
JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.1 (1-36)

Journal of Computational Physics ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Implicit mesh discontinuous Galerkin methods and interfacial 
gauge methods for high-order accurate interface dynamics, 
with applications to surface tension dynamics, rigid body 

fluid–structure interaction, and free surface flow: Part I

Robert Saye

Mathematics Group, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 September 2016
Received in revised form 12 March 2017
Accepted 28 April 2017
Available online xxxx

Keywords:
Interface dynamics
Discontinuous Galerkin methods
Implicitly defined meshes
Interfacial gauge methods
Level set methods
High-order

In this two-part paper, a high-order accurate implicit mesh discontinuous Galerkin (dG) 
framework is developed for fluid interface dynamics, facilitating precise computation 
of interfacial fluid flow in evolving geometries. The framework uses implicitly defined 
meshes—wherein a reference quadtree or octree grid is combined with an implicit 
representation of evolving interfaces and moving domain boundaries—and allows physically 
prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. 
Part one discusses the design of the framework, including: (i) high-order quadrature for 
implicitly defined elements and faces; (ii) high-order accurate discretisation of scalar 
and vector-valued elliptic partial differential equations with interfacial jumps in ellipticity 
coefficient, leading to optimal-order accuracy in the maximum norm and discrete linear 
systems that are symmetric positive (semi)definite; (iii) the design of incompressible fluid 
flow projection operators, which except for the influence of small penalty parameters, 
are discretely idempotent; and (iv) the design of geometric multigrid methods for 
elliptic interface problems on implicitly defined meshes and their use as preconditioners 
for the conjugate gradient method. Also discussed is a variety of aspects relating to 
moving interfaces, including: (v) dG discretisations of the level set method on implicitly 
defined meshes; (vi) transferring state between evolving implicit meshes; (vii) preserving 
mesh topology to accurately compute temporal derivatives; (viii) high-order accurate 
reinitialisation of level set functions; and (ix) the integration of adaptive mesh refinement.

In part two, several applications of the implicit mesh dG framework in two and three 
dimensions are presented, including examples of single phase flow in nontrivial geometry, 
surface tension-driven two phase flow with phase-dependent fluid density and viscosity, 
rigid body fluid–structure interaction, and free surface flow. A class of techniques known 
as interfacial gauge methods is adopted to solve the corresponding incompressible Navier–
Stokes equations, which, compared to archetypical projection methods, have a weaker 
coupling between fluid velocity, pressure, and interface position, and allow high-order 
accurate numerical methods to be developed more easily. Convergence analyses conducted 
throughout the work demonstrate high-order accuracy in the maximum norm for all of 
the applications considered; for example, fourth-order spatial accuracy in fluid velocity, 
pressure, and interface location is demonstrated for surface tension-driven two phase 
flow in 2D and 3D. Specific application examples include: vortex shedding in nontrivial 
geometry, capillary wave dynamics revealing fine-scale flow features, falling rigid bodies 
tumbling in unsteady flow, and free surface flow over a submersed obstacle, as well as 

E-mail address: rsaye@lbl.gov.
http://dx.doi.org/10.1016/j.jcp.2017.04.076
0021-9991/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2017.04.076
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:rsaye@lbl.gov
http://dx.doi.org/10.1016/j.jcp.2017.04.076


JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.2 (1-36)

2 R. Saye / Journal of Computational Physics ••• (••••) •••–•••
high Reynolds number soap bubble oscillation dynamics and vortex shedding induced by 
a type of Plateau–Rayleigh instability in water ripple free surface flow. These last two 
examples compare numerical results with experimental data and serve as an additional 
means of validation; they also reveal physical phenomena not visible in the experiments, 
highlight how small-scale interfacial features develop and affect macroscopic dynamics, 
and demonstrate the wide range of spatial scales often at play in interfacial fluid flow.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A panoply of fluid dynamics problems involve surface, boundary, and interface motion playing a pivotal role in the global 
dynamics. Examples include transport of solvents in bubble aeration, rupture of thin films in foam dynamics, droplet atom-
isation in spray painting devices, and the design of propeller blades. When modelling these problems computationally, a 
careful and precise treatment of the boundary and interface motion is often necessary—small boundary layers near fluid–
air or fluid–fluid interfaces can strikingly affect their evolving shape, while small-scale features in interface or boundary 
geometry can affect fluid dynamics far afield.

