Lecture 8
 Scientific Computing:
 Symbolic Math, Parallel Computing, ODEs/PDEs

Matthew J. Zahr

CME 292
Advanced MATLAB for Scientific Computing
Stanford University

29th April 2014
(1) Symbolic Math Toolbox

- Symbolic Computations
- Mathematics
- Code generation
(2) Parallel Computing Toolbox
(3) Ordinary Differential Equations

4 Partial Differential Equations

- Overview
- Mesh Generation in MATLAB
- PDE Toolbox
(5) Conclusion

Symbolic Computations Mathematics
Code generation

Outline

(1) Symbolic Math Toolbox

- Symbolic Computations
- Mathematics
- Code generation
(2) Parallel Computing Toolbox
(3) Ordinary Differential Equations
a Partial Differential Efuations
- Overview
- Mesh Generation in MATLAB
- PDE Toolbox
(5) Conclusion

Overview

- Symbolic computations in MATLAB
- Symbolic variables, expressions, functions
- Mathematics
- Equation solving, formula simplification, calculus, linear algebra
- Graphics
- Code generation (C, Fortran, Latex)

Symbolic Computations

Symbolic variables, expressions, functions

- Create variables, expressions, functions with sym, syms commands

```
>> % Symbolic variables
>> syms x, y, z
>> % Symbolic expression
>> phil = sym('(1+sqrt(5))/2')
>> phi2 = sym('(1-sqrt(5))/2')
>> phil*phi2
ans =
-(5^(1/2)/2 - 1/2)*(5^(1/2)/2 + 1/2)
>> simplify(phil*phi2)
ans =
-1
>> % Symbolic function
>> syms f(u,v)
```

Symbolic Computations

Symbolic matrices

- Symbolic matrices can be constructed from symbolic variables

```
>> syms a b c d
>> A = [a^2, b, c; d*b,c-a,sqrt(b)]
A=
    [ a^2, b, c]
    [ b*d, c - a, b^(1/2)]
>> b = [a;b;c];
> A*b
    ans =
\[
\begin{array}{r}
a^{\wedge} 3+b^{\wedge} 2+c^{\wedge} 2 \\
b^{\wedge}(1 / 2) * c-b *(a-c)+a * b * d
\end{array}
\]
```


Arithmetic, Relational, and Logical Operations

- Symbolic arithmetic operations
- ceil, cong, cumprod, cumsum, fix, floor, frac, imag, minus, mod, plus, quorem, real, round
- Symbolic relational operations
- eq, ge, gt, le, lt, ne, isequaln
- Symbolic logical operations
- and, not, or, xor, all, any, isequaln, isfinite, isinf, isnan, logical
http://www.mathworks.com/help/symbolic/operators.html

Equation Solving

Command	Description
finverse	Functional inverse
linsolve	Solve linear system of equations
poles	Poles of expression/function
solve	Equation/System of equations solver
dsolve	ODE solver

Formula Manipulation and Simplification

Command	Description
simplify	Algebraic simplification
simplifyFraction	Symbolic simplification of fractions
subexpr	Rewrite symbolic expression in terms of common subexpression
subs	Symbolic substitution

Calculus

Command	Description
diff	Differentiate symbolic
int	Definite and indefinite integrals
rsums	Riemann sums
curl	Curl of vector field
divergence	Divergence of vector field
gradient	Gradient vector of scalar function
hessian	Hessian matrix of scalar function
jacobian	Jacobian matrix
laplacian	Laplacian of scalar function

Calculus

Command	Description
potential	Potential of vector field
vectorPotential	Vector potential of vector field
taylor	Taylor series expansion
limit	Compute limit of symbolic expression
fourier	Fourier transform
ifourier	Inverse Fourier transform
ilaplace	Inverse Laplace transform
iztrans	Inverse Z-transform
laplace	Laplace transform
ztrans	Z-transform

Linear Algebra

- Most matrix operations available for numeric arrays also available for symbolic matrices
- cat, horzcat, vertcat, diag, reshape, size, sort, tril, triu, numel

