{U} \in \mathbb{R}^{m \times m}$ upper triangular.

## LU Decomposition

Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ be a non-singular matrix.

- Gaussian elimination transforms a full linear system into upper triangular one by multiplying (on the left) by a sequence of lower triangular matrices

$$
\underbrace{\mathbf{L}_{k} \cdots \mathbf{L}_{1}}_{\mathbf{L}^{-1}} \mathbf{A}=\mathbf{U}
$$

- After re-arranging, written as

$$
\begin{equation*}
\mathbf{A}=\mathbf{L} \mathbf{U} \tag{8}
\end{equation*}
$$

where $\mathbf{L} \in \mathbb{R}^{m \times m}$ lower triangular and $\mathbf{U} \in \mathbb{R}^{m \times m}$ upper triangular.

## LU Decomposition - Pivoting

- Gaussian elimination is unstable without pivoting
- Partial pivoting: $\mathbf{P A}=\mathbf{L U}$
- Complete pivoting: $\mathbf{P A Q}=\mathbf{L U}$
- Operation count: $\frac{2}{3} m^{3}$ flops (without pivoting)
- Useful in solving determined linear system of equations, $\mathbf{A x}=\mathbf{b}$
- Compute LU factorization of $\mathbf{A}$
- Solve $\mathbf{L y}=\mathbf{b}$ using forward substitution $\Longrightarrow \mathbf{y}$
- Solve $\mathbf{U x}=\mathbf{y}$ using backward substitution $\Longrightarrow \mathbf{x}$


## Theorem

$\mathbf{A} \in \mathbb{R}^{n \times n}$ has an $\mathbf{L} \mathbf{U}$ factorization if $\operatorname{det} \mathbf{A}(1: k, 1: k) \neq 0$ for
$k \in\{1, \ldots, n-1\}$. If the $\mathbf{L} \mathbf{U}$ factorization exists and $\mathbf{A}$ is nonsingular, then the $\mathbf{L} \mathbf{U}$ factorization is unique.

## MATLAB LU factorization

- LU factorization, partial pivoting applied to $\mathbf{L}$
- $[\mathrm{L}, \mathrm{U}]=\operatorname{lu}(\mathrm{A})$
- $\mathbf{A}=\left(\mathbf{P}^{-1} \tilde{\mathbf{L}}\right) \mathbf{U}=\mathbf{L} \mathbf{U}$
- U upper tri, $\tilde{\mathbf{L}}$ lower tri, $\mathbf{P}$ row permutation
- $Y=\operatorname{lu}(A)$
- If $\mathbf{A}$ in sparse format, strict lower triangular of $\mathbf{Y}$ contains $\mathbf{L}$ and upper triangular contains $\mathbf{U}$
- Permutation information lost
- LU factorization, partial pivoting $\mathbf{P}$ explicit
- $[L, U, P]=1 u(A)$
- $\mathbf{P A}=\mathbf{L U}$
- $[\mathrm{L}, \mathrm{U}, \mathrm{p}]=\operatorname{lu}\left(\mathrm{A},{ }^{\prime}\right.$ vector')
- $\mathbf{A}(\mathbf{p},:)=\mathbf{L U}$


## MATLAB LU factorization

- LU factorization, complete pivoting $\mathbf{P}, \mathbf{Q}$ explicit
- $[L, U, P, Q]=\operatorname{lu}(A)$
- $\mathbf{P A Q}=\mathbf{L U}$
- $[\mathrm{L}, \mathrm{U}, \mathrm{p}, \mathrm{q}]=\operatorname{lu}\left(\mathrm{A}\right.$, 'vector') $^{\prime}$
- $\mathbf{A}(\mathbf{p}, \mathbf{q})=\mathbf{L U}$
- Additional lu call syntaxes that give
- Control over pivoting thresholds
- Scaling options
- Calls to UMFPACK vs LAPACK


## In-Class Assignment

Use the starter code (starter_code.m) below to:

