Lecture 4 Scientific Computing: Optimization Toolbox Nonlinear Equations, Numerical Optimization

Matthew J. Zahr

CME 292 Advanced MATLAB for Scientific Computing Stanford University

15th April 2014

Announcement

- Lecture 4 of 8 (or 9)
 - Numerical Optimization (Optimization Toolbox)
- Homework 1 due today
 - I'll grade them on Friday
 - Feedback on homework
- Homework 2 posted (only need to do 2 out of 4)
- Need to start thinking about topics for Lecture 9
 - Publication-quality graphics
 - Animation
 - PDE Toolbox

2 Nonlinear System of Equations

3 Numerical Optimization

- Optimization Solvers
- Optimization Problems
- Optimization Toolbox

Outline

2 Nonlinear System of Equations

3 Numerical Optimization
• Optimization Solvers
• Optimization Problems
• Optimization Toolbox

Scalar-valued function derivatives

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a sufficiently smooth function of n variables.

• Jacobian of f:

$$\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial \mathbf{x}_1}(\mathbf{x}) & \cdots & \frac{\partial f}{\partial \mathbf{x}_n}(\mathbf{x}) \end{bmatrix}$$

• Gradient of f:

$$\nabla f(\mathbf{x}) = \frac{\partial f}{\partial \mathbf{x}} (\mathbf{x})^T = \begin{bmatrix} \frac{\partial f}{\partial \mathbf{x}_1} (\mathbf{x}) & \cdots & \frac{\partial f}{\partial \mathbf{x}_n} (\mathbf{x}) \end{bmatrix}^T$$

• Hessian of f:

$$\left[\nabla^2 f(\mathbf{x})\right]_{ij} = \frac{\partial f^2}{\partial \mathbf{x}_i \partial \mathbf{x}_j}(\mathbf{x})$$

Vector-valued function derivatives

Let $\mathbf{F}:\mathbb{R}^n\to\mathbb{R}^m$ be a sufficiently smooth function of n variables.

• Jacobian of **F**:

$$\left[\frac{\partial \mathbf{F}}{\partial \mathbf{x}}(\mathbf{x})\right]_{ij} = \frac{\partial \mathbf{F}_i}{\partial \mathbf{x}_j}(\mathbf{x})$$

• Gradient of **F**:

$$abla \mathbf{F}(\mathbf{x}) = \left(rac{\partial \mathbf{F}}{\partial \mathbf{x}}(\mathbf{x})
ight)^T$$

• Hessian of **F**:

$$\left[\nabla^2 \mathbf{F}(\mathbf{x})\right]_{ijk} = \frac{\partial \mathbf{F}_i^2}{\partial \mathbf{x}_i \partial \mathbf{x}_k}(\mathbf{x})$$

Outline

1 Definitions

2 Nonlinear System of Equations

3 Numerical Optimization • Optimization Solvers • Optimization Problems • Optimization Toolbox

Problem Definition

Find $\mathbf{x} \in \mathbb{R}^n$ such that

$$\mathbf{F}(\mathbf{x}) = \mathbf{0} \tag{1}$$

where $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^m$ continuously differentiable, nonlinear function.

- Solution methods for (1) iterative, in general
 - Require initial guess and convergence criteria
- Solution for (1) not guaranteed to exist
- If solution of (1) exists, not necessarily unique
 - The solution found depends heavily on the initial guess

Example

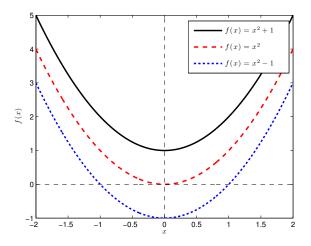


Figure : Non-existence and non-uniqueness of nonlinear equations

Scalar-Valued, Univariate Nonlinear Equation

- Equation (1) with m = n = 1 reduces to f(x) = 0
- Solution methods
 - Derivative-free methods
 - Only require evaluations of f(x)
 - Bisection, Fixed point iteration, etc
 - Demo: bisection_demo.m
 - Gradient-based methods
 - Requires function, f(x), and gradient, f'(x), evaluations
 - Newton's method
 - Secant method: use finite differences to approximate gradients instead of analytic gradients (only requires function evaluations)
- fzero
 - Derivative-free
 - Combines bisection, secant, and interpolation methods

Newton's Method

- Iterative method to solve f(x) = 0
- Expand f(x) in a truncated Taylor series about current iteration

