Lecture 3 Scientific Computing: Numerical Linear Algebra

Matthew J. Zahr

CME 292 Advanced MATLAB for Scientific Computing Stanford University

30th September 2014

1 Dense vs. Sparse Matrices

2 Direct Solvers and Matrix Decompositions

- Background
- Types of Matrices
- Matrix Decompositions
- Backslash

3 Spectral Decompositions

4 Iterative Solvers

- Preconditioners
- Solvers

Outline

① Dense vs. Sparse Matrices

2 Direct Solvers and Matrix Decompositions

- Background
- Types of Matrices
- Matrix Decompositions
- Backslash

3 Spectral Decompositions

4 Iterative Solvers

- Preconditioners
- Solvers

Assignment

• Create the following matrix (1000 rows/columns)

$$\mathbf{A} = \begin{bmatrix} -2 & 1 & & & \\ 1 & -2 & 1 & & \\ & 1 & -2 & 1 & \\ & & \ddots & \ddots & \ddots & \\ & & & 1 & -2 & 1 \\ & & & & 1 & -2 \end{bmatrix}$$

• Then, run the following lines of code

>> s = whos('A'); >> s.bytes

• How much storage does your matrix need?

Sparse matrix storage formats

- Sparse matrix = matrix with relatively small number of non zero entries, compared to its size.
- Let $A \in \mathbb{R}^{m \times n}$ be a sparse matrix with n_z nonzeros.
- Dense storage requires mn entries.

Sparse matrix storage formats (continued)

• Triplet format

- Store nonzero values and corresponding row/column
- Storage required = $3n_z$ ($2n_z$ ints and n_z doubles)
- Simplest but most inefficient storage format
- General in that no assumptions are made about sparsity structure
- Used by MATLAB (column-wise)

[1	9	0	0	1	$row = \begin{bmatrix} 1 \end{bmatrix}$	2	1	2	5	3	3	4	1	$\overline{5}$
8	2	0	0	0	col = [1]	1	2	2	2	3	4	4	5	5
	0	3	$\frac{5}{7}$	0	· [1	•	-	-	-	0	-	-	1	1
0	4	0	0	1	val = [1]	8	9	2	4	3	9	7	T	1

Other sparse storage formats

- Compressed Sparse Row (CSR) format
 - Store nonzero values, corresponding column, and pointer into value array corresponding to first nonzero in each row
 - Storage required $= 2n_z + m$
- Compressed Sparse Column (CSC) format
 - Storage required $= 2n_z + n$
- Diagonal Storage format
 - Useful for banded matrices
- Skyline Storage format
- Block Compressed Sparse Row (BSR) format

Break-even point for sparse storage

- For $A \in \mathbb{R}^{m \times n}$ with n_z nonzeros, there is a value of n_z where sparse vs dense storage is more efficient.
- For the triplet format, the cross-over point is defined by $3n_z = mn$
- Therefore, if $n_z \leq \frac{mn}{3}$ use sparse storage, otherwise use dense format
- \bullet Cross-over point depends not only on m,n,n_z but also on the data types of row, col, val
- Storage efficiency not only important consideration
 - Data access for linear algebra applications
 - Ability to exploit symmetry in storage

Create Sparse Matrices

- Allocate space for $m \times n$ sparse matrix with n_z nnz
 - S = spalloc (m, n, n_z)
- \bullet Convert full matrix A to sparse matrix S
 - S = sparse(A)
- Create $m \times n$ sparse matrix with spare for n_z nonzeros from triplet (row,col,val)
 - S = spalloc(row, col, val, m, n, n_z)
- $\bullet\,$ Create matrix of 1s with sparsity structure defined by sparse matrix S
 - R = spones(S)
- Sparse identity matrix of size $m \times n$
 - I = speye(m, n)

Create Sparse Matrices

- Create sparse uniformly distributed random matrix
 - • From sparsity structure of sparse matrix ${\cal S}$
 - R = sprand(S)
 - Matrix of size $m \times n$ with approximately $mn\rho$ nonzeros and condition number roughly κ (sum of rank 1 matrices)
 - R = sprand $(m, n, \rho, \kappa^{-1})$
- Create sparse normally distributed random matrix
 - R = sprandn(S)
 - R = sprandn $(m, n, \rho, \kappa^{-1})$
- Create sparse symmetric uniformly distributed random matrix
 - R = sprandn(S)
 - R = sprandn $(m, n, \rho, \kappa^{-1})$
- Import from sparse matrix external format
 - spconvert

Create Sparse Matrices (continued)

- Create sparse matrices from diagonals (spdiags)
 - Far superior to using diags
 - More general
 - Doesn't require creating unnecessary zeros
 - Extract nonzero diagonals from matrix

• [B,d] = spdiags(A)

• Extract diagonals of A specified by d

• B = spdiags(A,d)

• Replaces the diagonals of A specified by d with the columns of B

• A = spdiags(B,d,A)

• Create an $m \times n$ sparse matrix from the columns of B and place them along the diagonals specified by d

Assignment

• Create the following matrix (1000 rows/columns)

$$\mathbf{A} = \begin{bmatrix} -2 & 1 & & & \\ 1 & -2 & 1 & & \\ & 1 & -2 & 1 & \\ & & \ddots & \ddots & \ddots & \\ & & & 1 & -2 & 1 \\ & & & & 1 & -2 \end{bmatrix}$$

using spdiags

• Then, run the following lines of code

>> s = whos('A');
>> s.bytes

• How much storage does your matrix need?