- Compute LU decomposition of using $[L, U]=1 u(A)$;
- Generate a spy plot of L and U
- Are they both triangular?
- Compute LU decomposition with partial pivoting
- Create spy plot of $\mathrm{P} * \mathrm{~A}($ or $\mathrm{A}(\mathrm{p},:)), \mathrm{L}, \mathrm{U}$
- Compute LU decomposition with complete pivoting
- Create spy plot of $P * A * Q($ or $A(p, q)), L, U$

```
load matrix1.mat
A = sparse(linsys.row,linsys.col,linsys.val);
b = linsys.b;
clear linsys;
```


## Symmetric, Positive Definite (SPD) Matrix

Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ be a symmetric matrix $\left(\mathbf{A}=\mathbf{A}^{T}\right)$, then $\mathbf{A}$ is called symmetric, positive definite if

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{x}>0 \quad \forall \mathbf{x} \in \mathbb{R}^{m}
$$

It is called symmetric, positive semi-definite if $\mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{m}$.

## Cholesky Factorization

Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ be symmetric positive definite.

- Hermitian positive definite matrices can be decomposed into triangular factors twice as quickly as general matrices
- Cholesky Factorization
- A variant of Gaussian elimination (LU) that operations on both left and right of the matrix simultaneously
- Exploits and preserves symmetry

The Cholesky factorization can be written as

$$
\mathbf{A}=\mathbf{R}^{*} \mathbf{R}=\mathbf{L} \mathbf{L}^{*}
$$

where $\mathbf{R} \in \mathbb{R}^{m \times m}$ upper tri and $\mathbf{L} \in \mathbb{R}^{m \times m}$ lower tri.

## Theorem

Every hermitian positive definite matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$ has a unique Cholesky factorization. The converse also holds.

## Cholesky Decomposition

- Cholesky decomposition algorithm
- Symmetric Gaussian elmination
- Operation count: $\frac{1}{3} m^{3}$ flops
- Storage required $\leq \frac{m(m+1)}{2}$
- Depends on sparsity
- Always stable and pivoting unnecessary
- Largest entry in $\mathbf{R}$ or $\mathbf{L}$ factor occurs on diagonal
- Pre-ordering algorithms to reduce the amount of fill-in
- In general, factors of a sparse matrix are dense
- Pre-ordering attempts to minimize the sparsity structure of the matrix factors
- Columns or rows permutations applied before factorization (in contrast to pivoting)
- Most efficient decomposition for SPD matrices
- Partial and modified Cholesky algorithms exist for non-SPD
- Usually just apply Cholesky until problem encountered


## Check for symmetric, positive definiteness

For a matrix $\mathbf{A}$, it is not possible to check $\mathbf{x}^{T} \mathbf{A} \mathbf{x}$ for all $\mathbf{x}$. How does one check for SPD?

- Eigenvalue decomposition


## Theorem

If $\mathbf{A} \in \mathbb{R}^{m \times m}$ is a symmetric matrix, $\mathbf{A}$ is $S P D$ if and only if all its eigenvalues are positive.

- Very expensive/difficult for large matrices
- Cholesky factorization
- If a Cholesky decomposition can be successfully computed, the matrix is SPD
- Best option


## MATLAB Functions

- Cholesky factorization
- $R=\operatorname{chol}(A)$
- Return error if A not SPD
- $[\mathrm{R}, \mathrm{p}]=\operatorname{chol}(\mathrm{A})$
- If A SPD, $p=0$
- If $\mathbf{A}$ not SPD , returns Cholesky factorization of upper $p-1 \times p-1$ block
- $[R, P, S]=\operatorname{chol}(A)$
- Same as previous, except AMD preordering applied
- Attempt to maximize sparsity in factor
- Sparse incomplete Cholesky (ichol, cholinc)
- $R=$ cholinc(A, droptol)
- Rank 1 update to Cholesky factorization
- Given Cholesky factorization, $\mathbf{R}^{T} \mathbf{R}=\mathbf{A}$
- Determine Cholesky factorization of rank 1 update: $\tilde{\mathbf{R}}^{T} \tilde{\mathbf{R}}=\mathbf{A}+\mathbf{x x}^{T}$ using $\mathbf{R}$
- $\mathrm{R} 1=$ cholupdate $(\mathrm{R}, \mathrm{x})$


## In-Class Assignment

Same starter code (starter_code.m) from LU assignment to:

- Compute Cholesky decomposition using $R=\operatorname{chol}(A)$;
- Generate a spy plot of A and R
- Is R triangular?
- Compute Cholesky decomposition after reordering the matrix with $\mathrm{p}=\operatorname{amd}(\mathrm{A})$
- Ramd $=\operatorname{chol}(\mathrm{A}(\mathrm{p}, \mathrm{p}))$;
- Create spy plot of Ramd
- Compute incomplete Cholesky decomposition with cholinc or ichol using drop tolerance of $10^{-2}$
- Create spy plot of Rinc
- How do the sparsity pattern and number of nonzeros compare?