Command	Description
adjoint	Adjoint of symbolic square matrix
expm	Matrix exponential
sqrtm	Matrix square root
cond	Condition number of symbolic matrix
det	Compute determinant of symbolic matrix
norm	Norm of matrix or vector
colspace	Column space of matrix

Linear Algebra

Command	Description
null	Form basis for null space of matrix
rank	Compute rank of symbolic matrix
rref	Compute reduced row echelon form
eig	Symbolic eigenvalue decomposition
jordan	Jordan form of symbolic matrix

Linear Algebra

Command	Description
chol	Symbolic Cholesky decomposition
lu	Symbolic LU decomposition
qr	Symbolic QR decomposition
svd	Symbolic singular value decomposition
inv	Compute symbolic matrix inverse
linsolve	Solve linear system of equations

Assumptions

Command	Description
assume	Set assumption on symbolic object
assumeAlso	Add assumption on symbolic object
assumptions	Show assumptions set on symbolic variable

Polynomials

Command	Description
charpoly	Characteristic polynomial of matrix
coeffs	Coefficients of polynomial
minpoly	Minimal polynomial of matrix
poly2sm	Symbolic polynomial from coefficients
sym2poly	Symbolic polynomial to numeric

Mathematical Functions

Command	Description
$\log , \log 10, \log 2$	Logarithmic functions
sin, cos tan, etc	Trigonometric functions
sinh, cosh tanh, etc	Hyperbolic functions

- Complex numbers and operations also available in Symbolic toolbox
- Special functions
- Dirac, Haviside, Gamma, Zeta, Airy, Bessel, Error, Hypergeometric, Whittaker functions
- Elliptic integrals of first, second, third kinds

Precision Control

Command	Description
digits	Variable-precision accuracy
double	Convert symbolic expression to MATLAB double
vpa	Variable precision arithmetic

Functions

Command	Description
ccode	C code representation of symbolic expression
fortran	Fortran representation of symbolic expression
latex	LATEX representation of symbolic expression
matlabFunction	Convert symbolic expression to function handle or file
texlabel	TeX representation of symbolic expression

Exercise: Method of Manufactured Solutions

- The method of manufactured solutions is a general method for constructing problems with exact, known solutions, usually for the purpose of verifying a code.
- Consider the structural equilibrium equations

$$
\begin{aligned}
\nabla \cdot \mathbf{P}+\rho_{0} \mathbf{b} & =0 \\
\mathbf{P} & =\mathbf{S} \cdot \mathbf{F}^{T} \\
\mathbf{S} & =\lambda \operatorname{tr}(\mathbf{E}) \mathbf{I}+2 \mu \mathbf{E} \\
\mathbf{E} & =\frac{1}{2}\left(\mathbf{F}^{T} \mathbf{F}-\mathbf{I}\right) \\
\mathbf{F} & =\mathbf{I}+\frac{\partial \mathbf{u}}{\partial \mathbf{X}}
\end{aligned}
$$

Exercise: Method of Manufactured Solutions

- For the displacement field, $\mathbf{u}(\mathbf{X})=\left[\mathbf{X}_{1} \mathbf{X}_{2} \mathbf{X}_{3}, \mathbf{X}_{1}^{2}+\mathbf{X}_{2}^{2}, \sin \left(\mathbf{X}_{3}\right)\right]^{T}$, compute the corresponding forcing term
- Generate code in MATLAB, C, and Fortran to compute the forcing term from above

Outline

(1) Symbolic Math Toolbox

- Symbolic Computations
- Mathematics
- Code generation
(2) Parallel Computing Toolbox
(3) Ordinary Differential Equations

4 Partial Differential Equations

- Overview
- Mesh Generation in MATLAB
- PDE Toolbox
(3) Conclusion

Programming Parallel Applications

Level of control

Required effort

None

Straightforward

Involved

Programming Parallel Applications

Level of control

Minimal

Some

Extensive

Parallel Options

Support built into
Toolboxes

High-Level Programming Constructs: (e.g. parfor, batch, distributed)