Sparse storage information

Let $S \in \mathbb{R}^{m \times n}$ sparse matrix

- Determine if matrix is stored in sparse format
 - issparse(S)
- Number of nonzero matrix elements
 - nz = nnz(S)
- Amount of nonzeros allocated for nonzero matrix elements
 - nzmax(S)
- Extract nonzero matrix elements
 - If (row, col, val) is sparse triplet of S
 - val = nonzeros(S)
 - [row, col, val] = find(S)

Sparse and dense matrix functions

Let $S \in \mathbb{R}^{m \times n}$ sparse matrix

- Convert sparse matrix to dense matrix
 - A = full(S)
- Apply function (described by function handle func) to nonzero elements of sparse matrix
 - F = spfun(func, S)
 - Not necessarily the same as func(S)
 - Consider func = @exp
- Plot sparsity structure of matrix
 - spy(S)

Figure : spy plot

Reordering Functions

Command	Description						
amd	Approximate minimum degree permutation						
colamd	Column approximate minimum degree permutation						
colperm	Sparse column permutation based on nonzero count						
dmperm	Dulmage-Mendelsohn decomposition						
randperm	Random permutation						
symamd	Symmetric approximate minimum degree permutation						
symrcm	Sparse reverse Cuthill-McKee ordering						

Sparse Matrix Tips

- Don't change sparsity structure (pre-allocate)
 - Dynamically grows triplet
 - Each component of triplet must be stored *contiguously*
- Accessing values (may be) slow in sparse storage as location of row/columns is not predictable
 - If S(i,j) requested, must search through row, col to find i, j
- Component-wise indexing to assign values is expensive
 - Requires accessing into an array
 - If S(i,j) previously zero, then S(i,j) = c changes sparsity structure

Rank

- Rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$
 - Defined as the number of linearly independent columns
 - rank $\mathbf{A} \leq \min\{m, n\}$
 - Full rank \implies rank $\mathbf{A} = \min\{m, n\}$
 - MATLAB: rank
 - Rank determined using SVD

Norms

- Gives some notion of size/distance
- Defined for both vectors and matrices
- Common examples for vector, $\mathbf{v} \in \mathbb{R}^m$
 - 2-norm: $||\mathbf{v}||_2 = \sqrt{\mathbf{v}^T \mathbf{v}}$
 - *p*-norm: $||\mathbf{v}||_p = (\sum_{i=1}^m |\mathbf{v}_i|^p)^{1/p}$
 - ∞ -norm: $||\mathbf{v}||_{\infty} = \max |\mathbf{v}_i|$
 - MATLAB: norm(X, type)
- Common examples for matrices, $\mathbf{A} \in \mathbb{R}^{m \times n}$
 - 2-norm: $||\mathbf{A}||_2 = \sigma_{\max}(\mathbf{A})$
 - Frobenius-norm: $||\mathbf{A}||_{\mathrm{F}} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |\mathbf{A}_{ij}|^2}$
- MATLAB: norm(X, type)
 - Result depends on whether X is vector or matrix and on value of type
- MATLAB: normest
 - Estimate matrix 2-norm
 - For sparse matrices or large, full matrices

Background Types of Matrices Matrix Decompositions Backslash

Outline

Dense vs. Sparse Matrices

2 Direct Solvers and Matrix Decompositions

- Background
- Types of Matrices
- Matrix Decompositions
- Backslash

3 Spectral Decompositions

4 Iterative Solvers

- Preconditioners
- Solvers

Background Types of Matrices Matrix Decompositions Backslash

Determined System of Equations

Solve linear system

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{1}$$

by factorizing $\mathbf{A} \in \mathbb{R}^{n \times n}$

- For a general matrix, A, (1) is difficult to solve
- If \mathbf{A} can be decomposed as $\mathbf{A} = \mathbf{BC}$ then (1) becomes

$$\mathbf{B}\mathbf{y} = \mathbf{b}
 \mathbf{C}\mathbf{x} = \mathbf{y}
 \tag{2}$$

- If **B** and **C** are such that (2) are easy to solve, then the difficult problem in (1) has been reduced to two easy problems
- Examples of types of matrices that are "easy" to solve with
 - Diagonal, triangular, orthogonal

Background Types of Matrices Matrix Decompositions Backslash

Overdetermined System of Equations

Solve the linear least squares problem

$$\min \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2. \tag{3}$$

Define

$$f(\mathbf{x}) = \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 = \frac{1}{2} \mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x} - \mathbf{b}^T \mathbf{A}\mathbf{x} + \frac{1}{2} \mathbf{b}^T \mathbf{b}$$

Optimality condition: $\nabla f(\mathbf{x}) = 0$ leads to normal equations

$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b} \tag{4}$$

Define pseudo-inverse of matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ as

$$\mathbf{A}^{\dagger} = \left(\mathbf{A}^{T}\mathbf{A}\right)^{-1}\mathbf{A}^{T} \in \mathbb{R}^{n \times m}$$
(5)