## QR Factorization

Consider the decomposition of $\mathbf{A} \in \mathbb{R}^{m \times n}$, full rank, as

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{Q} & \tilde{\mathbf{Q}}
\end{array}\right]\left[\begin{array}{c}
\mathbf{R}  \tag{9}\\
\mathbf{0}
\end{array}\right]=\mathbf{Q R}
$$

where $\mathbf{Q} \in \mathbb{R}^{m \times n}$ and $\left[\begin{array}{ll}\mathbf{Q} & \tilde{\mathbf{Q}}\end{array}\right] \in \mathbb{R}^{m \times m}$ are orthogonal and $\mathbf{R} \in \mathbb{R}^{n \times n}$ is upper triangular.

## Theorem

Every $\mathbf{A} \in \mathbb{R}^{m \times n}(m \geq n)$ has a $Q R$ factorization. If $\mathbf{A}$ is full rank, the decomposition in unique with $\operatorname{diag} \mathbf{R}>0$.

## Full vs. Reduced QR Factorization

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{cc}
\mathbf{Q} & \tilde{\mathbf{Q}}
\end{array}\right]\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{0}
\end{array}\right] \\
\mathbf{A}=\mathbf{Q R} \\
\underbrace{}_{[\mathbf{Q}} \begin{array}{c}
\tilde{\mathbf{Q}}]
\end{array}(\begin{array}{ccc}
\left(\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times \\
\times & \times \\
\times & \times \\
\times & \times \\
\times & \times \\
\times & \times \\
\times & \times
\end{array}\right]
\end{array} \underbrace{\left(\begin{array}{ccc}
\times & \times & \times \\
0 & \times & \times \\
0 & 0 & \times \\
\left.\hline \begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{array}\right)}_{\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{0}
\end{array}\right]}
\end{gathered}
$$

## QR Factorization

- Algorithms for computing QR factorization
- Gram-Schmidt (numerically unstable)
- Modified Gram-Schmidt
- Givens rotations
- Householder reflections
- Operation count: $2 m n^{2}-\frac{2}{3} n^{3}$ flops
- Storage required: $m n+\frac{n(n+1)}{2}$
- May require pivoting in the rank-deficient case


## Uses of QR Factorization

Let $\mathbf{A}=\mathbf{Q R}$ be the QR factorization of $\mathbf{A}$

- Pseudo-inverse
- $\mathbf{A}^{\dagger}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T}=\left(\mathbf{R}^{T} \mathbf{R}\right)^{-1} \mathbf{R}^{T} \mathbf{Q}^{T}=\mathbf{R}^{-1} \mathbf{Q}^{T}$
- Solution of least squares
- $\mathbf{x}=\mathbf{A}^{\dagger} \mathbf{b}=\mathbf{R}^{-1} \mathbf{Q}^{T} \mathbf{b}$
- Very popular direct method for linear least squares
- Solution of linear system of equations
- $\mathbf{x}=\mathbf{A}^{-1} \mathbf{x}=\mathbf{R}^{-1} \mathbf{Q}^{T} \mathbf{b}$
- Not best option as $\mathbf{Q} \in \mathbb{R}^{m \times m}$ is dense and $\mathbf{R} \in \mathbb{R}^{m \times m}$
- Extraction of orthogonal basis for column space of $\mathbf{A}$