Low-Level
Programming Constructs: (e.g. Jobs/Tasks, MPI-based)

Parallel support built into toolboxes

- Parallel Computations available with commands fmincon, fminattain, fminimax
- Start MATLAB pool of workers
- Set UseParallel option to 'always'

```
>> matlabpool open 2
>> options = optimset('UseParallel','always');
>> x = fmincon( .., options);
```

- MATLAB's parfor opens a parallel pool of MATLAB sessions (workers) for executing loop iterations in parallel
- Requires loop to be embarrassingly parallel
- Iterations must be task and order independent
- Parameter sweeps, Monte Carlo

MATLAB ${ }^{\text {® }}$ workers

parfor

The Mechanics of parfor Loops

Figure : Courtesy of slides by Jamie Winter, Sarah Wait Zaranek (MathWorks)

Constraints on parfor body

- There are constraints on the body of a parfor loop to enable MATLAB to automate the parallelization
- Cannot introduce variables (eval, load, global, ...)
- Cannot contain break or return statements
- Cannot contain another parfor (nested parfor loops not allowed)

Parallel variable types

Classification	Description
Loop	Loop index
Sliced	Arrays whose segments operated on by different iterations
Broadcast	Variable defined outside loop (not changed inside)
Reduction	Accumulates value across iterations
Temporary	Variable created inside loop (not available outside)

http://www.mathworks.com/help/distcomp/ advanced-topics.html

Parallel variable types

http://www.mathworks.com/help/distcomp/ advanced-topics.html

CME 292: Advanced MATLAB for SC

Demo

Outline

(1) Symbolic Math Toolbox

- Symbolic Computations
- Mathematics
- Code generation
(2) Parallel Computing Toolbox
(3) Ordinary Differential Equations

4 Partial Differential Equations

- Overview
- Mesh Generation in MATLAB
- PDE Toolbox
(5) Conclusion

Introduction

- A system of Ordinary Differential Equations (ODEs) can be written in the form

$$
\begin{aligned}
\frac{\partial \mathbf{y}}{\partial t}(t) & =\mathbf{F}(t, \mathbf{y}) \\
\mathbf{y}(0) & =\mathbf{y}_{0}
\end{aligned}
$$

- The concept of stiffness
- An ODE problem is stiff if the solution being sought is varying slowly, but there are nearby solutions that vary rapidly, so a numerical method must take small steps to obtain satisfactory results.
- Numerical schemes applied to stiff problems have very restrictive time steps for stability

Numerical Solution of ODEs

- Various types/flavor of ODE solvers
- Multi- vs single-stage
- Multi- vs single-step
- Number of time steps used approximate time derivative
- Implicit vs. Explicit
- Trade-off between ease of advancing a single step versus number of steps required
- Implicit schemes usually require solving a system of equations
- Serial vs. Parallel

Fourth-Order Explicit Runge-Kutta (ERK4)

- Multi-stage, single-step, explicit, serial ODE solver
- Consider the discretization of the time domain into $N+1$ intervals $\left[t_{0}, t_{1}, \ldots, t_{N}\right]$
- At step n, \mathbf{y}_{n} is known and \mathbf{y}_{n+1} is sought

$$
\begin{align*}
\mathbf{k}_{1} & =\mathbf{F}\left(t_{n}, \mathbf{y}_{n}\right) \\
\mathbf{k}_{2} & =\mathbf{F}\left(t_{n}+0.5 \Delta t, \mathbf{y}_{n}+0.5 \Delta t \mathbf{k}_{1}\right) \\
\mathbf{k}_{3} & =\mathbf{F}\left(t_{n}+0.5 \Delta t, \mathbf{y}_{n}+0.5 \Delta t \mathbf{k}_{2}\right) \tag{1}\\
\mathbf{k}_{4} & =\mathbf{F}\left(t_{n}+\Delta t, \mathbf{y}_{n}+\Delta t \mathbf{k}_{3}\right) \\
\mathbf{y}_{n+1} & =\mathbf{y}_{n}+\frac{\Delta t}{6}\left(\mathbf{k}_{1}+2 \mathbf{k}_{2}+2 \mathbf{k}_{3}+\mathbf{k}_{4}\right)
\end{align*}
$$