Then,

$$\mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b}$$

Background **Types of Matrices** Matrix Decompositions Backslash

Diagonal Matrices

$$\begin{bmatrix} \alpha_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \alpha_2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \alpha_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha_{n-1} & 0 \\ 0 & 0 & 0 & \cdots & 0 & \alpha_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix}$$
$$x_j = \frac{b_j}{\alpha_j}$$

Background **Types of Matrices** Matrix Decompositions Backslash

Triangular Matrices

$$\begin{bmatrix} \alpha_1 & 0 & 0 & \cdots & 0 & 0 \\ \beta_1 & \alpha_2 & 0 & \cdots & 0 & 0 \\ \times & \beta_2 & \alpha_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \times & \times & 0 & \cdots & \alpha_{n-1} & 0 \\ \times & \times & \times & \cdots & \beta_{n-1} & \alpha_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix}$$

• Solve by forward substitution

•
$$x_1 = \frac{b_1}{\alpha_1}$$

• $x_2 = \frac{b_2 - \beta_1 x_1}{\alpha_2}$
• \cdots

• For upper triangular matrices, solve by backward substitution

Background **Types of Matrices** Matrix Decompositions Backslash

Additional Matrices

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$

- Symmetric matrix (only for m = n)
 - $\mathbf{A} = \mathbf{A}^T$ (transpose)
- Orthogonal matrix
 - $\mathbf{A}^T \mathbf{A} = \mathbf{I}_n$
 - If m = n: $\mathbf{A}\mathbf{A}^T = \mathbf{I}_m$
- Symmetric Positive Definite matrix (only for m = n)
 - $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^m$
 - All real, positive eigenvalues
- Permutation matrix (only for m = n), **P**
 - Permutation of rows or columns of identity matrix by permutation vector **p**
 - For any matrix \mathbf{B} , $\mathbf{PB} = \mathbf{B}(\mathbf{p},:)$ and $\mathbf{BP} = \mathbf{B}(:,\mathbf{p})$

LU Decomposition

Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ be a non-singular matrix.

$$\mathbf{A} = \mathbf{L}\mathbf{U} \tag{7}$$

Matrix Decompositions

where $\mathbf{L} \in \mathbb{R}^{m \times m}$ lower triangular and $\mathbf{U} \in \mathbb{R}^{m \times m}$ upper triangular.

Background Types of Matrices **Matrix Decompositions** Backslash

LU Decomposition

Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ be a non-singular matrix.

• Gaussian elimination transforms a full linear system into upper triangular one by multiplying (on the left) by a sequence of lower triangular matrices

$$\underbrace{\mathbf{L}_k\cdots\mathbf{L}_1}_{\mathbf{L}^{-1}}\mathbf{A}=\mathbf{U}$$

• After re-arranging, written as

$$\mathbf{A} = \mathbf{L}\mathbf{U} \tag{8}$$

where $\mathbf{L} \in \mathbb{R}^{m \times m}$ lower triangular and $\mathbf{U} \in \mathbb{R}^{m \times m}$ upper triangular.

Background Types of Matrices **Matrix Decompositions** Backslash

LU Decomposition - Pivoting

• Gaussian elimination is unstable without pivoting

- Partial pivoting: $\mathbf{PA} = \mathbf{LU}$
- Complete pivoting: $\mathbf{PAQ} = \mathbf{LU}$
- Operation count: $\frac{2}{3}m^3$ flops (without pivoting)
- $\bullet\,$ Useful in solving determined linear system of equations, $\mathbf{A}\mathbf{x}=\mathbf{b}$
 - Compute **LU** factorization of **A**
 - Solve $\mathbf{L}\mathbf{y} = \mathbf{b}$ using forward substitution $\implies \mathbf{y}$
 - Solve $\mathbf{U}\mathbf{x} = \mathbf{y}$ using backward substitution $\implies \mathbf{x}$

Theorem

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ has an **LU** factorization if det $\mathbf{A}(1:k, 1:k) \neq 0$ for $k \in \{1, \ldots, n-1\}$. If the **LU** factorization exists and \mathbf{A} is nonsingular, then the **LU** factorization is unique.

Background Types of Matrices **Matrix Decompositions** Backslash

MATLAB LU factorization

- $\bullet~{\bf LU}$ factorization, partial pivoting applied to ${\bf L}$
 - [L,U] = lu(A)

•
$$\mathbf{A} = \left(\mathbf{P}^{-1}\tilde{\mathbf{L}}\right)\mathbf{U} = \mathbf{L}\mathbf{U}$$

- $\bullet~{\bf U}$ upper tri, $\tilde{{\bf L}}$ lower tri, ${\bf P}$ row permutation
- Y = lu(A)
 - $\bullet~$ If ${\bf A}$ in sparse format, strict lower triangular of ${\bf Y}$ contains ${\bf L}$ and upper triangular contains ${\bf U}$
 - Permutation information lost
- $\bullet~\mathbf{LU}$ factorization, partial pivoting \mathbf{P} explicit
 - [L,U,P] = lu(A)
 - $\mathbf{PA} = \mathbf{LU}$
 - [L,U,p] = lu(A, 'vector')