## MATLAB QR function

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, full rank

- For general matrix, $\mathbf{A}$ (dense or sparse)
- Full QR factorization
- $[\mathrm{Q}, \mathrm{R}]=\operatorname{qr}(\mathrm{A}): \mathbf{A}=\mathbf{Q R}$
- $[\mathrm{Q}, \mathrm{R}, \mathrm{E}]=\mathrm{qr}(\mathrm{A}): \mathbf{A E}=\mathbf{Q R}$
- $\mathbf{Q} \in \mathbb{R}^{m \times m}, \mathbf{R} \in \mathbb{R}^{m \times n}, \mathbf{E} \in \mathbb{R}^{n \times n}$ permutation matrix
- Economy QR factorization
- $[Q, R]=\operatorname{qr}(A, 0): \mathbf{A}=\mathbf{Q R}$
- $[\mathbf{Q}, \mathrm{R}, \mathrm{E}]=\operatorname{qr}(\mathrm{A}, 0): \mathbf{A}(:, \mathbf{E})=\mathbf{Q R}$
- $\mathbf{Q} \in \mathbb{R}^{m \times n}, \mathbf{R} \in \mathbb{R}^{n \times n}, \mathbf{E} \in \mathbb{R}^{n}$ permutation vector
- For A sparse format
- Q-less QR factorization
- $R=\operatorname{qr}(A), R=\operatorname{qr}(A, 0)$
- Least-Squares
- $[C, R]=\operatorname{qr}(A, B),[C, R, E]=q r(A, B)$, $[C, R]=\operatorname{qr}(A, B, 0),[C, R, E]=\operatorname{qr}(A, B, 0)$
- $\min \|\mathbf{A x}-\mathbf{b}\| \Longrightarrow \mathrm{x}=\mathbf{E R}^{-1} \mathbf{C}$


## Other MATLAB QR algorithms

Let $\mathbf{A}=\mathbf{Q R}$ be the QR factorization of $\mathbf{A}$

- QR of $\mathbf{A}$ with a column/row removed
- [Q1,R1] = qrdelete (Q,R,j)
- QR of A with column $j$ removed (without re-computing QR from scratch)
- [Q1,R1] = qrdelete (Q,R,j,'row')
- QR of A with row $j$ removed (without re-computing QR from scratch)
- QR of $\mathbf{A}$ with vector $\mathbf{x}$ inserted as $j$ th column/row
- [Q1,R1] = qrinsert (Q,R,j,x)
- QR of $\mathbf{A}$ with $\mathbf{x}$ inserted in column $j$ (without re-computing QR from scratch)
- [Q1,R1] = qrinsert(Q,R,j,x,'row')
- QR of $\mathbf{A}$ with $\mathbf{x}$ inserted in row $j$ (without re-computing QR from scratch)


## Assignment

Suppose we wish to fit an $m$ degree polynomial, or the form (10) to $n$ data points, $\left(x_{i}, y_{i}\right)$ for $i=1, \ldots, n$.

$$
\begin{equation*}
a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0} \tag{10}
\end{equation*}
$$

One way to approach this is by solving a linear least squares problem of the form

$$
\begin{equation*}
\min \|\mathbf{V a}-\mathbf{y}\| \tag{11}
\end{equation*}
$$

where $\mathbf{x}=\left[a_{m}, a_{m-1}, \ldots, a_{0}\right], \mathbf{y}=\left[y_{1}, \ldots y_{n}\right]$, and $\mathbf{V}$ is the Vandermonde matrix

$$
\mathbf{V}=\left[\begin{array}{ccccc}
x_{1}^{m} & x_{1}^{m-1} & \cdots & x_{1} & 1 \\
x_{2}^{m} & x_{2}^{m-1} & \cdots & x_{2} & 1 \\
\vdots & \ddots & \ddots & \vdots & 1 \\
x_{n}^{m} & x_{n}^{m-1} & \cdots & x_{n} & 1
\end{array}\right]
$$

## Assignment

Given the starter code (qr_ex.m) below,

- Fit a polynomial of degree 5 to the data in regression_data.mat
- Plot the data and polynomial

```
%% QR (regression)
load('regression_data.mat'); %Defines x,y
xfine = linspace(min(x),max(x),1000);
order = 5;
VV = vander(x);
V = VV(:,end-order:end);
```

Dense vs. Sparse Matrices
Direct Solvers and Matrix Decompositions Spectral Decompositions Iterative Solvers

