Lecture 4
 Scientific Computing:
 Optimization Toolbox
 Nonlinear Equations, Numerical Optimization

Matthew J. Zahr

CME 292
Advanced MATLAB for Scientific Computing
Stanford University

2nd October 2014

Announcement

- Lecture 4 of 8 (or 9)
- Numerical Optimization (Optimization Toolbox)
- Homework 1 due today
- I'll grade them on Friday
- Homework 2 posted (only need to do 1 out of 4)
- Need to start thinking about topics for Lecture 9
(1) Definitions
(2) Nonlinear System of Equations
(3) Numerical Optimization
- Optimization Solvers
- Optimization Problems
- Optimization Toolbox

Definitions

Nonlinear System of Equations Numerical Optimization

Outline

(1) Definitions
(2) Nonlinear System of Equations
(3) Numerical Optimization

- Optimization Solvers
- Optimization Problems
- Optimization Toolbox

Scalar-valued function derivatives

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a sufficiently smooth function of n variables.

- Jacobian of f :

$$
\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x})=\left[\begin{array}{lll}
\frac{\partial f}{\partial \mathbf{x}_{1}}(\mathbf{x}) & \cdots & \frac{\partial f}{\partial \mathbf{x}_{n}}(\mathbf{x})
\end{array}\right]
$$

- Gradient of f :

$$
\nabla f(\mathbf{x})=\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x})^{T}=\left[\begin{array}{lll}
\frac{\partial f}{\partial \mathbf{x}_{1}}(\mathbf{x}) & \cdots & \frac{\partial f}{\partial \mathbf{x}_{n}}(\mathbf{x})
\end{array}\right]^{T}
$$

- Hessian of f :

$$
\left[\nabla^{2} f(\mathbf{x})\right]_{i j}=\frac{\partial f^{2}}{\partial \mathbf{x}_{i} \partial \mathbf{x}_{j}}(\mathbf{x})
$$

Vector-valued function derivatives

Let $\mathbf{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a sufficiently smooth function of n variables.

- Jacobian of \mathbf{F} :

$$
\left[\frac{\partial \mathbf{F}}{\partial \mathbf{x}}(\mathbf{x})\right]_{i j}=\frac{\partial \mathbf{F}_{i}}{\partial \mathbf{x}_{j}}(\mathbf{x})
$$

- Gradient of \mathbf{F} :

$$
\nabla \mathbf{F}(\mathbf{x})=\left(\frac{\partial \mathbf{F}}{\partial \mathbf{x}}(\mathbf{x})\right)^{T}
$$

- Hessian of \mathbf{F} :

$$
\left[\nabla^{2} \mathbf{F}(\mathbf{x})\right]_{i j k}=\frac{\partial \mathbf{F}_{i}^{2}}{\partial \mathbf{x}_{j} \partial \mathbf{x}_{k}}(\mathbf{x})
$$

Outline

(2) Nonlinear System of Equations
(3) Numerical Optimization

- Optimization Solvers
- Optimization Problems
- Optimization Toolbox

Problem Definition

Find $\mathbf{x} \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
\mathbf{F}(\mathbf{x})=\mathbf{0} \tag{1}
\end{equation*}
$$

where $\mathbf{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ continuously differentiable, nonlinear function.

- Solution methods for (1) iterative, in general
- Require initial guess and convergence criteria
- Solution for (1) not guaranteed to exist
- If solution of (1) exists, not necessarily unique
- The solution found depends heavily on the initial guess

Example

Figure : Non-existence and non-uniqueness of nonlinear equations

Scalar-Valued, Univariate Nonlinear Equation

- Equation (1) with $m=n=1$ reduces to $f(x)=0$
- Solution methods
- Derivative-free methods
- Only require evaluations of $f(x)$
- Bisection, Fixed point iteration, etc
- Demo: bisection_demo.m
- Gradient-based methods
- Requires function, $f(x)$, and gradient, $f^{\prime}(x)$, evaluations
- Newton's method
- Secant method: use finite differences to approximate gradients instead of analytic gradients (only requires function evaluations)
- fzero
- Derivative-free
- Combines bisection, secant, and interpolation methods