•
$$\mathbf{A}(\mathbf{p},:) = \mathbf{L}\mathbf{U}$$

Background Types of Matrices **Matrix Decompositions** Backslash

MATLAB LU factorization

- $\bullet~\mathbf{LU}$ factorization, complete pivoting \mathbf{P},\mathbf{Q} explicit
 - [L,U,P,Q] = lu(A)
 - $\mathbf{PAQ} = \mathbf{LU}$
 - [L,U,p,q] = lu(A, 'vector')
 - $\mathbf{A}(\mathbf{p},\mathbf{q}) = \mathbf{L}\mathbf{U}$
- Additional lu call syntaxes that give
 - Control over pivoting thresholds
 - Scaling options
 - Calls to UMFPACK vs LAPACK

Background Types of Matrices **Matrix Decompositions** Backslash

In-Class Assignment

Use the starter code (starter_code.m) below to:

- Compute LU decomposition of using [L,U] = lu(A);
 - Generate a spy plot of L and U
 - Are they both triangular?
- Compute LU decomposition with partial pivoting
 - Create spy plot of P*A (or A(p,:)), L, U
- Compute LU decomposition with complete pivoting
 - Create spy plot of P * A * Q (or A(p,q)), L, U

```
load matrix1.mat
A = sparse(linsys.row,linsys.col,linsys.val);
b = linsys.b;
clear linsys;
```


Background Types of Matrices Matrix Decompositions Backslash

Symmetric, Positive Definite (SPD) Matrix

Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ be a symmetric matrix $(\mathbf{A} = \mathbf{A}^T)$, then \mathbf{A} is called *symmetric, positive definite* if

$$\mathbf{x}^T \mathbf{A} \mathbf{x} > 0 \qquad \forall \ \mathbf{x} \in \mathbb{R}^m.$$

It is called symmetric, positive semi-definite if $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$ for all $\mathbf{x} \in \mathbb{R}^m$.

Background Types of Matrices **Matrix Decompositions** Backslash

Cholesky Factorization

Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ be symmetric positive definite.

- Hermitian positive definite matrices can be decomposed into triangular factors twice as quickly as general matrices
- Cholesky Factorization
 - A variant of Gaussian elimination (**LU**) that operations on both left and right of the matrix simultaneously
 - Exploits and preserves symmetry

The Cholesky factorization can be written as

$$\mathbf{A} = \mathbf{R}^* \mathbf{R} = \mathbf{L} \mathbf{L}^*$$

where $\mathbf{R} \in \mathbb{R}^{m \times m}$ upper tri and $\mathbf{L} \in \mathbb{R}^{m \times m}$ lower tri.

Theorem

Every hermitian positive definite matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$ has a unique Cholesky factorization. The converse also holds.

Background Types of Matrices **Matrix Decompositions** Backslash

Cholesky Decomposition

- Cholesky decomposition algorithm
 - Symmetric Gaussian elmination
- Operation count: $\frac{1}{3}m^3$ flops
- Storage required $\leq \frac{m(m+1)}{2}$
 - Depends on sparsity
- Always stable and pivoting unnecessary
 - $\bullet\,$ Largest entry in ${\bf R}$ or ${\bf L}$ factor occurs on diagonal
- Pre-ordering algorithms to reduce the amount of fill-in
 - In general, factors of a sparse matrix are dense
 - Pre-ordering attempts to minimize the sparsity structure of the matrix factors
 - Columns or rows permutations applied *before* factorization (in contrast to pivoting)
- Most efficient decomposition for SPD matrices
 - Partial and modified Cholesky algorithms exist for non-SPD
 - Usually just apply Cholesky until problem encountered

Background Types of Matrices **Matrix Decompositions** Backslash

Check for symmetric, positive definiteness

For a matrix \mathbf{A} , it is not possible to check $\mathbf{x}^T \mathbf{A} \mathbf{x}$ for all \mathbf{x} . How does one check for SPD?

• Eigenvalue decomposition

Theorem

If $\mathbf{A} \in \mathbb{R}^{m \times m}$ is a symmetric matrix, \mathbf{A} is SPD if and only if all its eigenvalues are positive.

- Very expensive/difficult for large matrices
- Cholesky factorization
 - If a Cholesky decomposition can be successfully computed, the matrix is SPD
 - Best option

Background Types of Matrices **Matrix Decompositions** Backslash

MATLAB Functions

- Cholesky factorization
 - R = chol(A)
 - Return error if \mathbf{A} not SPD
 - [R,p] = chol(A)
 - If **A** SPD, *p* = 0
 - If **A** not SPD, returns Cholesky factorization of upper $p 1 \times p 1$ block
 - [R,p,S]=chol(A)
 - Same as previous, except AMD preordering applied
 - Attempt to maximize sparsity in factor
- Sparse incomplete Cholesky (ichol, cholinc)
 - R = cholinc(A, droptol)
- Rank 1 update to Cholesky factorization
 - Given Cholesky factorization, $\mathbf{R}^T \mathbf{R} = \mathbf{A}$
 - Determine Cholesky factorization of rank 1 update: $\tilde{\mathbf{R}}^T \tilde{\mathbf{R}} = \mathbf{A} + \mathbf{x} \mathbf{x}^T$ using \mathbf{R}
 - R1 = cholupdate(R, x)

Background Types of Matrices **Matrix Decompositions** Backslash

In-Class Assignment

Same starter code (starter_code.m) from LU assignment to:

- Compute Cholesky decomposition using R = chol(A);
 - $\bullet\,$ Generate a spy plot of A and R
 - Is R triangular?
- $\bullet\,$ Compute Cholesky decomposition $\mathit{after}\,\mathrm{reordering}\,\,\mathrm{the}\,\,\mathrm{matrix}\,\,\mathrm{with}\,\,$
 - p = amd(A)
 - Ramd = chol(A(p,p));
 - Create spy plot of Ramd
- Compute incomplete Cholesky decomposition with cholinc or ichol using drop tolerance of $10^{-2}\,$
 - Create spy plot of Rinc
- How do the sparsity pattern and number of nonzeros compare?