## Assignment



## De-mystify MATLAB's mldivide (<br>)

- Diagnostics for square matrices
- Check for triangularity (or permuted triangularity)
- Check for zeros
- Solve with substitution or permuted substitution
- If A symmetric with positive diagonals
- Attempt Cholesky factorization
- If fails, performs symmetric, indefinite factorization
- A Hessenberg
- Gaussian elimination to reduce to triangular, then solve with substitution
- Otherwise, LU factorization with partial pivoting
- For rectangular matrices
- Overdetermined systems solved with $\mathbf{Q R}$ factorization
- Underdetermined systems, MATLAB returns solution with maximum number of zeros


## De-mystify MATLAB's mldivide (<br>)

- Singular (or nearly-singular) square systems
- MATLAB issues a warning
- For singular systems, least-squares solution may be desired
- Make system rectangular: $\mathbf{A} \leftarrow\left[\begin{array}{c}\mathbf{A} \\ \mathbf{0}\end{array}\right]$ and $\mathbf{b} \leftarrow\left[\begin{array}{l}\mathbf{b} \\ 0\end{array}\right]$
- From mldivide diagnostics, rectangular system immediately initiates least-squares solution
- Multiple Right-Hand Sides (RHS)
- Given matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and given $k$ RHS, $\mathbf{B} \in \mathbb{R}^{n \times k}$
- $X=A \backslash B$
- Superior to $X(:, j)=A \backslash B(:, j)$ as matrix only needs to be factorized once, regardless of $k$
- In summary, use backslash to solve $\mathbf{A x}=\mathbf{b}$ with a direct method

Iterative Solvers

## Outline

(1) Dense vs. Sparse Matrices
(2) Direct Solvers and Matrix Decompositions

- Background
- Types of Matrices
- Matrix Decompositions
- Backslash
(3) Spectral Decompositions

4 Iterative Solvers

- Preconditioners
- Solvers


## Eigenvalue Decomposition (EVD)

Let $\mathbf{A} \in \mathbb{R}^{m \times m}$, the Eigenvalue Decomposition (EVD) is

$$
\begin{equation*}
\mathbf{A}=\mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1} \tag{12}
\end{equation*}
$$

where $\boldsymbol{\Lambda}$ is a diagonal matrix with the eigenvalues of $\mathbf{A}$ on the diagonal and the columns of $\mathbf{X}$ contain the eigenvectors of $\mathbf{A}$.

## Theorem

If $\mathbf{A}$ has distinct eigenvalues, the EVD exists.

## Theorem

If $\mathbf{A}$ is hermitian, eigenvectors can be chosen to be orthogonal.

## Eigenvalue Decomposition (EVD)

- Only defined for square matrices
- Does not even exist for all square matrices
- Defective - EVD does not exist
- Diagonalizable - EVD exists
- All EVD algorithms must be iterative
- Eigenvalue Decomposition algorithm
- Reduction to upper Hessenberg form (upper tri + subdiag)
- Iterative transform upper Hessenberg to upper triangular
- Operation count: $\mathcal{O}\left(m^{3}\right)$
- Storage required: $m(m+1)$
- Uses of EVD
- Matrix powers $\left(\mathbf{A}^{k}\right)$ and exponential $\left(e^{\mathbf{A}}\right)$
- Stability/perturbation analysis


## MATLAB EVD algorithms (eig and eigs)

- Compute eigenvalue decomposition of $\mathbf{A X}=\mathbf{X D}$
- Eigenvalues only: d = eig(X)
- Eigenvalues and eigenvectors: [X,D] = eig(X)
- eig also used to computed generalized EVD: $\mathbf{A x}=\lambda \mathbf{B x}$
- E = eig(A,B)
- [V,D] = eig(A,B)
- Use ARPACK to find largest eigenvalues and corresponding eigenvectors (eigs)
- By default returns 6 largest eigenvalues/eigenvectors
- Same calling syntax as eig (or EVD and generalized EVD)
- eigs ( $\mathrm{A}, \mathrm{k}$ ), eigs ( $\mathrm{A}, \mathrm{B}, \mathrm{k}$ ) for $k$ largest eigenvalues/eigenvectors
- eigs(A,k,sigma), eigs(A, B,k,sigma)
- If sigma a number, e-vals closest to sigma
- If 'LM' or 'SM', e-vals with largest/smallest e-vals