Newton's Method

- Iterative method to solve $f(x)=0$
- Expand $f(x)$ in a truncated Taylor series about current iteration

$$
\begin{gathered}
f(x)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+\mathcal{O}\left(\left(x-x_{k}\right)^{2}\right)=0 \\
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
\end{gathered}
$$

- Demo: newton_demo.m

MATLAB builtin command for finding a root of a continuous, scalar-valued, univariate function

- [x,fval,exitflag,output] = fzero(fun,x0,options)
- Inputs
- fun - function handle containing scalar-valued function
- $x 0$ - initial guess for root
- options - structure containing options
- Outputs
- x - root found
- fval - value of fun at x
- exitflag - convergence flag
- output - structure containing information about solver

Assignment

- Use fzero to solve $f(x)=x^{2}-1$
- Start from any point away from ± 1
- Use fzero to solve $f(x)=x^{2}$
- Start from any point away from 0
- Use fzero to solve $f(x)=x^{2}+1$
- Start from any point away from 0

Vector-Valued, Multivariate Nonlinear Equations

- Solution methods for (1) in general case
- Derivative-free methods
- Requires function, $\mathbf{F}(\mathbf{x})$, evaluations
- Fixed point iteration, Secant method, etc
- Gradient-based methods
- Requires function, $\mathbf{F}(\mathbf{x})$, and Jacobian, $\frac{\partial \mathbf{F}}{\partial \mathbf{x}}(\mathbf{x})$, evaluations
- Newton-Raphson method
- Gauss-Newton and Levenberg-Marquardt (nonlinear least squares: $\min \|\mathbf{F}(\mathbf{x})\|$)
- Can use finite difference approximations to gradients instead of analytic gradients (only requires function evaluations)
- fsolve
- Gradient-based

MATLAB builtin command for finding a root of a continuous, vector-valued, multivariate function

- [x,fval,exitflag,output,jac] = fzero(fun, x0,options)
- Inputs/Ouputs - same as fzero
- fun - function handle containing vector-valued function
- Algorithms
- Standard trust region (default)
- Requires square system $m=n$
- Trust region reflexive, Gauss-Newton, Levenberg-Marquardt
- Nonlinear least squares (use if f may not have root)
- By default uses finite differences to compute Jacobian
- To supply analytic Jacobian
- fun return Jacobian as second output
- options.Jacobian = 'on'

Example

- Derive Jacobian of

$$
\mathbf{F}(\mathbf{x})=\left[\begin{array}{c}
x_{1}-4 x_{1}^{2}-x_{1} x_{2} \\
2 x_{2}-x_{2}^{2}-3 x_{1} x_{2}
\end{array}\right]
$$

- Solve $\mathbf{F}(\mathbf{x})=\mathbf{0}$ using fsolve
- First without using Jacobian information
- Then with Jacobian information (options = optimset('Jacobian','on'))
- How do the number of function/Jacobian evaluations compare in the two cases?
- output.funcCount

Definitions

Outline

(2) Nonlinear System of Equations
(3) Numerical Optimization

- Optimization Solvers
- Optimization Problems
- Optimization Toolbox

Problem Definition

Consider the general optimization problem

$$
\begin{array}{cl}
\underset{\mathbf{x} \in \mathbb{R}^{n_{v}}}{\operatorname{minimize}} & f(\mathbf{x}) \\
\text { subject to } & \mathbf{A x} \leq \mathbf{b} \\
& \mathbf{A}_{e q} \mathbf{x}=\mathbf{b}_{e q} \tag{2}\\
& \mathbf{c}(\mathbf{x}) \leq \mathbf{0} \\
& \mathbf{c}_{e q}(\mathbf{x})=\mathbf{0} \\
& \boldsymbol{\ell} \leq \mathbf{x} \leq \mathbf{u}
\end{array}
$$