Background Types of Matrices **Matrix Decompositions** Backslash

QR Factorization

Consider the decomposition of $\mathbf{A} \in \mathbb{R}^{m \times n}$, full rank, as

$$\mathbf{A} = \begin{bmatrix} \mathbf{Q} & \tilde{\mathbf{Q}} \end{bmatrix} \begin{bmatrix} \mathbf{R} \\ \mathbf{0} \end{bmatrix} = \mathbf{Q}\mathbf{R}$$
(9)

where $\mathbf{Q} \in \mathbb{R}^{m \times n}$ and $\begin{bmatrix} \mathbf{Q} & \tilde{\mathbf{Q}} \end{bmatrix} \in \mathbb{R}^{m \times m}$ are orthogonal and $\mathbf{R} \in \mathbb{R}^{n \times n}$ is upper triangular.

Theorem

Every $\mathbf{A} \in \mathbb{R}^{m \times n}$ $(m \ge n)$ has a QR factorization. If \mathbf{A} is full rank, the decomposition in unique with diag $\mathbf{R} > 0$.

Background Types of Matrices **Matrix Decompositions** Backslash

Full vs. Reduced QR Factorization

Types of Matrices

Matrix Decompositions

QR Factorization

- Algorithms for computing QR factorization
 - Gram-Schmidt (numerically unstable)
 - Modified Gram-Schmidt
 - Givens rotations
 - Householder reflections
- Operation count: $2mn^2 \frac{2}{3}n^3$ flops
- Storage required: $mn + \frac{n(n+1)}{2}$
- May require pivoting in the rank-deficient case

Background Types of Matrices **Matrix Decompositions** Backslash

Uses of QR Factorization

Let $\mathbf{A} = \mathbf{Q}\mathbf{R}$ be the QR factorization of \mathbf{A}

• Pseudo-inverse

•
$$\mathbf{A}^{\dagger} = \left(\mathbf{A}^{T}\mathbf{A}\right)^{-1}\mathbf{A}^{T} = \left(\mathbf{R}^{T}\mathbf{R}\right)^{-1}\mathbf{R}^{T}\mathbf{Q}^{T} = \mathbf{R}^{-1}\mathbf{Q}^{T}$$

• Solution of least squares

•
$$\mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b} = \mathbf{R}^{-1} \mathbf{Q}^T \mathbf{b}$$

- Very popular *direct* method for linear least squares
- Solution of linear system of equations

•
$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{x} = \mathbf{R}^{-1}\mathbf{Q}^T\mathbf{b}$$

- Not best option as $\mathbf{Q} \in \mathbb{R}^{m \times m}$ is dense and $\mathbf{R} \in \mathbb{R}^{m \times m}$
- ${\ensuremath{\, \bullet }}$ Extraction of orthogonal basis for column space of ${\ensuremath{\mathbf A}}$

Background Types of Matrices **Matrix Decompositions** Backslash

MATLAB **QR** function

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, full rank

- For general matrix, A (dense or sparse)
 - Full QR factorization
 - [Q, R] = qr(A) : A = QR
 - [Q, R, E] = qr(A): AE = QR
 - $\mathbf{Q} \in \mathbb{R}^{m \times m}, \, \mathbf{R} \in \mathbb{R}^{m \times n}, \, \mathbf{E} \in \mathbb{R}^{n \times n}$ permutation matrix
 - Economy QR factorization
 - [Q, R] = qr(A, 0): A = QR
 - [Q,R,E] = qr(A,0): A(:,E) = QR
 - $\mathbf{Q} \in \mathbb{R}^{m \times n}, \, \mathbf{R} \in \mathbb{R}^{n \times n}, \, \mathbf{E} \in \mathbb{R}^n$ permutation vector
- For **A** sparse format
 - Q-less QR factorization
 - R= qr(A), R = qr(A, 0)
 - Least-Squares

•
$$\min ||\mathbf{A}\mathbf{x} - \mathbf{b}|| \implies \mathbf{x} = \mathbf{E}\mathbf{R}^{-1}\mathbf{C}$$

Background Types of Matrices **Matrix Decompositions** Backslash

Other MATLAB **QR** algorithms

Let $\mathbf{A} = \mathbf{Q}\mathbf{R}$ be the QR factorization of \mathbf{A}

- $\bullet~{\rm QR}$ of ${\bf A}$ with a column/row removed
 - [Q1,R1] = qrdelete(Q,R,j)
 - QR of **A** with column j removed (without re-computing QR from scratch)
 - [Q1,R1] = qrdelete(Q,R,j,'row')
 - QR of **A** with row j removed (without re-computing QR from scratch)

• QR of **A** with vector **x** inserted as *j*th column/row

- [Q1,R1] = qrinsert(Q,R,j,x)
 - • QR of **A** with **x** inserted in column j (without re-computing QR from scratch)
- [Q1,R1] = qrinsert(Q,R,j,x,'row')
 - QR of **A** with **x** inserted in row j (without re-computing QR from scratch)