- Fourth-order accuracy: error $=\mathcal{O}\left(\Delta t^{4}\right)$

Requires 4 evaluations of \mathbf{F} to advance single step; does not require solving linear or nonlinear equations

Backward Euler

- Single-stage, single-step, implicit, serial ODE solver
- Consider the discretization of the time domain into $N+1$ intervals $\left[t_{0}, t_{1}, \ldots, t_{N}\right]$
- At step n, \mathbf{y}_{n} is known and \mathbf{y}_{n+1} is sought

$$
\begin{equation*}
\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{F}\left(t_{n+1}, \mathbf{y}_{n+1}\right) \tag{2}
\end{equation*}
$$

- First-order accuracy: error $=\mathcal{O}(\Delta t)$
- A-stable

Requires solving the (nonlinear) system of equations in (2)

MATLAB ODE Solvers

- [TOUT, YOUT] = ode_Solver (ODEFUN, TSPAN, YO)
- Integrates the system of differential equations $y^{\prime}=f(t, y)$ from time TO to TFINAL with initial conditions YO
- TSPAN $=$ [T0 TFINAL]
- ODEFUN is a function handle
- For a scalar T and a vector Y , $\operatorname{ODEFUN}(\mathrm{T}, \mathrm{Y})$ must return a column vector corresponding to $f(t, y)$
- Each row in the solution array YOUT corresponds to a time returned in the column vector TOUT
- To obtain solutions at specific times T0, T1, . ., TFINAL (all increasing or all decreasing), use TSPAN $=\left[\begin{array}{ll}\text { TO } & \text { T1 }\end{array}\right.$. TFINAL]

MATLAB ODE Solvers

Command	Type	Accuracy
ode45	Nonstiff	Medium
ode23	Nonstiff	Low
ode113	Nonstiff	Low - High
ode15s	Stiff	Low - Medium
ode23s	Stiff	Low
ode23t	Moderately stiff	Low
ode23tb	Stiff	Low

http://www.mathworks.com/help/matlab/ref/ode45.html

Assignment

Use ode 45 and ode23s to solve the simplified combustion model

$$
y^{\prime}(t)=y^{2}(1-y), \quad 0 \leq t \leq 2 / \epsilon, \quad y(0)=\epsilon
$$

- Try $\epsilon=10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1$
- How many time steps were required for ode 45 for each epsilon? How many for ode23s?
- length (TOUT) using the notation from earlier
- For $\epsilon=10^{-4}$, plot $y(t)$

Outline

(1) Symbolic Math Toolbox

- Symbolic Computations
- Mathematics
- Code generation
(2) Parallel Computing Toolbox
(3) Ordinary Differential Equations
(4) Partial Differential Equations
- Overview
- Mesh Generation in MATLAB
- PDE Toolbox
(5) Conclusion

Motivation

- Partial Differential Equations are ubiquitous in science and engineering
- Fluid Mechanics
- Euler equations, Navier-Stokes equations
- Solid Mechanics
- Structural dynamics
- Electrodynamics
- Maxwell equations
- Quantum Mechanics
- Schrödinger equation
- Analytical solutions over arbitrary domains mostly unavailable
- In some cases, existence and uniqueness not guaranteed

Numerical Solution of PDEs

- Classes of PDEs
- Elliptic
- Parabolic
- Hyperbolic
- Numerical Methods for solving PDEs
- Finite Difference (FD)
- Finite Element (FE)
- Finite Volume (FV)
- Spectral (Fourier, Chebyshev)
- Discontinuous Galerkin (DG)

Numerical Solution of PDEs

The (major) steps required to compute the numerical solution of to a system of Partial Differential Equations are