In this work, a high-order accurate implicit mesh discontinuous Galerkin (dG) framework for fluid interface dynamics is 
developed, with the goal of enabling precise computation of fluid flow in complex geometry, e.g., to examine how small-
scale interfacial features develop and affect macroscopic dynamics. The framework uses implicitly defined meshes—wherein a 
background reference quadtree/octree grid is combined with an implicit description of fluid interfaces and boundaries—and 
allows physically prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. The implicit 
representation of moving surfaces offers a variety of benefits: interface motion can be naturally coupled to the underlying 
physics; mathematical formulations, numerical discretisations, and most geometric constructions can be cast independent 
of the spatial dimension; and, of particular interest in this work, interface dynamics, fluid dynamics, quadrature, etc., can 
all be made arbitrarily high-order accurate according to a user-chosen parameter determining the order. Combined with the 
flexibility dG methods have in working with unstructured meshes, the framework is conceptually straightforward: essen-
tially all that is required to compute quadrature rules for the curved elements and faces which are implicitly defined by the 
interface or boundary.

Originally inspired by the work of Johansson and Larson [1], the implicit mesh dG framework developed here was briefly 
introduced as part of prior work on numerical methods for interfacial fluid flow [2]. In this two-part paper, the framework 
is presented in detail, together with several applications to incompressible fluid flow. In particular, in part one we discuss:

• Multiphase implicitly defined meshes;
• Quadrature for implicitly defined elements and faces, to accurately compute elemental mass matrices, face integration 

rules, L2 projections, etc.;
• DG methods to solve scalar and vector-valued elliptic interface partial differential equations (PDEs) with interfacial 

jumps in ellipticity coefficient, resulting in symmetric positive (semi)definite linear systems;
• Design of projection operators used within incompressible fluid flow, which, except for the influence of small parame-

ters, are discretely idempotent;
• Geometric multigrid methods to efficiently solve elliptic interface PDEs, including choices for mesh hierarchies and 

relaxation methods, and their use as preconditioners for the conjugate gradient method;
• Partition of unity methods to smoothly interpolate whilst preserving high-order accuracy; and
• Extension of the dG framework to cylindrical coordinate systems and axisymmetric problems;

Furthermore, in the context of evolving interface problems, we also discuss:

• Combining level set methods with implicitly defined meshes to obtain meshes that evolve in time;
• Transferring state (e.g., velocity field, pressure) between meshes as they evolve, handling element creation and destruc-

tion, whilst preserving high-order accuracy;
• Preserving mesh topology, by using fuzzy thresholds in the creation of implicit meshes, to accurately compute temporal 

derivatives; and
• Integration of time-dependent adaptive mesh refinement.

To demonstrate the utility of implicit mesh dG methods, several example applications are presented in part two—see 
[3]—concerning single phase flow in nontrivial geometry, two phase flow driven by surface tension, rigid body fluid–
structure interaction, and free surface flow. These examples consider incompressible fluid flow and make use of recently 
developed interfacial gauge methods [2] to solve the corresponding Navier–Stokes equations. Convergence analyses are con-
ducted throughout the work, verifying the high-order accuracy of the implicit mesh dG framework—convergence is generally 



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.3 (1-36)

R. Saye / Journal of Computational Physics ••• (••••) •••–••• 3
examined in the maximum/infinity norm, thereby ruling out “parasitic currents” and other types of numerical boundary lay-
ers which often diminish the accuracy of low-order methods. In particular:

• Two- and three-dimensional examples and convergence tests are presented.
• Optimal-complexity multigrid preconditioned conjugate gradient algorithms are demonstrated.
• Stable time stepping methods are designed for each application, wherein the usual CFL constraint applies, i.e., �t ≤

C min h/‖u‖, where ‖u‖ is the local fluid speed and C is approximately 0.05 to 0.2 in magnitude.
• Optimal-order accuracy is demonstrated when solving elliptic interface PDEs on curved geometries with multiple, 

curved, interconnected interfaces: for a degree p piecewise polynomial finite element space, the order of accuracy 
is p + 1 in the maximum norm.