Background Types of Matrices **Matrix Decompositions** Backslash

Assignment

Suppose we wish to fit an *m* degree polynomial, or the form (10) to *n* data points, (x_i, y_i) for i = 1, ..., n.

$$a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0 \tag{10}$$

One way to approach this is by solving a linear least squares problem of the form

$$\min ||\mathbf{V}\mathbf{a} - \mathbf{y}|| \tag{11}$$

where $\mathbf{x} = [a_m, a_{m-1}, \dots, a_0], \mathbf{y} = [y_1, \dots, y_n]$, and **V** is the Vandermonde matrix

$$\mathbf{V} = \begin{bmatrix} x_1^m & x_1^{m-1} & \cdots & x_1 & 1 \\ x_2^m & x_2^{m-1} & \cdots & x_2 & 1 \\ \vdots & \ddots & \ddots & \vdots & 1 \\ x_n^m & x_n^{m-1} & \cdots & x_n & 1 \end{bmatrix}$$

Background Types of Matrices **Matrix Decompositions** Backslash

Assignment

Given the starter code (qr_ex.m) below,

- Fit a polynomial of degree 5 to the data in regression_data.mat
- Plot the data and polynomial

```
%% QR (regression)
load('regression_data.mat'); %Defines x,y
xfine = linspace(min(x),max(x),1000);
order = 5;
VV = vander(x);
V = VV(:,end-order:end);
```


Background Types of Matrices **Matrix Decompositions** Backslash

Assignment

Background Types of Matrices Matrix Decompositions Backslash

De-mystify MATLAB's mldivide (\)

• Diagnostics for square matrices

- Check for triangularity (or permuted triangularity)
 - Check for zeros
 - Solve with substitution or permuted substitution
- If A symmetric with positive diagonals
 - Attempt Cholesky factorization
 - If fails, performs symmetric, indefinite factorization
- A Hessenberg
 - Gaussian elimination to reduce to triangular, then solve with substitution
- Otherwise, LU factorization with partial pivoting
- For rectangular matrices
 - $\bullet\,$ Over determined systems solved with ${\bf QR}$ factorization
 - Underdetermined systems, MATLAB returns solution with maximum number of zeros

Background Types of Matrices Matrix Decompositions Backslash

De-mystify MATLAB's mldivide (\)

- Singular (or nearly-singular) square systems
 - MATLAB issues a warning
 - For singular systems, least-squares solution may be desired
 - Make system rectangular: $\mathbf{A} \leftarrow \begin{bmatrix} \mathbf{A} \\ \mathbf{0} \end{bmatrix}$ and $\mathbf{b} \leftarrow \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix}$
 - From mldivide diagnostics, rectangular system immediately initiates least-squares solution
- Multiple Right-Hand Sides (RHS)
 - Given matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and given $k \text{ RHS}, \mathbf{B} \in \mathbb{R}^{n \times k}$
 - $X = A \setminus B$
 - Superior to X(:,j) = A\B(:,j) as matrix only needs to be factorized once, regardless of k
- In summary, use backslash to solve Ax = b with a direct method

Outline

Dense vs. Sparse Matrices

2 Direct Solvers and Matrix Decompositions

- Background
- Types of Matrices
- Matrix Decompositions
- Backslash

3 Spectral Decompositions

4 Iterative Solvers

- Preconditioners
- Solvers

Eigenvalue Decomposition (EVD)

Let $\mathbf{A} \in \mathbb{R}^{m \times m}$, the Eigenvalue Decomposition (EVD) is

$$\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1} \tag{12}$$

where Λ is a diagonal matrix with the eigenvalues of \mathbf{A} on the diagonal and the columns of \mathbf{X} contain the eigenvectors of \mathbf{A} .

Theorem

If \mathbf{A} has distinct eigenvalues, the EVD exists.

Theorem

If \mathbf{A} is hermitian, eigenvectors can be chosen to be orthogonal.

Eigenvalue Decomposition (EVD)

- Only defined for square matrices
 - Does not even exist for all square matrices
 - Defective EVD does not exist
 - *Diagonalizable* EVD exists
- All EVD algorithms must be iterative
- Eigenvalue Decomposition algorithm
 - Reduction to upper Hessenberg form (upper tri + subdiag)
 - Iterative transform upper Hessenberg to upper triangular
- Operation count: $\mathcal{O}(m^3)$
- Storage required: m(m+1)
- Uses of EVD
 - Matrix powers (\mathbf{A}^k) and exponential $(e^{\mathbf{A}})$
 - Stability/perturbation analysis

MATLAB EVD algorithms (eig and eigs)

- $\bullet\,$ Compute eigenvalue decomposition of $\mathbf{A}\mathbf{X}=\mathbf{X}\mathbf{D}$
 - Eigenvalues only: d = eig(X)
 - Eigenvalues and eigenvectors: [X,D] = eig(X)
- eig also used to computed generalized EVD: $\mathbf{A}\mathbf{x} = \lambda \mathbf{B}\mathbf{x}$
 - E = eig(A,B)
 - [V,D] = eig(A,B)
- Use ARPACK to find largest eigenvalues and corresponding eigenvectors (eigs)
 - By default returns 6 largest eigenvalues/eigenvectors
 - Same calling syntax as eig (or EVD and generalized EVD)
 - eigs (A, k), eigs (A, B, k) for k largest eigenvalues/eigenvectors
 - eigs(A,k,sigma), eigs(A,B,k,sigma)
 - If sigma a number, e-vals closest to sigma
 - If 'LM' or 'SM', e-vals with largest/smallest e-vals

