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PDE-Constrained Optimization

Problem Formulation

Goal: Rapidly solve PDE-constrained optimization problems of
the form

minimize  f(w, p)
weRN | ueRp

(1)
subject to R(w,pu) =0

where R : RY x R? — R¥ is the discretized (nonlinear) PDE, w

is the PDE state vector, p is the vector of parameters, and N is
assumed to be very large.
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HROM-Constrained Optimization

Reduced-Order Model

e Model Order Reduction (MOR) assumption: state vector
lies in low-dimensional affine subspace

w=w + Py

where y € R™ are the reduced coordinates of w in the basis
® cRY*" and n < N

o Substitute assumption into High-Dimensional Model
(HDM), R(w, ) =0

R(W + @y, pu) ~ 0

o Require projection of residual in low-dimensional left

subspace, with basis ¥ € RV*" to be zero
—~

R,(y,p) = ¥'R(W+ @y, p) =0 03\3_5;
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HROM-Constrained Optimization

Bottleneck

R, (y,pn) = ¥TR(W+ ®y,pu) =0
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HROM-Constrained Optimization

Bottleneck

R, (y,pn) = ¥"R(W + ®y,pu) =0
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HROM-Constrained Optimization

Bottleneck

R,(y,p) = ¥'R(W + @y, pu) =0
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HROM-Constrained Optimization

Bottleneck

R,(y,p) = ¥ R(W + @y, 1) =0
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HROM-Constrained Optimization

Bottleneck

R, (y,pn) = ¥"R(W+ ®y,pu) =0

R, = ‘I’T
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HROM-Constrained Optimization

Bottleneck

R,

R
(v, 1) = ‘I’T*y(w + Dy, u)®
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HROM-Constrained Optimization

Bottleneck

R,

R
(v, 1) = ‘I’T*y(w + Dy, u)®
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HROM-Constrained Optimization

Bottleneck

R,

R
(v, 1) = ‘I’T*y(w + By, 1)@

Zahr and Farhat Hyper-Reduced Optimization



HROM-Constrained Optimization

Bottleneck

OR OR

" =0T (w + ®y, u)®
dy (y, 1) By (W + @y, )
\IIT
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HROM-Constrained Optimization

Bottleneck
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HROM-Constrained Optimization

Solution: Gappy POD Approximation

o Assume nonlinear terms (residual/Jacobian) lie in
low-dimensional subspace

R(w,p) =~ ®pr(w, 1)

where ® € RV*"r and r : RY x RP — R™R are the reduced
coordinates; ng < N

o Determine R by solving gappy least-squares problem

r(w, p) = argmin||ZT ®pa — ZTR(w, p)||
acRnr

where Z is a restriction operator

o Analytical solution
—~~

r(w,p) = (ZT@R)T (ZTR(W,[J,)) G%F
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HROM-Constrained Optimization

Gappy POD in Practice

(a) 253 sample nodes (b) 378 sample nodes (c) 505 sample nodes
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HROM-Constrained Optimization

Hyper-Reduced Model

Using the Gappy POD approximation, the hyper-reduced
governing equations are

Ri(y.u) = ©Tog (Z7@5) (ZTR(W + By, p)) = 0

where
E=0"0,(2"®)

is known offline and can be precomputed
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HROM-Constrained Optimization

Hyper-Reduced Optimization

Using the hyper-reduced model as a surrogate for the HDM in
the PDE-constrained optimization, we have the hyper-reduced
optimization problem

minimize ,
Jninimize  f(y, 1)
subject to Rp(y,n) =0

where Ry, : R x RP — R* is the hyper-reduced PDE and
y € RF are the reduced coordinates, where k < N.
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HROM-Constrained Optimization

Hyper-Reduced Optimization Procedure

Optimizer
HDM

Compress

HDM
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HROM-Constrained Optimization

Hyper-Reduced Optimization Schematic

Initial Guess
A Optimization Iterates

*  Optimal Solution ~_
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Numerical Experiment

Quasi-1D Euler Flow

Quasi-1D FEuler equations:

oU 1 9(AF)

ot T A or 9
where
p pu 0
U= |pu|, F=|p’+p|, Q=|5%
e (e +p)u 0

o Semi-discretization = finite volumes with Roe flux and

Y entropy corrections —_
[%] o Full discretization = Backward Euler — steady state DOE

SGF
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Numerical Experiment

Nozzle Parametrization

Nozzle parametrized with cubic splines using 13 control points
and constraints requiring

@ convexity A'(z) >0
@ bounds on A(x) A(z) < A(x) < Ay(x)
@ bounds on A’(x) at inlet/outlet Al(z;) <0, A(xy) >0
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Numerical Experiment

Parameter Estimation/Inverse Design

For this problem, the goal is to determine the parameter p*
such that the flow achieves some optimal or desired state w*

minimize w(p) —w"
Jninimize [lw(p) I
subject to  R(w,u) =0 (2)
c(w,p) <0

where ¢ are the nozzle constraints.

o This problem is solved using
o the HDM as the governing equation
o HDM-based optimization
20) o the HROM as the governing equation
2 3] o HROM-based optimization GDOE
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Numerical Experiment

Objective Function Convergence

Objective Function

(a) Convergence (# HDM Evals)

(b) Convergence (CPU Time)
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Numerical Experiment

Hyper-Reduced Optimization Progression

(b) Pressure Progression
(a) Parameter (u) Progression
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Numerical Experiment

Optimization Summary

HDM-Based Opt | HROM-Based Opt
Rel. Error in p* (%) 1.82 5.26
Rel. Error in w* (%) 0.11 0.12
# HDM Evals 27 8
# HROM Evals 0 161
CPU Time (s) 3361.51 2001.74
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