• For most of the incompressible fluid flow applications, the order of accuracy is one less than optimal, i.e., the error in 
the computed velocity field, pressure field, and interface location are all O(hp) in the maximum norm, where h is the 
typical element size. (The reduced order of accuracy is attributed to associated projection operators on unstructured 
meshes.)

In the next section, we discuss some of the background and motivation underlying implicit mesh dG methods, followed by 
an outline for the remainder of this work.

1.1. Background and motivation

Within the various paradigms for solving PDEs on domains with changing geometry—including fixed-grid methods, mov-
ing mesh methods, and their hybrids such as arbitrary Lagrangian–Eulerian (ALE)—a wide variety of numerical methods have 
been developed to compute fluid interface dynamics. Prominent examples include: (i) Peskin’s immersed boundary method 
[4,5], a mixed Eulerian–Lagrangian method in which interfacial forces are represented as fluid body forces via smoothed, 
discrete approximations of Dirac delta functions; (ii) LeVeque and Li’s immersed interface method [6,7], a sharp interface 
finite difference approach in which finite difference stencils are adapted to include jump conditions; (iii) level set methods 
[8], in which interfacial forces are regularised with smoothed delta functions [9–11]; (iv) the ghost fluid method [12], a 
finite difference method which introduces extra grid-collocated degrees of freedom determined by extrapolation and jump 
conditions; and (v) the volume of fluid method [13], an Eulerian method in which the volume fraction of each fluid phase 
is tracked in each grid cell. These methods are typically implemented together with a fixed computational grid on which 
the PDEs governing the physics are also solved; other possibilities include: (i) moving mesh methods, in which the mesh 
stretches and contorts as its nodes follow the interface, see, e.g., [14]; (ii) finite element methods that enrich the solution 
space with basis functions accounting for interfacial discontinuities by locally adapting to the interface shape, such as the 
extended finite element method (XFEM) [15,16] and discontinuous Galerkin hybrids [17]; and (iii) cut-cell and embedded 
boundary finite volume and finite element methods, wherein the moving interface cuts through a background reference 
grid, subsequently defining a new mesh with changing cell shapes. The approach adopted in this work follows in part the 
idea of this latter category.

To illustrate, consider a uniform Cartesian grid together with an interface separating two fluids. Using the interface to 
cut through the cells of the grid, a mesh can be defined consisting mostly of rectangular elements away from the interface, 
together with elements corresponding to grid cells cut into pieces by the interface. The resulting mesh is automatically body 
conforming, i.e., the element faces align precisely with the interface geometry. Moreover, by using a simplistic background 
grid (Cartesian in this example), such meshes are often easier to define compared to relying on more traditional meshing 
mechanisms. Numerical techniques using this idea are variously known as cut cell, unfitted, embedded boundary, or immersed 
boundary methods, and are most often used in combination with finite volume and finite element methods. In practical 
settings, of critical consideration is the following property: cells cut by the interface an be arbitrarily small in size. Used 
without any kind of regularisation in a cut cell finite volume method or finite element method, tiny cut cells lead to 
significant numerical issues, such as very ill-conditioned discretisations of PDE problems (e.g., the condition number of the 
discrete Laplacian operator can be arbitrarily large), while time step constraints in evolutionary problems can be arbitrarily 
severe. Therefore, tiny cut cells must be appropriately accounted for and a variety of techniques have been developed to this 
end. One option is to locally scale discrete stencils with a weighting that depends on the area/volume of the corresponding 
cells, in such a way that the conditioning and stability is improved, see, e.g., [18–21]. An alternative strategy is to include 
penalty parameters in variational statements to weakly impose interfacial jump conditions and boundary conditions on 
the cut cell faces, such as in the Nitsche finite element method [22]. These methods provide a consistent mathematical 
framework for handling small cut cells, and can also be used to analyse coercivity in elliptic problems as well as stability 
and accuracy, see, e.g., work on Nitsche cut cell methods for the wave equation [23], solving Laplace–Beltrami equations 
on codimension-one surfaces cutting through a background grid [24], Stokes problems with phase-dependent viscosity and 
surface tension [25], and solving electrohydrodynamic potential flow in moving domains [26]; see also the review by Burman 
et al. on cut cell finite element and Nitsche methods [27].