Singular Value Decomposition (SVD)

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ have rank r. The SVD of \mathbf{A} is

$$\mathbf{A} = \begin{bmatrix} \mathbf{U} & \tilde{\mathbf{U}} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V} & \tilde{\mathbf{V}} \end{bmatrix}^* = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T$$
(13)

where $\mathbf{U} \in \mathbb{R}^{m \times r}$ and $\tilde{\mathbf{U}} \in \mathbb{R}^{m \times (m-r)}$ orthogonal, $\boldsymbol{\Sigma} \in \mathbb{R}^{r \times r}$ diagonal with real, positive entries, and $\mathbf{V} \in \mathbb{R}^{n \times r}$ and $\tilde{\mathbf{V}} \in \mathbb{R}^{n \times (n-r)}$ orthogonal.

Theorem

Every matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ has a singular value decomposition. The singular values $\{\sigma_j\}$ are uniquely determined, and, if \mathbf{A} is square and the σ_j are distinct, the left and right singular vectors $\{\mathbf{u}_j\}$ and $\{\mathbf{v}_j\}$ are uniquely determined up to complex signs.

Full vs. Reduced SVD

Singular Value Decomposition (SVD)

• SVD algorithm

- Bi-diagonalization of **A**
- Iteratively transform bi-diagonal to diagonal
- Operation count (depends on outputs desired):
 - Full SVD: $4m^2n + 8mn^2 + 9n^3$
 - Reduced SVD: $14mn^2 + 8n^3$
- Storage for SVD of ${\bf A}$ of rank r
 - Full SVD: $m^2 + n^2 + r$
 - Reduced SVD: (m + n + 1)r
- Applications
 - Low-rank approximation (compression)
 - Pseudo-inverse/Least-squares
 - Rank determination
 - Extraction of orthogonal subspace for range and null space

MATLAB SVD algorithm

- Compute SVD of $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^* \in \mathbb{R}^{m \times n}$
 - Singular vales only: s = svd(A)
 - Full SVD: [U,S,V] = svd(A)
 - Reduced SVD
 - [U,S,V] = svd(A,0)
 - [U,S,V] = svd(A, 'econ')
 - Equivalent for $m \ge n$
- [U,V,X,C,S] = gsvd(A,B) to compute generalized SVD
 - $\mathbf{A} = \mathbf{U}\mathbf{C}\mathbf{X}^*$
 - $\mathbf{B} = \mathbf{VSX}^*$
 - $\mathbf{C}^*\mathbf{C} + \mathbf{S}^*\mathbf{S} = \mathbf{I}$
- Use ARPACK to find largest singular values and corresponding singular vectors (svds)
 - By default returns 6 largest singular values/vectors
 - Same calling syntax as eig (or EVD and generalized EVD)
 - svds (A, k) for k largest singular values/vectors
 - svds(A,k,sigma)
 - If sigma a number, s-vals closest to sigma

Condition Number, κ

• The condition number of a matrix, $\mathbf{A} \in \mathbb{R}^{m \times n}$, is defined as

$$\kappa = \frac{\sigma_{\max}}{\sigma_{\min}} = \sqrt{\frac{\lambda_{\max}}{\lambda_{\min}}} \tag{14}$$

where σ_{\min} and σ_{\max} are the smallest and largest singular values of **A** and λ_{\min} and λ_{\max} are the smallest and largest eigenvalues of $\mathbf{A}^T \mathbf{A}$.

- $\kappa = 1$ for orthogonal matrices
- $\kappa = \infty$ for singular matrices
- A matrix is well-conditioned for κ close to 1; ill-conditioned for κ large
 - cond: returns 2-norm condition number
 - condest: lower bound for 1-norm condition number
 - rcond: LAPACK estimate of inverse of 1-norm condition number (estimate of $||A^{-1}||_1$)

Preconditioners Solvers

Outline

Dense vs. Sparse Matrices

2 Direct Solvers and Matrix Decompositions

- Background
- Types of Matrices
- Matrix Decompositions
- Backslash

3 Spectral Decompositions

4 Iterative Solvers

- Preconditioners
- Solvers

Iterative Solvers

Consider the linear system of equations

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{15}$$

where $\mathbf{A} \in \mathbb{R}^{m \times m}$, nonsingular.

- Direct solvers
 - $\mathcal{O}(m^3)$ operations required
 - $\mathcal{O}(m^2)$ storage required (depends on sparsity)
 - Factorization of sparse matrix not necessarily sparse
 - Not practical for large-scale matrices
 - $\bullet\,$ Factorization only needs to be done once, regardless of ${\bf b}\,$
- Iterative solvers
 - Solve linear system of equations iteratively
 - $\mathcal{O}(m^2)$ operations required, $\mathcal{O}(nnz(\mathbf{A}))$ storage
 - Do not need entire matrix A, only products Av
 - Preconditioning usually required to keep iterations low
 - Intended to modify matrix to improve condition number

Preconditioning

Suppose $\mathbf{L} \in \mathbb{R}^{m \times m}$ and $\mathbf{R} \in \mathbb{R}^{m \times m}$ are *easily* invertible.