- Derive discretization of governing equations
- Semi-discretization
- Space-time discretization
- Boundary conditions
- Construct spatial mesh (or space-time mesh)
- Structured vs. Unstructured
- Codes can be written to leverage structured mesh
- Unstructured meshes more general
- Requirements on mesh heavily depend on application of interest and code used
- If semi-discretized, define temporal mesh
- Implement and solve
- Postprocess

Example: Semi-Discretization

Consider the viscous Burger's equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\epsilon \frac{\partial^{2} u}{\partial x^{2}} \tag{3}
\end{equation*}
$$

for $x \in[0,1]$, with the initial condition $u(x, 0)=1$ and boundary condition $u(0, t)=5$.

Spatial discretization of (3) yields a system of ODEs of the form

$$
\begin{equation*}
\frac{\partial \mathbf{U}}{\partial t}=\mathbf{F}(\mathbf{U}(t), t), \tag{4}
\end{equation*}
$$

this is known as semi-discretization or the method of lines.

Example: Mesh

Figure: Discretized domain and solution for (3)

Example: Finite Difference Method

- We approximate the first-order derivative with a backward difference on the previous grid to objtain

$$
\begin{equation*}
\frac{\partial u}{\partial x}\left(x_{i}, t\right) \approx \frac{u\left(x_{i}, t\right)-u\left(x_{i-1}, t\right)}{\Delta x} \tag{5}
\end{equation*}
$$

for $i=1, \ldots, N$ where $\Delta x_{i}=x_{i}-x_{i-1}=\Delta x$ as the grid is assumed uniform.

- The standard central second-order approximation to the diffusive term is applied

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}\left(x_{i}, t\right) \approx \frac{u\left(x_{i+1}, t\right)-2 u\left(x_{i}, t\right)+u\left(x_{i-1}, t\right)}{\Delta x^{2}} \tag{6}
\end{equation*}
$$

for $i=1, \ldots, N-1$

Example: Finite Difference Method

- At the last equation, a first-order, leftward bias of the second-order derivative is applied

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}\left(x_{i}, t\right) \approx \frac{u\left(x_{N}, t\right)-2 u\left(x_{N-1}, t\right)+u\left(x_{N-2}, t\right)}{\Delta x^{2}} . \tag{7}
\end{equation*}
$$

- The boundary condition is applied as

$$
\begin{equation*}
u\left(x_{0}, t\right)=u(0, t) \tag{8}
\end{equation*}
$$

in (5) and (7).

Mesh Generation

In 1D, mesh generation is trivial. Difficulties arise in 2D and higher.

- PDE Toolbox
- 2D only
- distmesh
- Both 2D (triangles) and 3D (tetrahedra)
- Unstructured
- Per-Olof Persson

PDE Toolbox

- Geometry definition (points, curves, surfaces, volumes)
- Mesh generation
- Problem definition
- Solution
- Postprocessing

PDE Toolbox

- Standard MATLAB distribution
- pdepe for solving initial boundary-value problems for parabolic-elliptic PDEs in 1D
- PDE Toolbox
- Graphical User Interface
- pdeapp
- Demo
- Command Line

Geometry Definition

- Construct mesh interactively using pdetool
- Unions and intersections of basic shapes
- Rectangles, ellipses, circles, etc
- Use pdegeom to create geometry programmatically
- Build parametrized, oriented boundary edges
- Label left and right regions of edges
- Geometry built from union of regions with similar labels
- Demo: naca

Mesh Generation

Command	Description
initmesh	Create initial triangular mesh
adaptmesh	Adaptive mesh generation and PDE solution
jigglemesh	Jiggle internal points of triangular mesh
reinemesh	Refine triangular mesh
tri2grid	Interpolate from PDE triangular mesh to rectangular grid
pdemesh	Plot PDE triangular mesh
pdetriq	Triangle quality measure

$$
\begin{aligned}
& \gg[p, e, t]=i n i t m e s h\left(' n a c a^{\prime}\right) ; \\
& \gg \text { pdemesh }(p, e, t), \text { axis equal }
\end{aligned}
$$

