
CME292: Advanced MATLAB for Scientific Computing

Homework #1
Background & Graphics

Due: Tuesday, April 15, 2014

Instructions
For this problem set, 2 problems out of 5 are required. You are free to choose the 2 problems you complete.

Before completing problem set, please see HomeworkInstructions on Coursework for general homework
instructions, grading policy, and number of required problems per problem set.

Problem 1
In this problem, you will use either a cell or structure array to store a database of classes taken by student
X while at Stanford University. Subsequently, the data structure will be used to compute the Grade Point
Average (GPA) and other measures of academic performance for student X.

• You will be given a text file courses.txt containing a list of courses/grades and a function read_courses.m
that loads the contents of courses.txt into a cell array.

– g = read_courses('courses.txt');

∗ g{i,1} - cell array for course number (cross-listings not included)
∗ g{i,2} - string containing course title
∗ g{i,3} - string containing term course was taken
∗ g{i,4} - double containing number of units
∗ g{i,5} - string specifying whether pass/not pass or letter grade
∗ g{i,6} - string containing grade

– The format used in courses.txt is exactly the format obtained by copy/pasting one’s courses
from Axess (under “Course History”) into a text file. Therefore, you can use the code from this
problem to compute your own GPA and related statistics without having to go through course-
by-course and enter the data manually. For this assignment, submit only the output corresponding
to courses.txt, not your own grades.

• Load output of read_grades into a convenient structure array with fields of your choosing. Warning
- This will involve parsing strings such as 'AA210A' to obtain the department 'AA' and the course
number '210A' and '2012-2013 Winter' to obtain the quarter ('Winter') and year (2013) the
course was taken.

– As I have not discussed string parsing, I have provided you with a function make_course_struct.m
that takes the output of read_courses and parses the text in the cell array to a more useful form
in a structure array.

– Feel free to use make_course_struct.m or make your own structures.

1



CME292 (Spr14) Homework #1 (Background & Graphics) M. J. Zahr

Figure 1: GPA/Number of units per quarter per year

0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Academic Year

G
P

A

GPA by quarter and academic year

 

 

Autumn

Spring

Summer

Winter

0 1 2 3
0

2

4

6

8

10

12

Academic Year

N
u
m

b
e
r 

o
f 
u
n
it
s

Units by quarter and academic year

• Grade point average of class set S is defined as

GPA “
1

ř

cPSL
upcq

ÿ

sPSL

gpsq ˚ upsq

where SL Ď S is the subset of classes in S taken for a letter grade, gpcq and upcq are the grade letter
value and number of units of class c P S, respectively. The letter grade mapping from letter grade
to letter grade value can be found here: http://studentaffairs.stanford.edu/registrar/
students/gpa-how. The letter grade mapping is also taken care of in make_course_struct.m if
you choose to use it.

• Use the above data structure to:

– Compute GPA for set of all classes

– Create a bar graph of GPA vs. department.

– Create a bar graph of GPA vs. quarter taken (Autumn, Winter, Spring, Summer)

– Create a bar graph of GPA vs. quater and year in Stanford career that class was taken (1st, 2nd,
...). Output should look similar to Figure 1.

∗ Define Year 1 at Stanford as the academic year starting the Autumn quarter you arrived at
Stanford. Any class taken the summer before your first Autumn quarter would be considered
a 0th year.

∗ This was taken care of in make_course_struct.m for you

– Compute total number of classes taken

– Compute total number of graduation units (includes those taken for letter grade and P/NP)

– Create/compute one additional plot or statistic you find interesting. I chose number of units per
year per quarter as in Figure 1.

Page 2 of 7

http://studentaffairs.stanford.edu/registrar/students/gpa-how
http://studentaffairs.stanford.edu/registrar/students/gpa-how


CME292 (Spr14) Homework #1 (Background & Graphics) M. J. Zahr

Problem 2
Optimize the code in

• optimize_me.m and optimize_me_too.m

Things to look for when optimizing: (1) numeric arrays have less memory overhead than structure or cell
arrays, (2) use clear to delete variables no longer needed, (3) vectorize loops whenever possible, (4) logical
indexing much faster than using find to extract index arrays, (5) delayed copy can make a huge difference
(when large matrix passed to function, don’t unnecessarily modify it), (6) sparse matrices can be much
more efficient than full matrices, in terms of both storage and operations. Some, but not necessarily all of
these optimizations will be significant in this problem. MATLAB’s profiler is a useful tool in determining
bottlenecks.