The implicitly defined meshes used in this work are similar to cut cell methods, but the troublesome ill-conditioning 
issues arising from tiny cut cells are avoided by using a simple cell merging procedure. The strategy adopted here was 
originally inspired by the work of Johansson and Larson [1] where it complements the generality and flexibility of discon-



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.4 (1-36)

4 R. Saye / Journal of Computational Physics ••• (••••) •••–•••
tinuous Galerkin methods. (For an introduction to dG methods, see, e.g., Hesthaven and Warburton [28].) In particular, cut 
cells which are identified as “tiny” (according to a user-defined threshold) are merged with neighbouring cells to define 
composite or “extended” elements (see, e.g., Fig. 1) ultimately forming the mesh of a dG method. In the cited work, a priori 
estimates on accuracy and conditioning are proven for a particular dG discretisation of Poisson’s problem in a domain with 
implicitly defined boundary, and numerical results are shown demonstrating optimal-order accuracy for second and third 
order methods. By using high-order accurate quadrature schemes to compute the necessary element mass matrices and face 
integration rules for the implicitly defined elements, the same formulation can be made arbitrarily high-order accurate [29].

The idea of cell merging, also known as cell agglomeration and element extension, has also been used in a variety of 
other settings. In the dissertation of Hunt [30], cell merging is used in a three-dimensional finite volume method for inviscid 
compressible flow with moving boundaries. Later, in the dissertation of Fröhlcke [31], a boundary conformal dG method is 
used to solve three-dimensional quasi-electrostatic problems; developed at the same time as the work of Johansson and Lar-
son, and also based on high-order dG methods, Fröhlcke considers various strategies for handling cut cells which, in addition 
to cell merging with neighbouring cells sharing the largest face, also considers a strategy of adaptive approximation order, 
i.e., reducing the polynomial degree in elements which are considered tiny. Müller et al. [32] employ agglomeration for a 
static, single phase domain to solve the two-dimensional compressible Navier–Stokes equations. Elliptic interface problems 
with discontinuous coefficients across embedded interfaces with corners, giving rise to possibly singular solutions, are con-
sidered in a cell merging dG method of Brandstetter and Govindjee [33]. As part of ongoing work (ultimately with the goal 
of addressing time-dependent interface evolution problems), Kummer [34] considers high-order accurate spatial discretisa-
tion for static, time-independent, two-phase incompressible Navier–Stokes equations, using cell agglomeration together with 
a high-order accurate quadrature method based hierarchical moment fitting [35]. Cell merging is also used by Antonietti et 
al. [36] as part of meshing domains with complex shapes: domain boundaries exhibiting a wide range of geometric scales 
are meshed with a hierarchy built on refinement in combination with an agglomeration procedure.

Cell merging provides a conceptually straightforward way to define a domain boundary- and interface-conforming mesh. 
In the present work, the geometry of the domain boundary and multiphase interfaces are defined implicitly. From a math-
ematical and analytical point of view, the resulting implicitly defined meshes can be used in a dG method essentially as-is, 
without knowledge of their specific construction. As such, instead of naming the developed dG framework as cut cell, or 
embedded boundary, or as an extended discontinuous Galerkin method, it is here simply referred to as dG methods which 
use implicitly defined meshes.