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + \mathcal{O}((x - x_k)^2) = 0$$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

• Demo: newton_demo.m

fzero

MATLAB builtin command for finding a root of a continuous, scalar-valued, univariate function

- [x, fval, exitflag, output] = ... fzero(fun, x0, options)
 - Inputs
 - fun function handle containing scalar-valued function
 - x0 initial guess for root
 - options structure containing options
 - Outputs
 - x root found
 - fval value of fun at x
 - exitflag convergence flag
 - output structure containing information about solver

Assignment

- Use fzero to solve $f(x) = x^2 1$
 - Start from any point away from ± 1
- Use fzero to solve $f(x) = x^2$
 - Start from any point away from 0
- Use fzero to solve $f(x) = x^2 + 1$
 - Start from any point away from 0

Vector-Valued, Multivariate Nonlinear Equations

- Solution methods for (1) in general case
 - Derivative-free methods
 - Requires function, $\mathbf{F}(\mathbf{x})$, evaluations
 - Fixed point iteration, Secant method, etc
 - Gradient-based methods
 - Requires function, $\mathbf{F}(\mathbf{x})$, and Jacobian, $\frac{\partial \mathbf{F}}{\partial \mathbf{x}}(\mathbf{x})$, evaluations
 - Newton-Raphson method
 - Gauss-Newton and Levenberg-Marquardt (nonlinear least squares: min $||\mathbf{F}(\mathbf{x})||$)
 - Can use finite difference approximations to gradients instead of analytic gradients (only requires function evaluations)
- fsolve
 - Gradient-based

fsolve

MATLAB builtin command for finding a root of a continuous, vector-valued, multivariate function

- [x, fval, exitflag, output, jac] = ... fzero(fun, x0, options)
 - Inputs/Ouputs same as fzero
 - fun function handle containing vector-valued function
- Algorithms
 - Standard trust region (default)
 - Requires square system m = n
 - Trust region reflexive, Gauss-Newton, Levenberg-Marquardt
 - Nonlinear least squares (use if f may not have root)
- By default uses finite differences to compute Jacobian
- To supply analytic Jacobian
 - fun return Jacobian as second output
 - options.Jacobian = 'on'

Example

• Derive Jacobian of

$$\mathbf{F}(\mathbf{x}) = \begin{bmatrix} x_1 - 4x_1^2 - x_1x_2\\ 2x_2 - x_2^2 - 3x_1x_2 \end{bmatrix}$$

- $\bullet~{\rm Solve}~{\bf F}({\bf x})={\bf 0}~{\rm using}$ fsolve
 - First without using Jacobian information
 - Then with Jacobian information (options = optimset('Jacobian', 'on'))
- How do the number of function/Jacobian evaluations compare in the two cases?
 - output.funcCount

Definitions Optimization Solv Nonlinear System of Equations Optimization Prob Numerical Optimization Optimization Tool

Outline

1 Definitions

2 Nonlinear System of Equations

3 Numerical Optimization

- Optimization Solvers
- Optimization Problems
- Optimization Toolbox

Definitions	Optimization Solvers
Nonlinear System of Equations	Optimization Problems
Numerical Optimization	Optimization Toolbox

Problem Definition

Consider the general optimization problem

$$\begin{array}{ll} \underset{\mathbf{x} \in \mathbb{R}^{n_v}}{\operatorname{minimize}} & f(\mathbf{x}) \\ \text{subject to} & \mathbf{A}\mathbf{x} \leq \mathbf{b} \\ & \mathbf{A}_{eq}\mathbf{x} = \mathbf{b}_{eq} \\ & \mathbf{c}(\mathbf{x}) \leq \mathbf{0} \\ & \mathbf{c}_{eq}(\mathbf{x}) = \mathbf{0} \\ & \boldsymbol{\ell} \leq \mathbf{x} \leq \mathbf{u} \end{array}$$

$$(2)$$

ℓ, u ∈ ℝ^{n_v} are box constraints
c : ℝ^{n_v} → ℝ<sup>n_{ineq}^{nl} are nonlinear inequality constraints
c_{eq} : ℝ^{n_v} → ℝ^{n_{eq}^{nl}} are nonlinear equality constraints
A ∈ ℝ^{n_{ineq}×n_v} define linear inequality constraints
A_{eq} ∈ ℝ^{n_{eq}^{lin}×n_v} define linear equality constraints
</sup>