## Singular Value Decomposition (SVD)

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ have rank $r$. The $\operatorname{SVD}$ of $\mathbf{A}$ is

$$
\mathbf{A}=\left[\begin{array}{cc}
\mathbf{U} & \tilde{\mathbf{U}}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{\Sigma} & \mathbf{0}  \tag{13}\\
\mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{V} & \tilde{\mathbf{V}}
\end{array}\right]^{*}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}
$$

where $\mathbf{U} \in \mathbb{R}^{m \times r}$ and $\tilde{\mathbf{U}} \in \mathbb{R}^{m \times(m-r)}$ orthogonal, $\boldsymbol{\Sigma} \in \mathbb{R}^{r \times r}$ diagonal with real, positive entries, and $\mathbf{V} \in \mathbb{R}^{n \times r}$ and $\tilde{\mathbf{V}} \in \mathbb{R}^{n \times(n-r)}$ orthogonal.

## Theorem

Every matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ has a singular value decomposition. The singular values $\left\{\sigma_{j}\right\}$ are uniquely determined, and, if $\mathbf{A}$ is square and the $\sigma_{j}$ are distinct, the left and right singular vectors $\left\{\mathbf{u}_{j}\right\}$ and $\left\{\mathbf{v}_{j}\right\}$ are uniquely determined up to complex signs.

## Full vs. Reduced SVD

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{U} & \tilde{\mathbf{U}}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{\Sigma} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{V} & \tilde{\mathbf{V}}
\end{array}\right]^{*}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T} \\
\mathbf{A}=\underbrace{\left(\begin{array}{ccc}
\times & \times & \times \\
\times & \times \\
\times & \times & \times \\
\times & \times \\
\times & \times \\
\times & \times
\end{array}\right)}_{\left[\begin{array}{ll}
\mathbf{U} & \tilde{\mathbf{U}}]
\end{array}\right.} \underbrace{\left(\begin{array}{ccc}
\times & 0 & 0 \\
0 & \times & 0 \\
0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0 \\
0
\end{array}\right]}_{\left[\begin{array}{cc}
\boldsymbol{\Sigma} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]} \underbrace{\left(\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times \\
\times \times & \times & \times \\
\hline
\end{array}\right)}_{\left[\begin{array}{c}
\mathbf{V}^{*} \\
\tilde{\mathbf{V}}^{T}
\end{array}\right]}
\end{gathered}
$$

## Singular Value Decomposition (SVD)

- SVD algorithm
- Bi-diagonalization of A
- Iteratively transform bi-diagonal to diagonal
- Operation count (depends on outputs desired):
- Full SVD: $4 m^{2} n+8 m n^{2}+9 n^{3}$
- Reduced SVD: $14 m n^{2}+8 n^{3}$
- Storage for SVD of $\mathbf{A}$ of rank $r$
- Full SVD: $m^{2}+n^{2}+r$
- Reduced SVD: $(m+n+1) r$
- Applications
- Low-rank approximation (compression)
- Pseudo-inverse/Least-squares
- Rank determination
- Extraction of orthogonal subspace for range and null space


## MATLAB SVD algorithm

- Compute SVD of $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{*} \in \mathbb{R}^{m \times n}$
- Singular vales only: $s=\operatorname{svd}(A)$
- Full SVD: [U, S,V] = svd(A)
- Reduced SVD
- [U,S,V] = svd(A,O)
- [U,S,V] = svd(A,'econ')
- Equivalent for $m \geq n$
- $[U, V, X, C, S]=\operatorname{gsvd}(A, B)$ to compute generalized SVD
- $\mathbf{A}=\mathbf{U C X}^{*}$
- $\mathbf{B}=$ VSX $^{*}$
- $\mathbf{C}^{*} \mathbf{C}+\mathbf{S}^{*} \mathbf{S}=\mathbf{I}$
- Use ARPACK to find largest singular values and corresponding singular vectors (svds)
- By default returns 6 largest singular values/vectors
- Same calling syntax as eig (or EVD and generalized EVD)
- svds (A,k) for $k$ largest singular values/vectors
- svds(A,k,sigma)
- If sigma a number, s-vals closest to sigma


## Condition Number, $\kappa$

- The condition number of a matrix, $\mathbf{A} \in \mathbb{R}^{m \times n}$, is defined as

$$
\begin{equation*}
\kappa=\frac{\sigma_{\max }}{\sigma_{\min }}=\sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}} \tag{14}
\end{equation*}
$$

where $\sigma_{\min }$ and $\sigma_{\max }$ are the smallest and largest singular vales of $\mathbf{A}$ and $\lambda_{\min }$ and $\lambda_{\max }$ are the smallest and largest eigenvalues of $\mathbf{A}^{T} \mathbf{A}$.