- $\ell, \mathbf{u} \in \mathbb{R}^{n_{v}}$ are box constraints
- $\mathbf{c}: \mathbb{R}^{n_{v}} \rightarrow \mathbb{R}^{n_{\text {ineq }}^{n l}}$ are nonlinear inequality constraints
- $\mathbf{c}_{e q}: \mathbb{R}^{n_{v}} \rightarrow \mathbb{R}^{n_{e q}^{n l}}$ are nonlinear equality constraints
- $\mathbf{A} \in \mathbb{R}^{n_{\text {ineq }}^{l i n} \times n_{v}}$ define linear inequality constraints
- $\mathbf{A}_{e q} \in \mathbb{R}^{n_{e q}^{l i n} \times n_{v}}$ define linear equality constraints

Feasbile Set

For (2), $\mathbf{x} \in \mathbb{R}^{n_{v}}$ is feasbile if \mathbf{x} satisfies the constraints

$$
\begin{align*}
\mathbf{A x} & \leq \mathbf{b} \\
\mathbf{A}_{e q} \mathbf{x} & =\mathbf{b}_{e q} \\
\mathbf{c}(\mathbf{x}) & \leq \mathbf{0} \tag{3}\\
\mathbf{c}_{e q}(\mathbf{x}) & =\mathbf{0} \\
\boldsymbol{\ell} \leq \mathbf{x} & \leq \mathbf{u}
\end{align*}
$$

- Define the feasbile set, $\mathcal{F}=\left\{\mathbf{x} \in \mathbb{R}^{n_{v}} \mid \mathbf{x}\right.$ satisfies (3) $\}$
- \mathbf{x} is feasible if $\mathbf{x} \in \mathcal{F}$
- If there is no \mathbf{x} such that (3) is satisfied, $\mathcal{F}=\emptyset$ and the problem is said to be infeasible
- If $f(\mathbf{x})$ is independent of $\mathbf{x},(2)$ is said to be a feasibility problem

Lagrangian

Write (2) concisely as

$$
\begin{array}{cl}
\operatorname{minimize}_{\mathbf{x} \in \mathbb{R}_{v}} & f(\mathbf{x}) \\
\text { subject to } & \mathbf{g}(\mathbf{x}) \geq 0 \tag{4}\\
& \mathbf{h}(\mathbf{x})=0
\end{array}
$$

Define the Lagrangian of (4) as

$$
\begin{equation*}
\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\mathbf{x})-\boldsymbol{\lambda}^{T} \mathbf{g}(\mathbf{x})-\boldsymbol{\mu}^{T} \mathbf{h}(\mathrm{x}) \tag{5}
\end{equation*}
$$

where $\boldsymbol{\lambda}$ are the Lagrange mulitpliers for the inequality constraints and $\boldsymbol{\mu}$ are the Lagrange multipliers for the equality constraints.

- Notice there is a Lagrange multiplier for each constraint, whether the constraint is a simple bound, general linear, nonlinear, equality, or inequality.

Optimality Conditions

- First-order necessary condition
- Suppose \mathbf{x}^{*} is a local solution to (4) plus additional assumptions. Then there are Lagrange multipliers, $\boldsymbol{\lambda}^{*}$ and $\boldsymbol{\mu}^{*}$, such that the following Karush-Kuhn-Tucker (KKT) conditions are satisfied

$$
\begin{align*}
\nabla_{\mathbf{x}} \mathcal{L}\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right) & =0 \\
\mathbf{g}\left(\mathbf{x}^{*}\right) & \geq 0 \\
\mathbf{h}\left(\mathbf{x}^{*}\right) & =0 \tag{6}\\
\boldsymbol{\mu}^{*} & \geq 0 \\
\boldsymbol{\lambda}^{* T} \mathbf{g}\left(\mathbf{x}^{*}\right)+\boldsymbol{\mu}^{* T} \mathbf{h}\left(\mathbf{x}^{*}\right) & =0
\end{align*}
$$

- Second-order necessary condition: $\nabla_{\mathbf{x x}}^{2} \mathcal{L}\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right) \succeq 0$
- Second-order sufficient condition: $\nabla_{\mathbf{x x}}^{2} \mathcal{L}\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right) \succ 0$

Types of Optimization Solvers: Function Information

- Derivative-free
- Only function evaluations used
- Brute force
- Genetic algorithms
- Finite difference computations of gradients/Hessians
- Usually require very large number of function evaluations
- Gradient-based
- Most popular class of techniques
- Function and gradient evaluations used
- Finite difference computations of Hessians
- SPD updates to build Hessian approximations (BFGS)
- Hessian-based
- Hessians usually difficult/expensive to compute, although often very sparse
- Second-order optimality conditions
- Function, gradient, and Hessian evaluations used