Definitions	Optimization Solvers
Nonlinear System of Equations	Optimization Problems
Numerical Optimization	Optimization Toolbox

Feasbile Set

For (2), $\mathbf{x} \in \mathbb{R}^{n_v}$ is *feasbile* if \mathbf{x} satisfies the constraints

 $\begin{aligned} \mathbf{A}\mathbf{x} &\leq \mathbf{b} \\ \mathbf{A}_{eq}\mathbf{x} &= \mathbf{b}_{eq} \\ \mathbf{c}(\mathbf{x}) &\leq \mathbf{0} \\ \mathbf{c}_{eq}(\mathbf{x}) &= \mathbf{0} \\ \boldsymbol{\ell} &\leq \mathbf{x} \leq \mathbf{u} \end{aligned} \tag{3}$

- Define the *feasbile set*, $\mathcal{F} = \{ \mathbf{x} \in \mathbb{R}^{n_v} \mid \mathbf{x} \text{ satisfies } (3) \}$
- \mathbf{x} is feasible if $\mathbf{x} \in \mathcal{F}$
- If there is no **x** such that (3) is satisfied, $\mathcal{F} = \emptyset$ and the problem is said to be *infeasible*
- If $f(\mathbf{x})$ is independent of \mathbf{x} , (2) is said to be a *feasibility* problem

Definitions	Optimization Solvers
Nonlinear System of Equations	Optimization Problems
Numerical Optimization	Optimization Toolbox

Lagrangian

Write (2) concisely as

$$\begin{array}{ll} \underset{\mathbf{x} \in \mathbb{R}^{n_v}}{\text{minimize}} & f(\mathbf{x}) \\ \text{subject to} & \mathbf{g}(\mathbf{x}) \ge 0 \\ & \mathbf{h}(\mathbf{x}) = 0 \end{array}$$
(4)

Define the Lagrangian of (4) as

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) - \boldsymbol{\lambda}^T \mathbf{g}(\mathbf{x}) - \boldsymbol{\mu}^T \mathbf{h}(\mathbf{x})$$
(5)

where λ are the Lagrange multipliers for the inequality constraints and μ are the Lagrange multipliers for the equality constraints.

• Notice there is a Lagrange multiplier *for each constraint*, whether the constraint is a simple bound, general linear, nonlinear, equality, or inequality.

Optimization Solvers Optimization Problems Optimization Toolbox

Optimality Conditions

- First-order necessary condition
 - Suppose \mathbf{x}^* is a local solution to (4) plus additional assumptions. Then there are Lagrange multipliers, $\boldsymbol{\lambda}^*$ and $\boldsymbol{\mu}^*$, such that the following *Karush-Kuhn-Tucker* (KKT) conditions are satisfied

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = 0$$

$$\mathbf{g}(\mathbf{x}^*) \ge 0$$

$$\mathbf{h}(\mathbf{x}^*) = 0$$

$$\boldsymbol{\mu}^* \ge 0$$

$$\boldsymbol{\lambda}^{*T} \mathbf{g}(\mathbf{x}^*) + \boldsymbol{\mu}^{*T} \mathbf{h}(\mathbf{x}^*) = 0$$
(6)

- Second-order necessary condition: $\nabla^2_{\mathbf{xx}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) \succeq 0$
- Second-order sufficient condition: $\nabla^2_{\mathbf{xx}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) \succ 0$

Types of Optimization Solvers: Function Information

- Derivative-free
 - Only function evaluations used
 - Brute force
 - Genetic algorithms
 - Finite difference computations of gradients/Hessians
 - Usually require *very large* number of function evaluations
- Gradient-based
 - Most popular class of techniques
 - Function and gradient evaluations used
 - Finite difference computations of Hessians
 - SPD updates to build Hessian approximations (BFGS)
- Hessian-based
 - Hessians usually difficult/expensive to compute, although often very sparse
 - Second-order optimality conditions
 - Function, gradient, and Hessian evaluations used

Optimization Solvers Optimization Problems Optimization Toolbox

Types of Optimization Solvers

- Interior point methods
 - Iterates always strictly feasible
 - Use barrier functions to keep iterates away from boundaries
 - Sequence of optimization problems
- Active set methods
 - Active set refers to the inequality constraints *active* at the solution
 - Possibly infeasible iterates when constraints nonlinear
 - Minimize problem for given active set, then update active set based on Lagrange multipliers