- $\kappa=1$ for orthogonal matrices
- $\kappa=\infty$ for singular matrices
- A matrix is well-conditioned for $\kappa$ close to 1 ; ill-conditioned for $\kappa$ large
- cond: returns 2 -norm condition number
- condest: lower bound for 1-norm condition number
- rcond: LAPACK estimate of inverse of 1-norm condition number (estimate of $\left\|A^{-1}\right\|_{1}$ )


## Outline

(1) Dense vs. Sparse Matrices
(2) Direct Solvers and Matrix Decompositions

- Background
- Types of Matrices
- Matrix Decompositions
- Backslash
(3) Spectral Decompositions

4 Iterative Solvers

- Preconditioners
- Solvers


## Iterative Solvers

Consider the linear system of equations

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{15}
\end{equation*}
$$

where $\mathbf{A} \in \mathbb{R}^{m \times m}$, nonsingular.

- Direct solvers
- $\mathcal{O}\left(m^{3}\right)$ operations required
- $\mathcal{O}\left(m^{2}\right)$ storage required (depends on sparsity)
- Factorization of sparse matrix not necessarily sparse
- Not practical for large-scale matrices
- Factorization only needs to be done once, regardless of $\mathbf{b}$
- Iterative solvers
- Solve linear system of equations iteratively
- $\mathcal{O}\left(m^{2}\right)$ operations required, $\mathcal{O}(n n z(\mathbf{A}))$ storage
- Do not need entire matrix A, only products Av
- Preconditioning usually required to keep iterations low
- Intended to modify matrix to improve condition number


## Preconditioning

Suppose $\mathbf{L} \in \mathbb{R}^{m \times m}$ and $\mathbf{R} \in \mathbb{R}^{m \times m}$ are easily invertible.

- Preconditioning replaces the original problem $(\mathbf{A x}=\mathbf{b})$ with a different problems with the same (or similar) solution.
- Left preconditioning
- Replace system of equations $\mathbf{A x}=\mathbf{b}$ with

$$
\begin{equation*}
\mathbf{L}^{-1} \mathbf{A x}=\mathbf{L}^{-1} \mathbf{b} \tag{16}
\end{equation*}
$$

- Right preconditioning
- Define $\mathbf{y}=\mathbf{R x}$

$$
\begin{equation*}
\mathbf{A R}^{-1} \mathbf{y}=\mathbf{b} \tag{17}
\end{equation*}
$$

- Left and right preconditioning
- Combination of previous preconditioning techniques

$$
\begin{equation*}
\mathbf{L}^{-1} \mathbf{A} \mathbf{R}^{-1} \mathbf{y}=\mathbf{L}^{-1} \mathbf{b} \tag{18}
\end{equation*}
$$

## Preconditioners

Preconditioner $\mathbf{M}$ for $\mathbf{A}$ ideally a cheap approximation to $\mathbf{A}^{-1}$, intended to drive condition number, $\kappa$, toward 1

Typical preconditioners include

- Jacobi
- $\mathbf{M}=\operatorname{diag} \mathbf{A}$
- Incomplete factorizations
- LU, Cholesky
- Level of fill-in (beyond sparsity structure)
- Fill-in $0 \Longrightarrow$ sparsity structure of incomplete factors same as that $\mathbf{A}$ itself
- Fill-in $>0 \Longrightarrow$ incomplete factors more dense that $\mathbf{A}$
- Higher level of fill-in $\Longrightarrow$ better preconditioner
- No restrictions on fill-in $\Longrightarrow$ exact decomposition $\Longrightarrow$ perfect preconditioner $\Longrightarrow$ single iteration to solve $\mathbf{A x}=\mathbf{b}$