The discussion so far has largely focused on spatial considerations when designing accurate numerical methods for fluid 
interface dynamics, e.g., defining sharp interface methods which allow jump conditions (e.g., jumps in fluid pressure) to be 
captured with high-order accuracy. In the case of incompressible fluid flow, the incompressibility constraint is an additional 
aspect requiring special attention when designing high-order accurate methods. To solve the associated incompressible 
Navier–Stokes equations, a widely applied technique is that of projection methods, pioneered by Chorin [37]. These meth-
ods can be thought of as a fractional stepping method in which, at each time step, the Navier–Stokes momentum equations 
are used to compute an intermediate velocity field not necessarily satisfying the incompressibility constraint. This interme-
diate velocity field is then projected onto the space of divergence-free vector fields, thereby determining the fluid velocity 
u at the end of the time step. As elucidated by Brown, Cortez and Minion [38], this fractional stepping approach introduces 
a nonphysical coupling in the discrete velocity and pressure field, resulting in numerical boundary layers that limit the sim-
plest of approaches to first order accuracy in the maximum norm. Owing to the robustness, wide utility, and computational 
efficiency of projection methods, the design of high-order accurate projection methods has consequently received exten-
sive attention in the literature; see, e.g., the second order methods of Kim and Moin [39] and Brown et al. [38], third and 
higher order (single phase) projection methods based on consistent splitting schemes and slip correction schemes in the 
reviews [40,41], and high-order accurate schemes based on spectral deferred corrections [42–44]. Projection methods have 
also been applied to multiphase fluid flow in a wide variety of formulations, including the continuum surface force model 
of Brackbill et al. [9] and immersed boundary methods [4,5] which recast interfacial surface forces as body forces [10,11]; 
modified projection methods which build pressure jump conditions directly into the projection operator as in the immersed 
interface method [6,7] and ghost fluid method [12]; and projection methods which design various kinds of pressure predic-
tors accounting for surface tension, see, e.g., [45,46]. However, complications can arise when applying standard projection 
method ideas to multiphase flow if the end goal is to capture or impose physically-relevant interfacial jump conditions with 
high-order accuracy. In a similar way that numerical boundary layers are created at the domain boundary (associated with 
the non-commutativity of the viscous diffusion and projection operators [38,40,41]), numerical boundary layers can also be 
created at the interface (see [2]) and these artefacts can be especially exaggerated in the case when different fluid phases 
have different densities or viscosities.1 These numerical boundary layers, at the domain boundary in the case of single phase 

1 To briefly motivate the issues involved, consider a standard projection method for two-phase flow driven by surface tension. Given the velocity field un

at time step n, the first step is to perform a viscous solve to find u� such that ρi(
1
�t (u� − un) + (u · ∇u)n+1/2) = −∇q + ∇ · (μi(∇un + ∇u�)) in �i (phase 

i), where q is some form of pressure predictor (possibly zero), and ρi and μi is the density and viscosity of phase i, subject to some set of interfacial jump 
conditions for [u�] and [μ(∇u� + ∇u�ᵀ)n] on the interface �; usually, it is required or implicitly assumed that [u�] = 0. The second step is to project 
u� to find un+1 = u� − ρ−1

i ∇φ in �i , where ∇ · ρ−1
i ∇φ = ∇ · u� in �i , subject to suitable interfacial jump conditions for the elliptic interface problem 

for φ , i.e., some conditions on [φ] and [ρ−1∂nφ] on �; usually, [ρ−1∂nφ] = 0. However, when ρ1 �= ρ2, it cannot be guaranteed that the Poisson problem 
for φ admits a solution for which [ρ−1∇φ] = 0; this implies that [un+1] is not necessarily zero on the interface—this forms a direct analogy to the issue 



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.5 (1-36)

R. Saye / Journal of Computational Physics ••• (••••) •••–••• 5
flow, and adjacent to the interface in the case of multiphase flow, persist regardless of how high-order accurate the spatial 
discretisation may be.