Problem Definition: PDE

- Both scalar and vector PDEs available in PDE toolbox
- Here we focus on scalar PDEs
- Elliptic

$$
\begin{equation*}
-\nabla \cdot(c \nabla u)+a u=f \tag{9}
\end{equation*}
$$

- Parabolic

$$
\begin{equation*}
d \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u=f \tag{10}
\end{equation*}
$$

- Hyperbolic

$$
\begin{equation*}
d \frac{\partial^{2} u}{\partial t^{2}}-\nabla \cdot(c \nabla u)+a u=f \tag{11}
\end{equation*}
$$

- Eigenvalue

$$
\begin{equation*}
-\nabla \cdot(c \nabla u)+a u=\lambda d u \tag{12}
\end{equation*}
$$

- PDE coefficients a, c, d, f can vary with space and time (call also depend on the solution u or the edge segment index)

Problem Definition: Boundary Conditions

- Boundary conditions available for both scalar and vector available in PDE toolbox
- Here we focus on scalar PDEs
- Dirichlet (essential) boundary conditions

$$
\begin{equation*}
h u=r \text { on } \partial \Omega \tag{13}
\end{equation*}
$$

- Generalized Neumann (natural) boundary conditions

$$
\begin{equation*}
\mathbf{n} \cdot(\nabla u)+q u=g \text { on } \partial \Omega \tag{14}
\end{equation*}
$$

- Boundary coefficients h, c, r, q, g can vary with space and time (can also depend on the solution u or the edge segment index)

Symbolic Math Toolbox

Specify Boundary Conditions

Boundary conditions can be specified:

- Graphically using pdetool
- Programmatically using pdebound
- $[q, g, h, r]=$ pdebound (p,e,u,time)
- Demo: nacabound

Specify PDE Coefficients

PDE coefficients can be specified:

- Graphically using pdetool
- Programmatically via constants, strings, functions
- u = parabolic(u0,tlist,b,p,e,t,c,a,f,d);
- u0-initial condition
- tlist - time instances defining desired time steps
- b-function handle to boundary condition
- p, e, t - mesh
- c, a, f, d-PDE coefficients (numeric, string, functions)

PDE solvers

- Elliptic
- [u, res]=pdenonlin(b, p,e,t, c, a, f);
- Parabolic
- u=parabolic(u0,tlist, b, p, e,t, c, a, f,d);
- Demo: workflow
- Hyperbolic
- u=hyperbolic(u0, ut0,tlist, b, p, e, t, c, a, f, d);
- Systems of Equations

Outline

(1) Symbolic Math Toolbox

- Symbolic Computations
- Mathematics
- Code generation
(2) Parallel Computing Toolbox
(3) Ordinary Differential Equations
(4) Partial Differential Equations
- Overview
- Mesh Generation in MATLAB
- PDE Toolbox
(5) Conclusion

Lecture 9

- Our final lecture will be this Thursday (May 1) in this room at regular time
- Optional lecture
- No homework associated with this lecture
- I will cover
- Publication-Quality Graphics
- Animation
- Partial Differential Equations and PDE Toolbox

What Now?

- Classes (non-exhaustive)
- Numerical Linear Algebra
- EE 263, CME 200, CME 302, CME 335
- Numerical Optimization
- CME 304, CME 334, CME 338
- Object-Oriented Programming
- CS 106B, CS 108
- ODEs/PDEs
- CME 102, CME 204, CME 206, CME 303, CME 306
- Additional Advanced MATLAB classes (none to my knowledge)
- Interest in taking this class as a full quarter class (3 units)
- Indicate in evaluations
- Email Margot Gerritsen (margot.gerritsen@stanford.edu)
- Future MATLAB questions
- You have my email!

Teaching Evaluations

- Very important so please complete them
- Detailed comments in evaluations regarding the pros and cons of the course will be much appreciated
- Not available until end of Quarter
- If you have something important you wish to convey
- Make a note of it now so you don't forget in a month
- Email Margot (margot.gerritsen@stanford.edu)