Types of Optimization Solvers

- Interior point methods
- Iterates always strictly feasible
- Use barrier functions to keep iterates away from boundaries
- Sequence of optimization problems
- Active set methods
- Active set refers to the inequality constraints active at the solution
- Possibly infeasible iterates when constraints nonlinear
- Minimize problem for given active set, then update active set based on Lagrange multipliers

Types of Optimization Solvers: Globalization

- Globalization: techniques to make optimization solver globally convergent (convergent to some local minima from any starting point)
- Trust region methods
- Determine step length
- Define model problem whose solution will be the step direction
- Line search methods
- Determine search direction (Newton, Quasi-Newton, etc)
- Find step length based on sufficient decrease criteria

Linear Program

Linear program $\left(\mathbf{f} \in \mathbb{R}^{n_{v}}\right)$

$$
\begin{array}{cl}
\underset{\mathbf{x} \in \mathbb{R}^{n_{v}}}{\operatorname{minimize}} & \mathbf{f}^{T} \mathbf{x} \\
\text { subject to } & \mathbf{A x} \leq \mathbf{b} \\
& \mathbf{A}_{e q} \mathbf{x}=\mathbf{b}_{e q} \tag{7}\\
& \boldsymbol{\ell} \leq \mathbf{x} \leq \mathbf{u}
\end{array}
$$

MATLAB solver (linprog)

- Medium-scale
- Simplex method
- options = optimset('LargeScale', 'off', 'Simplex', ... 'on')
- Large-scale
- Primal-dual interior point method
- Default

Binary Integer Linear Program

Binary integer linear program $\left(\mathbf{f} \in \mathbb{R}^{n_{v}}\right)$

$$
\begin{align*}
\underset{\mathbf{x} \in \mathbb{R}^{n_{v}}}{\operatorname{minimize}} & \mathbf{f}^{T} \mathbf{x} \\
\text { subject to } & \mathbf{A x} \leq \mathbf{b} \\
& \mathbf{A}_{e q}=\mathbf{b}_{e q} \tag{8}\\
& \mathbf{x}_{j} \in\{0,1\} \text { for } j \in\left\{0, \ldots, n_{v}\right\}
\end{align*}
$$

MATLAB solver (binitprog)

- Linear program branch-and-bound
- Sequence of LP-relaxation problems

Quadratic Program

Quadratic program $\left(\mathbf{H} \in \mathbb{R}^{n_{v} \times n_{v}}, \mathbf{f} \in \mathbb{R}^{n_{v}}\right)$

$$
\begin{array}{cl}
\underset{\mathbf{x} \in \mathbb{R}^{n} v}{\operatorname{minimize}} & \frac{1}{2} \mathbf{x}^{T} \mathbf{H} \mathbf{x}+\mathbf{f}^{T} \mathbf{x} \\
\text { subject to } & \mathbf{A} \mathbf{x} \leq \mathbf{b} \tag{9}\\
& \mathbf{A}_{e q} \mathbf{x}=\mathbf{b}_{e q} \\
& \ell \leq \mathbf{x} \leq \mathbf{u}
\end{array}
$$

MATLAB solver (quadprog)

- Medium-scale
- Active-set method with linear subproblems
- Large-scale
- Trust region reflexive method
- Newton-type method
- Preconditioned CG to solve linear system

Unconstrained Optimization

$$
\begin{equation*}
\operatorname{minimize}_{\mathbf{x} \in \mathbb{R}^{n} v} f(\mathbf{x}) \tag{10}
\end{equation*}
$$

MATLAB solvers

- MATLAB solvers (fminunc, fminsearch)
- fminsearch
- Derivative-free
- Simplex search
- fminunc
- Quasi-Newton with linesearch (medium scale)
- Trust region reflexive (large scale)