Optimization Solvers Optimization Problems Optimization Toolbox

Linear Program

Linear program $(\mathbf{f} \in \mathbb{R}^{n_v})$

$$\begin{array}{ll} \underset{\mathbf{x} \in \mathbb{R}^{n_v}}{\text{minimize}} & \mathbf{f}^T \mathbf{x} \\ \text{subject to} & \mathbf{A} \mathbf{x} \leq \mathbf{b} \\ & \mathbf{A}_{eq} \mathbf{x} = \mathbf{b}_{eq} \\ & \boldsymbol{\ell} < \mathbf{x} < \mathbf{u} \end{array}$$
(7)

MATLAB solver (linprog)

- Medium-scale
 - Simplex method
 - options = optimset('LargeScale', 'off', ...
 'Simplex', 'on')
- Large-scale
 - Primal-dual interior point method
 - Default

Optimization Solvers Optimization Problems Optimization Toolbox

Binary Integer Linear Program

Binary integer linear program $(\mathbf{f} \in \mathbb{R}^{n_v})$

$$\begin{array}{ll} \underset{\mathbf{x} \in \mathbb{R}^{n_v}}{\text{minimize}} & \mathbf{f}^T \mathbf{x} \\ \text{subject to} & \mathbf{A} \mathbf{x} \leq \mathbf{b} \\ & \mathbf{A}_{eq} \mathbf{x} = \mathbf{b}_{eq} \\ & \mathbf{x}_j \in \{0, 1\} \text{ for } j \in \{0, \dots, n_v\} \end{array}$$

MATLAB solver (binitprog)

- Linear program branch-and-bound
 - Sequence of LP-relaxation problems

(8)

Definitions	Optimization Solvers
Nonlinear System of Equations	Optimization Problems
Numerical Optimization	Optimization Toolbox

Quadratic Program

Quadratic program ($\mathbf{H} \in \mathbb{R}^{n_v \times n_v}, \, \mathbf{f} \in \mathbb{R}^{n_v}$)

$$\begin{array}{ll} \underset{\mathbf{x} \in \mathbb{R}^{n_v}}{\text{minimize}} & \frac{1}{2} \mathbf{x}^T \mathbf{H} \mathbf{x} + \mathbf{f}^T \mathbf{x} \\ \text{subject to} & \mathbf{A} \mathbf{x} \leq \mathbf{b} \\ & \mathbf{A}_{eq} \mathbf{x} = \mathbf{b}_{eq} \\ & \boldsymbol{\ell} \leq \mathbf{x} \leq \mathbf{u} \end{array}$$
(9)

MATLAB solver (quadprog)

- Medium-scale
 - Active-set method with linear subproblems
- Large-scale
 - Trust region reflexive method
 - Newton-type method
 - Preconditioned CG to solve linear system

Optimization Solvers Optimization Problems Optimization Toolbox

Unconstrained Optimization

$$\min_{\mathbf{x}\in\mathbb{R}^{n_v}} \quad f(\mathbf{x}) \tag{10}$$

MATLAB solvers

- MATLAB solvers (fminunc, fminsearch)
 - fminsearch
 - Derivative-free
 - Simplex search
 - fminunc
 - Quasi-Newton with linesearch (medium scale)
 - Trust region reflexive (large scale)

Optimization Solvers Optimization Problems Optimization Toolbox

Linearly Constrained Optimization

• General

$$\begin{array}{ll} \underset{\mathbf{x}\in\mathbb{R}^{n_v}}{\text{minimize}} & f(\mathbf{x})\\ \text{subject to} & \mathbf{A}\mathbf{x}\leq\mathbf{b}\\ & \mathbf{A}_{eq}\mathbf{x}=\mathbf{b}_{eq}\\ & \boldsymbol{\ell}\leq\mathbf{x}\leq\mathbf{u} \end{array}$$
(11)

• Bounds only

 $\begin{array}{ll} \underset{\mathbf{x} \in \mathbb{R}^{n_v}}{\text{minimize}} & f(\mathbf{x}) \\ \text{subject to} & \boldsymbol{\ell} < \mathbf{x} < \mathbf{u} \end{array}$ (12)

MATLAB solvers (fminbnd, fmincon)

- fminbnd
 - Single variable optimization
- fmincon
 - Trust region reflexive method
 - Active-set method