An alternative formulation of the incompressible Navier–Stokes equations, first introduced by Oseledets [47] (see also 
[48]) for single phase flow, and extended to interfacial fluid flow in prior work [2], leads to a different class of methods, 
denoted interfacial gauge methods. Instead of solving directly for u, these methods recast the equations to solve instead 
for an auxiliary vector field, denoted m, whose divergence-free component gives the physical velocity u. Compared to 
archetypical projection methods, interfacial gauge methods have a weaker coupling between fluid velocity, pressure, and 
interface dynamics, and allow stable and high-order accurate schemes to be developed more easily. These methods are 
briefly introduced later in this work; for more information regarding their design, the reader is referred to [2].

1.2. Outline

This paper is divided into two main parts—part one: development of the implicit mesh dG framework, and part two [3]: 
application of the framework to a variety of incompressible fluid flow problems. In part one:

(1) Implicitly defined meshes are introduced.
(2) Preliminaries of the dG framework are described, including notation, choice of nodal basis, jump operators, quadrature, 

mass matrix computation, and a more detailed algorithm for defining implicit meshes.
(3) Local dG methods for elliptic interface problems are designed, beginning with uniform-ellipticity scalar equations and 

then extending to variable-coefficient and vector-valued elliptic interface problems. Convergence results are presented, 
as is the design of projection operators for incompressible fluid flow.

(4) Geometric multigrid methods for elliptic interface problems are designed for use as preconditioners in conjugate gradi-
ent algorithms.

(5) Discretisation of the advection operator is discussed.
(6) Topics related to evolving interface problems are considered, including coupling interface dynamics to physics, high-

order accurate reinitialisation, transferring state between evolving implicit meshes, and briefly on the integration of 
adaptive mesh refinement.

In the second part—see [3]—the implicit mesh dG framework is applied to:

(1) Single phase incompressible fluid flow, which also serves as an introduction to gauge methods.
(2) Two phase fluid flow driven by surface tension.
(3) Rigid body fluid–structure interaction.
(4) Free surface flow.

Part two concludes with a summary of the main ideas underlying the implicit mesh dG framework and possibilities for 
future work. In addition, the three appendices of part two provide further details regarding (i) axisymmetric modelling, 
(ii) partition of unity methods for high-order accurate smoothing, and (iii) evaluation of interface mean curvature.

2. An implicit mesh discontinuous Galerkin framework

In the first part of this paper, we design a discontinuous Galerkin (dG) framework based on implicitly defined meshes, 
having in mind the goal of applying the framework to a variety of problems in fluid interface dynamics. First, the concept 
of implicitly defined meshes is introduced, followed by a discussion of the essential components of the dG method, such as 
quadrature, mass matrices, and definition of interphase faces, intraphase faces and jump operators. Next, we develop a set 
of high-order accurate discretisations for a variety of elliptic interface partial differential equations, demonstrating optimal-
order accuracy with a series of convergence tests. Geometric multigrid methods, which can be used to efficiently solve the 
associated linear systems, are then discussed. Then, in the final section, we consider a variety of aspects concerning moving 
interface problems, including the coupling of interface dynamics to physics, defining evolving implicit meshes, transferring 
state between meshes, and finally, a brief discussion on possibilities for adaptive mesh refinement.

2.1. Implicitly defined meshes

An implicitly defined mesh involves the interaction of two geometric objects: (i) a background reference grid, whose geo-
metric description is relatively simple, and (ii) an implicit description of any embedded interfaces and/or the domain bound-
ary. In this work, regular Cartesian grids, quadtrees, and octrees are used for the reference grid, while the interfaces are 
defined by either the level set method (for two phases) or the Voronoi implicit interface method [49] (for multiple phases).

of enforcing the correct tangential boundary conditions for single phase projection methods, see [38,40,41]. Moreover, there may also be inconsistencies 
concerning the interfacial jump condition for the physical stress associated with the projected velocity field, where additional complications can arise in 
the case that μ1 �= μ2. See [2] for further discussion.