Linearly Constrained Optimization

- General

$$
\begin{array}{cl}
\underset{\mathbf{x} \in \mathbb{R}^{n_{v}}}{\operatorname{minimize}} & f(\mathbf{x}) \\
\text { subject to } & \mathbf{A x} \leq \mathbf{b} \\
& \mathbf{A}_{e q} \mathbf{x}=\mathbf{b}_{e q} \tag{11}\\
& \boldsymbol{\ell} \leq \mathbf{x} \leq \mathbf{u}
\end{array}
$$

- Bounds only

$$
\begin{array}{ll}
\underset{\mathbf{x} \in \mathbb{R}^{n} v}{\operatorname{minimize}} & f(\mathbf{x}) \tag{12}\\
\text { subject to } & \ell \leq \mathbf{x} \leq \mathbf{u}
\end{array}
$$

MATLAB solvers (fminbnd, fmincon)

- fminbnd
- Single variable optimization
- fmincon
- Trust region reflexive method
- Active-set method

Nonlinearly Constrained Optimization

$$
\begin{array}{cl}
\underset{\mathbf{x} \in \mathbb{R}^{n_{v}}}{\operatorname{minimize}} & f(\mathbf{x}) \\
\text { subject to } & \mathbf{A x} \leq \mathbf{b} \\
& \mathbf{A}_{e q} \mathbf{x}=\mathbf{b}_{e q} \tag{13}\\
& \mathbf{c}(\mathbf{x}) \leq \mathbf{0} \\
& \mathbf{c}_{e q}(\mathbf{x})=\mathbf{0} \\
& \boldsymbol{\ell} \leq \mathbf{x} \leq \mathbf{u}
\end{array}
$$

- Solvers
- Trust region reflexive
- Sequential Quadratic Programming (SQP)
- Interior Point (IP)

Optimization Toolbox Syntax

- Syntax for call to Optimization Toolbox
- [x,fval,exitflag,out,lam,grad,hess] = ... solver(f, x0,A,b,Aeq, beq, lb, ub, nlcon, opt)
- [x,fval,exitflag,out,lam,grad,hess] = solver(problem)
- Outputs
- x - minimum found
- fval - value of objective function at x
- exitflag-describes exit condition of solver
- out - structure containing output information
- lam - structure containing Lagrange multipliers at x
- grad-gradient of objective function at x
- hess - Hessian of objective function at x

Optimization Toolbox Syntax

- Syntax for call to Optimization Toolbox
- [x,fval,exitflag,out,lam,grad,hess] = ... solver (f, x0, A,b, Aeq, beq, lb, ub, nlcon, opt)
- [x,fval,exitflag,out,lam,grad,hess] = solver(problem)
- Inputs
- f - function handle (or vector for LP) defining objective function (and gradient)
- x0-vector defining initial guess
- A, b-matrix, RHS defining linear inequality constraints
- Aeq, beq - matrix, RHS defining linear equality constraints
- lb, ub - vectors defining lower, upper bounds
- nlcon - function handle defining nonlinear contraints (and Jacobians)
- opt - optimization options structure
- problem-structure containing above information

Problem Structure

Instead of specifying many different inputs in a call to the optimizer, store inputs in problem structure

- problem
- objective
- x0
- Aineq, bineq
- Aeq, beq
- lb, ub
- nonlcon
- solver
- options
- Helpful in interacting with optimization GUI

Options Structure

- Each optimization solver has tunable options that can be specified with an options structure
- optimset <solver> to return options available for particular solver, along with default values
- Gives fine-grained control over optimization solver
- Objective/Constriant functions
- Maximum iterations
- Tolerances
- Difference intervals
- Gradient, Hessian computations
- Preconditioning
- Scaling
- Parallelization
- Output and plotting functions

Optimization Functions

- Linear Programming
- linprog
- Binary Integer Programming
- bintprog
- Quadratic Programming
- quadprog
- Unconstrained Optimization
- fminsearch, fminunc
- Constrained Optimization
- General Nonlinear
- fminbnd, fmincon, ktrlink
- TOMLAB (commercial software)
- Least Squares
- Linear: lsqlin, lsqnonneg
- Nonlinear: lsqcurvefit, lsqnonlin
- Multiobjective Optimization
- fgoalattain, fminimax