• Profile the code using MATLAB’s profiler before and after optimization. What optimization was most
significant? Be sure to set animate = false, otherwise plotting will dominate the CPU time.

Problem 3
In this problem, you will make a publication-quality plot commonly found in the transonic aerodynamic shape
optimization literature. You will plot pressure coefficient variation (CP ) along the surface of the airfoil as
well as the airfoil profile on the same plot (plotyy) for both the initial and optimized airfoil configurations.
Your plot should look similar to Figure 3.
The file pressure_displacement_profiles.mat contains the airfoil profile and Cp distribution over the
airfoil. This file contains two variabes, initial and optimal, which each have three fields: x, cp, disp
which are vectors defining the x coordinates, Cp profile, and shape profile, respectively. The code below
shows how to load and plot the pressure coefficient and shape. The output is in Figure 2.

1 % Plot profiles
2 load pressure_displacement_profiles
3

4 % Plot initial -Cp and shape
5 fig1=figure;
6 plot(initial.x,-initial.cp,'b-'); hold on;
7 plot(initial.x,initial.disp,'k-');
8 legend('cp','disp');
9

10 % Plot optimal -Cp and shape
11 fig2=figure;
12 plot(optimal.x,-optimal.cp,'b-'); hold on;
13 plot(optimal.x,optimal.disp,'k-');
14 legend('cp','disp');
15

16 % Save to eps
17 print(fig1,'-depsc2','Hwk1Prob3_starter1');
18 print(fig2,'-depsc2','Hwk1Prob3_starter2');

• Modify the starter code to generate plots similar to those in Figure 3 (I recommend using plotyy; use
MATLAB help).

• Plot the negative of Cp instead of Cp to generate the plots in Figure 2 and 3.

• The following criteria should be met

Problem 3 continued on next page. . . Page 3 of 7



CME292 (Spr14) Homework #1 (Background & Graphics) M. J. Zahr

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−1.5

−1

−0.5

0

0.5

1

 

 

cp

disp

(a) Initial Configuration

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−1.5

−1

−0.5

0

0.5

1

 

 

cp

disp

(b) Optimal Configuration

Figure 2: Problem 3 - starter code output

– Use solid lines for the initial Cp and shape profiles and dotted (not dashed) for the optimal Cp

and shape profiles. All lines should be thick (at least linewidth of 2).

– Generate a legend with the entries from Figure 3.

– Use the y-tick labels and spacing from Figure 3.

– Use same x- and y- labels from Figure 3 with LATEX interpreter.

– (extra credit) Use fixPSlinestyle (MATLAB File Exchange) to fix the dotted lines in your EPS
file.

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Distance along ai rfoi l

−
C

p

 

 

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

D
is
ta

n
c
e
tr
a
n
sv

e
rs
e
to

a
ir
fo
il

I ni tial (Cp)

Ini tial (Shape)

Optimal (Cp)

Optimal (Shape)

(a) Without fixPSlinestyle

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Distance along ai rfoi l

−
C

p

 

 

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

D
is
ta

n
c
e
tr
a
n
sv

e
rs
e
to

a
ir
fo
il

I ni tial (Cp)

Ini tial (Shape)

Optimal (Cp)

Optimal (Shape)

(b) With fixPSlinestyle

Figure 3: Problem 3

Problem 4
In this problem, you will gain practice using fill, streamline, quiver and contour-type plotting functions.
You will be provided text files (topo.txt, vel.txt, dens.txt, disp.txt, pres.txt) containing the flow around an

Problem 4 continued on next page. . . Page 4 of 7



CME292 (Spr14) Homework #1 (Background & Graphics) M. J. Zahr

airfoil on an unstructured grid. A function, get_all_quantities, has been provided that loads the flow
quantities into MATLAB and interpolates them on a structured grid (the interpolation is very crude near
the airfoil; as a result, there may be some unphysical artifacts in the flow near the airfoil. Ignore this as it
is not important for this problem). See the tips at the end of this problem description for a brief exposition
of the outputs of get_all_quantities.m.

Generate four plots similar to those in Figure 4 (the formatting and color scheme are up to you, the plots
in Figure 4 are purely for reference).