- Preconditioning replaces the original problem (Ax = b) with a different problems with the same (or similar) solution.
 - Left preconditioning
 - Replace system of equations Ax = b with

$$\mathbf{L}^{-1}\mathbf{A}\mathbf{x} = \mathbf{L}^{-1}\mathbf{b} \tag{16}$$

- Right preconditioning
 - Define $\mathbf{y} = \mathbf{R}\mathbf{x}$

$$\mathbf{AR}^{-1}\mathbf{y} = \mathbf{b} \tag{17}$$

- Left and right preconditioning
 - Combination of previous preconditioning techniques

$$\mathbf{L}^{-1}\mathbf{A}\mathbf{R}^{-1}\mathbf{y} = \mathbf{L}^{-1}\mathbf{b}$$
(18)

Preconditioners

Preconditioner M for A ideally a cheap approximation to A^{-1} , intended to drive condition number, κ , toward 1

Typical preconditioners include

- Jacobi
 - $\mathbf{M} = \operatorname{diag} \mathbf{A}$
- Incomplete factorizations
 - LU, Cholesky
 - Level of fill-in (beyond sparsity structure)
 - Fill-in $0 \implies$ sparsity structure of incomplete factors same as that **A** itself
 - Fill-in $> 0 \implies$ incomplete factors more dense that **A**
 - Higher level of fill-in \implies better preconditioner
 - No restrictions on fill-in \implies exact decomposition \implies perfect preconditioner \implies single iteration to solve Ax = b

MATLAB preconditioners

Given square matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$

- Jacobi preconditioner
 - Simple implementation: M = diag(diag(A))
 - Careful of 0s on the diagonal (M nonsingular)

• If $\mathbf{A}_{jj} = 0$, set $\mathbf{M}_{jj} = 1$

- Sparse storage (use spdiags)
- Function handle that returns $\mathbf{M}^{-1}\mathbf{v}$ given \mathbf{v}
- Incomplete factorization preconditioners
 - [L,U] = ilu(A,SETUP), [L,U,P] = ilu(A,SETUP)
 - SETUP: TYPE, DROPTOL, MILU, UDIAG, THRESH
 - Most popular and cheapest: no fill-in, ILU(0) (SETUP.TYPE='nofill')
 - R = cholinc(X,OPTS)
 - OPTS: DROPTOL, MICHOL, RDIAG
 - R = cholinc(X,'0'), [R,p] = cholinc(X,'0')
 - No fill-in incomplete Cholesky
 - Two outputs will not raise error for non-SPD matrix

Common Iterative Solvers

- Linear system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$
 - Symmetric Positive Definite matrix
 - Conjugate Gradients (CG)
 - Symmetric matrix
 - Symmetric LQ Method (SYMMLQ)
 - Minimum-Residual (MINRES)
 - General, Unsymmetric matrix
 - Biconjugate Gradients (BiCG)
 - Biconjugate Gradients Stabilized (BiCGstab)
 - Conjugate Gradients Squared (CGS)
 - Generalized Minimum-Residual (GMRES)
- Linear least-squares min $||\mathbf{A}\mathbf{x} \mathbf{b}||_2$
 - Least-Squares Minimum-Residual (LSMR)
 - Least-Squares QR (LSQR)

MATLAB Iterative Solvers

- MATLAB's built-in iterative solvers for $\mathbf{A}\mathbf{x} = \mathbf{b}$ for $\mathbf{A} \in \mathbb{R}^{m \times m}$
 - pcg, bicg, bicgstab, bicgstabl, cgs, minres, gmres, lsqr, qmr, symmlq, tmqmr
- Similar call syntax for each
 - [x,flag,relres,iter,resvec] = ... solver(A,b,restart,tol,maxit,M1,M2,x0)
 - Outputs
 - \mathbf{x} attempted solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$
 - flag convergence flag
 - relres relative residual $\frac{||\mathbf{b}-\mathbf{A}\mathbf{x}||}{||\mathbf{b}||}$ at convergence
 - iter number of iterations (inner and outer iterations for certain algorithms)
 - resvec vector of residual norms at each iteration $||\mathbf{b} \mathbf{A}\mathbf{x}||$, including preconditioners if used $(||\mathbf{M}^{-1} (\mathbf{b} \mathbf{A}\mathbf{x})||)$

MATLAB Iterative Solvers

• Similar call syntax for each

- [x,flag,relres,iter,resvec] = ... solver(A,b,restart,tol,maxit,M1,M2,x0)
- Inputs (only A, b required, defaults for others)
 - A full or sparse (recommended) square matrix or function handle returning Av for any $v \in \mathbb{R}^m$
 - b *m* vector
 - restart restart frequency (GMRES)
 - tol relative convergence tolerance
 - maxit maximum number of iterations
 - M1, M2 full or sparse (recommended) preconditioner matrix or function handler returning M₂⁻¹M₁⁻¹v for any v ∈ ℝ^m (can specify only M₁ or not precondition system by not specifying M1, M2 or setting M1 = [] and M2=[])
 - x0 initial guess at solution to Ax = b

Solvers

Assignment

iterative_ex.m