## MATLAB preconditioners

Given square matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$

- Jacobi preconditioner
- Simple implementation: $M=\operatorname{diag}(\operatorname{diag}(A))$
- Careful of 0s on the diagonal (M nonsingular)
- If $\mathbf{A}_{j j}=0$, set $\mathbf{M}_{j j}=1$
- Sparse storage (use spdiags)
- Function handle that returns $\mathbf{M}^{-1} \mathbf{v}$ given $\mathbf{v}$
- Incomplete factorization preconditioners
- $[L, U]=i l u(A, S E T U P),[L, U, P]=i l u(A, S E T U P)$
- SETUP: TYPE, DROPTOL, MILU, UDIAG, THRESH
- Most popular and cheapest: no fill-in, ILU(0) (SETUP.TYPE='nofill')
- $R=$ cholinc (X,OPTS)
- OPTS: DROPTOL, MICHOL, RDIAG
- $R=$ cholinc (X,'0'), $[R, p]=$ cholinc (X,'0')
- No fill-in incomplete Cholesky
- Two outputs will not raise error for non-SPD matrix


## Common Iterative Solvers

- Linear system of equations $\mathbf{A x}=\mathbf{b}$
- Symmetric Positive Definite matrix
- Conjugate Gradients (CG)
- Symmetric matrix
- Symmetric LQ Method (SYMMLQ)
- Minimum-Residual (MINRES)
- General, Unsymmetric matrix
- Biconjugate Gradients (BiCG)
- Biconjugate Gradients Stabilized (BiCGstab)
- Conjugate Gradients Squared (CGS)
- Generalized Minimum-Residual (GMRES)
- Linear least-squares min $\|\mathbf{A x}-\mathbf{b}\|_{2}$
- Least-Squares Minimum-Residual (LSMR)
- Least-Squares QR (LSQR)


## MATLAB Iterative Solvers

- MATLAB's built-in iterative solvers for $\mathbf{A x}=\mathbf{b}$ for $\mathbf{A} \in \mathbb{R}^{m \times m}$
- pcg, bicg, bicgstab, bicgstabl, cgs, minres, gmres, lsqr, qmr, symmlq, tmqmr
- Similar call syntax for each
- [x,flag,relres,iter,resvec] = ... solver (A, b, restart, tol, maxit, M1, M2, x0)
- Outputs
- $\mathbf{x}$ - attempted solution to $\mathbf{A x}=\mathbf{b}$
- flag-convergence flag
- relres - relative residual $\frac{\|\mathbf{b}-\mathbf{A x}\|}{\|\mathbf{b}\|}$ at convergence
- iter - number of iterations (inner and outer iterations for certain algorithms)
- resvec - vector of residual norms at each iteration $\|\mathbf{b}-\mathbf{A x}\|$, including preconditioners if used $\left(\left\|\mathbf{M}^{-1}(\mathbf{b}-\mathbf{A x})\right\|\right)$


## MATLAB Iterative Solvers

- Similar call syntax for each
- [x,flag,relres,iter,resvec] = ... solver (A, b, restart, tol, maxit, M1, M2, x0)
- Inputs (only A, b required, defaults for others)
- A - full or sparse (recommended) square matrix or function handle returning $\mathbf{A v}$ for any $\mathbf{v} \in \mathbb{R}^{m}$
- b - $m$ vector
- restart - restart frequency (GMRES)
- tol - relative convergence tolerance
- maxit - maximum number of iterations
- M1, M2 - full or sparse (recommended) preconditioner matrix or function handler returning $\mathbf{M}_{2}^{-1} \mathbf{M}_{1}^{-1} \mathbf{v}$ for any $\mathbf{v} \in \mathbb{R}^{m}$ (can specify only $\mathbf{M}_{1}$ or not precondition system by not specifying $\mathrm{M} 1, \mathrm{M} 2$ or setting M1 = [] and M2 = [ ] )
- x 0 - initial guess at solution to $\mathbf{A x}=\mathbf{b}$

Dense vs. Sparse Matrices
Direct Solvers and Matrix Decompositions Spectral Decompositions Iterative Solvers

Preconditioners
Solvers

## Assignment

iterative_ex.m