Optimization Problems

Nonlinearly Constrained Optimization

r

$$\begin{array}{ll} \underset{\mathbf{x} \in \mathbb{R}^{n_v}}{\operatorname{minimize}} & f(\mathbf{x}) \\ \text{subject to} & \mathbf{A}\mathbf{x} \leq \mathbf{b} \\ & \mathbf{A}_{eq}\mathbf{x} = \mathbf{b}_{eq} \\ & \mathbf{c}(\mathbf{x}) \leq \mathbf{0} \\ & \mathbf{c}_{eq}(\mathbf{x}) = \mathbf{0} \\ & \boldsymbol{\ell} \leq \mathbf{x} \leq \mathbf{u} \end{array}$$
(13)

Solvers

- Trust region reflexive
- Sequential Quadratic Programming (SQP)
- Interior Point (IP)

Optimization Solvers Optimization Problems Optimization Toolbox

Optimization Toolbox Syntax

- Syntax for call to Optimization Toolbox
 - [x, fval, exitflag, out, lam, grad, hess] = ... solver(f, x0, A, b, Aeq, beq, lb, ub, nlcon, opt)
 - [x,fval,exitflag,out,lam,grad,hess] = ... solver(problem)
- Outputs
 - x minimum found
 - fval value of objective function at x
 - exitflag describes exit condition of solver
 - out structure containing output information
 - lam structure containing Lagrange multipliers at x
 - grad gradient of objective function at x
 - hess Hessian of objective function at x

Optimization Solvers Optimization Problems Optimization Toolbox

Optimization Toolbox Syntax

- Syntax for call to Optimization Toolbox
 - [x, fval, exitflag, out, lam, grad, hess] = ... solver(f, x0, A, b, Aeq, beq, lb, ub, nlcon, opt)
 - [x,fval,exitflag,out,lam,grad,hess] = ... solver(problem)
- Inputs
 - £ function handle (or vector for LP) defining objective function (and gradient)
 - x0 vector defining initial guess
 - A, b matrix, RHS defining linear inequality constraints
 - Aeq, beq matrix, RHS defining linear equality constraints
 - lb, ub vectors defining lower, upper bounds
 - nlcon function handle defining nonlinear contraints (and Jacobians)
 - opt optimization options structure
 - problem structure containing above information

Optimization Solvers Optimization Problems Optimization Toolbox

Problem Structure

Instead of specifying many different inputs in a call to the optimizer, store inputs in problem structure

- problem
 - objective
 - x0
 - Aineq, bineq
 - Aeq, beq
 - lb, ub
 - nonlcon
 - solver
 - options
- Helpful in interacting with optimization GUI

Optimization Solvers Optimization Problems Optimization Toolbox

Options Structure

- Each optimization solver has tunable options that can be specified with an options structure
 - optimset <solver> to return options available for particular solver, along with default values
 - Gives fine-grained control over optimization solver
 - Objective/Constriant functions
 - Maximum iterations
 - Tolerances
 - Difference intervals
 - Gradient, Hessian computations
 - Preconditioning
 - Scaling
 - Parallelization
 - Output and plotting functions

Optimization Solvers Optimization Problems Optimization Toolbox

Optimization Functions

- Linear Programming
 - linprog
- Binary Integer Programming
 - bintprog
- Quadratic Programming
 - quadprog
- Unconstrained Optimization
 - fminsearch, fminunc
- Constrained Optimization
 - General Nonlinear
 - fminbnd, fmincon, ktrlink
 - TOMLAB (commercial software)
 - Least Squares
 - Linear: lsqlin, lsqnonneg
 - Nonlinear: lsqcurvefit, lsqnonlin
- Multiobjective Optimization
 - fgoalattain, fminimax

Optimization Solvers Optimization Problems Optimization Toolbox

Objective Function

- Most optimization solvers require *scalar-valued* objective function
 - Exceptions: fgoalattain, fminimax, fsolve, lsqcurvefit, lsqnonlin
 - Must take optimization variables, \mathbf{x} , as input
 - Must return value of objective function $f(\mathbf{x})$
 - May return gradient, $\nabla f(\mathbf{x})$, and Hessian, $\nabla^2 f(\mathbf{x})$
 - User-supplied gradient only used if: optimset('GradObj', 'on')
 - User-supplied Hessian only used if: optimset('Hessian', 'on')
- \bullet For vector-valued objective functions, $\mathbf{F}(\mathbf{x})$
 - Input syntax identical to scalar-valued case
 - Instead of gradient, return Jacobian matrix, $\frac{\partial \mathbf{F}}{\partial \mathbf{x}}$