• First, plot the flow field (x- and y-velocities) using quiver. Plot an outline of the optimal airfoil to
highlight the edge of the physical flow (see starter_code.m and
pressure_displacement_profiles.mat from Problem 3). You will notice there are quiver arrows
inside the airfoil, another artifact of the crude interpolation. Cover these interior arrows by plotting
the shape of the airfoil as a filled, white polygon using fill. Finally, plot streamlines emanating from
the points p´2,´0.6q, p´2,´0.5q, p´2,´0.4q, p´2,´0.3q, p´2,´0.2q, p´2,´0.1q, p´2, 0.1q, p´2, 0.2q,
p´2, 0.3q, p´2, 0.4q, p´2, 0.5q, p´2, 0.6q. The streamlines should be highlighted in some way to distin-
guish them from the quiver arrows.

• In the final three plots, generate a contour plot (you can use any contour function you want, I chose
contourf) of the pressure, density, and velocity magnitude throughout the domain. Include a colorbar
with each of these plots. Similar to the first part, plot the outline of the airfoil and cover the interior
of the airfoil with fill. Finally, plot the flow field on top of each contour plot (as streamlines or a
quiver plot; I chose quiver).

• Save all plots to colored eps files.

−2 −1.5 −1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

Flow field

−2 −1.5 −1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6
Density

 

 

0.35

0.4

0.45

0.5

0.55

−2 −1.5 −1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

Pressure

 

 

2

2.5

3

3.5

4

4.5

x 10
4

−2 −1.5 −1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6
Speed

 

 

50

100

150

200

250

300

350

Figure 4: Problem 4

Hints:

• get_all_quantities may be given argument (see comments in file) defining the limits of the mesh
and number of points in the structured grid. This function was equipped with defaults, so arguments
are not required. The defaults were used to create the plots in this document. Feel free to choose the
mesh size you wish, provided the quality of the resulting plot is comparable to those shown here.

Problem 4 continued on next page. . . Page 5 of 7



CME292 (Spr14) Homework #1 (Background & Graphics) M. J. Zahr

1 function [X,Y,R,P,V1,V2] = get_all_quantities(nx,ny,xlim,ylim)
2 % X, Y - nx x ny matrices defining grid (output of meshgrid)
3 % R, P, V1, V2 - nx x ny matrices defining results (density, pressure,
4 % velocity_x, velocity_y) over grid X, Y

– As the comments in get_all_quantities.m indicate, the outputs are X, Y, the coordinates of
the structured grid (meshgrid output); R, the density over the structured grid; P, the pressure
over the structured grid; V1, V2, the velocity of the flow in the x, y directions.

• quiver will plot one arrow per grid point. To make the arrows in the quiver plot visible, I recommend
sparsifying the grid.

Problem 5
The function [X,Y,Z,V] = flow() is a simple way to generate an interesting scalar-valued function of three
variables. In this problem, we use flow to reproduce some of the plots seen in lecture and some additional
ones. In this problem, generate the plots in Figure 5 using the following steps. Use set(gca,'view',[149.5 ...

44]) to reproduce the view in Figure 5.

• Use contourslice to generate contours in the planes x “ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 and
z “ 0.0 (there will be a total of 10 planes; 9 of them are y ´ z planes and one an x ´ y plane). This
should look similar to Figure 5a.

• Use slice to plot the flow value in the planes x “ 2.0, 8.0, y “ ´2.0, and z “ 0.0. This should look
similar to Figure 5b.

• Use surfnorm to plot the following surfaces, Fpx, yq and Gpx, yq, with surface normals.

Fpx, yq “

ˆ

1

10
x

˙2

`

ˆ

1

3
y

˙2

´ 1 (1)

Gpx, yq “

ˆ

1

10
x

˙2

´

ˆ

1

3
y

˙2

´ 1 (2)

This should look similar to Figure 5c (it is a little crowded).

• Use slice to plot the flow value in the surfaces Fpx, yq and Gpx, yq. This should look similar to
Figure 5d.

• Use isosurface to plot surfaces of the flow at the isovalues v “ ´5,´4,´3,´2,´1, 0. This should
look similar to Figure 5e.

Page 6 of 7



CME292 (Spr14) Homework #1 (Background & Graphics) M. J. Zahr

0

2

4

6

8

10

−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

contourslice

(a) contourslice

0

2

4

6

8

10

−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

slice

(b) contourslice

0

2

4

6

8

10

−4

−2

0

2

4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

surfnorm

(c) contourslice

0

2

4

6

8

10

−3

−2

−1

0

1

2

3

−2

−1.5

−1

−0.5

0

0.5

1

slice (surfaces)

(d) contourslice

(e) contourslice

Figure 5: Problem 5

Page 7 of 7


	Instructions
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