Objective Function

- Most optimization solvers require scalar-valued objective function
- Exceptions: fgoalattain, fminimax, fsolve, lsqcurvefit, lsqnonlin
- Must take optimization variables, \mathbf{x}, as input
- Must return value of objective function $f(\mathbf{x})$
- May return gradient, $\nabla f(\mathbf{x})$, and Hessian, $\nabla^{2} f(\mathbf{x})$
- User-supplied gradient only used if: optimset('Gradobj', 'on')
- User-supplied Hessian only used if: optimset('Hessian','on')
- For vector-valued objective functions, $\mathbf{F}(\mathbf{x})$
- Input syntax identical to scalar-valued case
- Instead of gradient, return Jacobian matrix, $\frac{\partial \mathbf{F}}{\partial \mathbf{x}}$

Nonlinear Constraint Functions

- Nonlinear constraints are of the form $\mathbf{c}(\mathbf{x}) \leq 0, \mathbf{c}_{e q}(\mathbf{x})=0$
- Nonlinear constraint function must return \mathbf{c} and $\mathbf{c}_{e q}$, even if they both do not exist (use [])
- Call syntax
- No derivatives: [c,ceq] = constr_func(x)
- Derivatives: [c, ceq,grad_c,grad_ceq] = constr_func (x)
- Derivatives must be in the form of gradients: grad_c $(\mathrm{i}, \mathrm{j})=\frac{\partial \mathbf{c}_{j}}{\partial \mathbf{x}_{i}}$, grad_ceq(i,j) $=\frac{\partial \mathbf{c}_{e q_{j}}}{\partial \mathbf{x}_{i}}$

Assignment

Consider the following nonlinearly constrained optimization problem

$$
\begin{array}{ll}
\underset{\mathbf{x} \in \mathbb{R}^{2}}{\operatorname{minimize}} & \mathbf{x}_{1}^{3}+\mathbf{x}_{2}^{3} \\
\text { subject to } & \mathbf{x}_{1}+5 \mathbf{x}_{2} \geq 0 \tag{14}\\
& \mathbf{x}_{1}^{2}+\mathbf{x}_{2}^{2} \leq 2 \\
& -2 \leq \mathbf{x} \leq 2
\end{array}
$$

- Derive derivative information for objective and nonlinear constraints
- Convert optimization problem into MATLAB compatible form
- Linear inequality constraints: $\mathbf{A x} \leq \mathbf{b}$
- Nonlinear inequality constraints: $\mathbf{c}(\mathbf{x}) \leq \mathbf{0}$
- Solve using fmincon

Assignment

Figure: Assignment

Assignment

Figure: Assignment with solution

Optimization Toolbox GUI (optimtooı)

- MATLAB's Optimization Toolbox comes equipped with GUI
- optimtool to launch
- User-friendly
- Import problem or options from workspace
- Generate code
- Export optimization problem to workspace
- Brief Demo
- Power of MATLAB is scripting capabilities

Large-scale vs. Medium-scale

- Large-scale optimization algorithm
- Linear algebra does not store or operate on full matrices
- Sparse matrices and sparse linear algebra
- Internal algorithms perserve sparsity or do not generate matrices (iterative solvers)
- May be used for small problems
- Medium-scale optimization algorithms
- Full matrices and dense linear algebra used
- May require significant amount of memory and CPU time for large problems
- Use to access functionality not implemented in large-scale case

Definitions

Choosing an Algorithm

http://www.mathworks.com/help/optim/ug/choosing-a-solver.html

Parallel Computing and the Optimization Toolbox

- Parallel Computations available with commands fmincon, fminattain, fminimax
- Start MATLAB pool of workers
- Set UseParallel option to 'always'
- parfor to loop over multiple initial conditions
- Attempt at global optimization
- Embarrassingly parallel

```
>> matlabpool open 2
>> options = optimset('UseParallel','always');
```


Passing Additional Arguments to Functions

- An objective function or constraint may require additional arguments besides the optimization variables (\mathbf{x})
- MATLAB's optimizers only pass optimization variables, \mathbf{x}, into functions
- Options for passing additional arguments to functions
- Store variables in anonymous functions
- Nested functions (variable sharing between parent/child)
- Global variables