Optimization Solvers Optimization Problems Optimization Toolbox

Nonlinear Constraint Functions

- Nonlinear constraints are of the form $\mathbf{c}(\mathbf{x}) \leq 0$, $\mathbf{c}_{eq}(\mathbf{x}) = 0$
- Nonlinear constraint function must return \mathbf{c} and \mathbf{c}_{eq} , even if they both do not exist (use [])
- Call syntax
 - No derivatives: [c, ceq] = constr_func(x)
 - Derivatives:
 - [c,ceq,grad_c,grad_ceq] = constr_func(x)
 - Derivatives must be in the form of gradients: $\operatorname{grad}_{c}(i,j) = \frac{\partial \mathbf{c}_{j}}{\partial \mathbf{x}_{i}}, \operatorname{grad}_{c}(i,j) = \frac{\partial \mathbf{c}_{eq_{j}}}{\partial \mathbf{x}_{i}}$

 Definitions
 Optimization Solvers

 Nonlinear System of Equations
 Optimization Problems

 Numerical Optimization
 Optimization Toolbox

Assignment

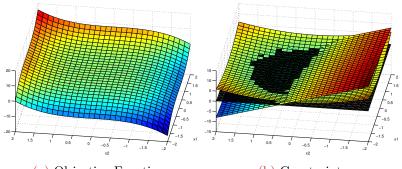
Consider the following $\ nonlinearly \ constrained$ optimization problem

$$\begin{array}{ll} \underset{\mathbf{x} \in \mathbb{R}^2}{\text{minimize}} & \mathbf{x}_1^3 + \mathbf{x}_2^3 \\ \text{subject to} & \mathbf{x}_1 + 5\mathbf{x}_2 \ge 0 \\ & \mathbf{x}_1^2 + \mathbf{x}_2^2 \le 2 \\ & -2 \le \mathbf{x} \le 2 \end{array}$$
(14)

- Derive derivative information for objective and *nonlinear* constraints
- Convert optimization problem into MATLAB compatible form
 - Linear inequality constraints: $\mathbf{A}\mathbf{x} \leq \mathbf{b}$
 - Nonlinear inequality constraints: $\mathbf{c}(\mathbf{x}) \leq \mathbf{0}$
- Solve using fmincon

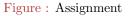
Optimization Solvers Optimization Problems Optimization Toolbox

Assignment



(a) Objective Functions

(b) Constraints



Optimization Solvers Optimization Problems Optimization Toolbox

Assignment

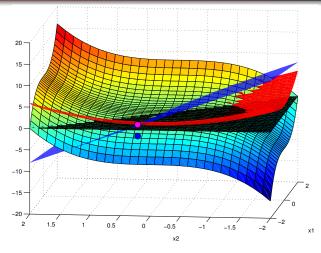


Figure : Assignment with solution

Optimization Solvers Optimization Problems Optimization Toolbox

Optimization Toolbox GUI (optimtool)

- MATLAB's Optimization Toolbox comes equipped with GUI
 - optimtool to launch
 - User-friendly
 - Import problem or options from workspace
 - Generate code
 - Export optimization problem to workspace
- Brief Demo
- Power of MATLAB is scripting capabilities

Optimization Solvers Optimization Problems Optimization Toolbox

Large-scale vs. Medium-scale

\bullet Large-scale optimization algorithm

- Linear algebra does not store or operate on *full* matrices
- Sparse matrices and sparse linear algebra
- Internal algorithms perserve sparsity or do not generate matrices (iterative solvers)
- May be used for small problems
- Medium-scale optimization algorithms
 - Full matrices and dense linear algebra used
 - May require significant amount of memory and CPU time for large problems
 - Use to access functionality not implemented in *large-scale* case

Optimization Solvers Optimization Problems Optimization Toolbox

Choosing an Algorithm

http://www.mathworks.com/help/optim/ug/ choosing-a-solver.html

Parallel Computing and the Optimization Toolbox

- Parallel Computations available with commands fmincon, fminattain, fminimax
 - Start MATLAB pool of workers
 - Set UseParallel option to 'always'
 - parfor to loop over multiple initial conditions
 - Attempt at global optimization
 - Embarrassingly parallel

```
>> matlabpool open 2
>> options = optimset('UseParallel', 'always');
```