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.6 (1-36)

6 R. Saye / Journal of Computational Physics ••• (••••) •••–•••
Fig. 1. Defining the mesh in the implicit mesh dG framework. (left) Phase cells, defined by the intersection of each phase (blue and green) with the cells 
of a background Cartesian/quadtree grid, are classified according to whether they fall entirely within one phase (“entire,” light blue/green and rectangular) 
or entirely outside the domain (“empty,” white), or else are denoted “partial.” Partial cells are classified according to whether they have a small volume 
fraction (medium shade blue/green) or large intersection (dark blue/green). (right) Small cells are merged with neighbouring cells in the same phase to 
form a finite element mesh composed of standard rectangular elements and elements with curved, implicitly defined boundaries. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)

To simplify the presentation, the two-phase case is considered here. Let � ⊂ R
d denote the domain, and let φ : � → R

be a level set function which implicitly defines the interface � = {x ∈ � : φ(x) = 0}. Denote by �1 = {x ∈ � : φ(x) < 0} the 
region occupied by phase one and �2 = {x ∈ � : φ(x) > 0} the region occupied by phase two. Let U be a rectangular domain 
which encloses all of �, and define a quadtree (in 2D) or octree (in 3D) grid such that U = ⋃

i U i , where Ui are rectangular 
cells. This defines a collection of phase cells, Ui ∩ � j , most of which are rectangular and fall entirely within a single phase 
(denoted entire cells), whereas others intersect ∂� or � (partial cells), with the remainder falling outside of the domain 
(empty cells), see Fig. 1.

Cells which are deemed “small” are merged with nearby cells to ultimately form the elements of the implicitly defined 
mesh. A variety of possibilities exist for deciding whether a cell is small; in this work a simple strategy is adopted, whereby 
a phase cell Ui ∩ � j is viewed as small if its volume fraction is less than 40%, i.e., |Ui ∩ � j | < 0.4|Ui |. Small cells are 
merged with neighbouring cells in the same phase according to the following scheme: of the cells sharing a face, edge, or 
vertex with the small cell, the cell which has the largest volume fraction is used. The result of this process is a collection of 
elements consisting of standard rectangular elements and elements with curved, implicitly defined boundaries; Fig. 1 shows 
a two-dimensional example. Some remarks are in order:

• Note that the geometry of the resulting mesh is never explicitly constructed or parameterised. Instead, the mesh is 
implicitly defined by the background grid and the implicitly defined interface. Thus, the curvature and shape of the 
interface is completely characterised by the level set function. In the context of the following discontinuous Galerkin 
framework, the geometry of the interface is inferred solely through the element and face quadrature rules.

• The mesh is automatically “body conforming”: the interface is sharply represented by the faces between elements 
belonging to different phases. Subsequently, interfacial jump conditions can be imposed with high-order accuracy.

• Computation of the volume fraction of each cell Ui ∩ � j requires an algorithm capable of computing implicitly defined 
volume integrals. Although it is unnecessary to compute these volume fractions with a high degree of accuracy, it is 
nevertheless important to identify cells with non-zero volume. Traditional techniques, such as extracting the isosurface 
of φ in � as a polyhedron (for instance, as in marching cubes [50] or marching tetrahedra [51–53]), may fail in this 
regard. This aspect is discussed further in §2.2.2.

• The small volume fraction threshold, i.e., 40% in the above, is a user-chosen parameter. The smaller the fraction, the 
smaller the size of the extended elements, which can increase solution resolution and accuracy. However, if the thresh-
old becomes too small, then a wider disparity in element size (i.e., the length scale “h” of each element) can occur, and 
for very small fractions, the local condition number can considerably worsen, causing discrete differential operators to 
become ill-conditioned and time step constraints more severe. This has a direct analogy with the problem of “tiny” cells 
in traditional cut-cell methodologies.
In the present work, we do not examine the effect of a vanishingly small fraction threshold on conditioning and time 
step constraints. Instead, it is noted that thresholds between 20% and 50% perform well in a variety of circumstances 
(i.e., based on a variety of tests, the conditioning of elliptic interface problems is sufficiently mild for double-precision 
arithmetic, and perceived time step constraints for advective problems are commensurate of typical constraints occur-
ring within discontinuous Galerkin methods), whereas fractions smaller than 10% become problematic, especially when 
using high-order elements. In particular, throughout the present work, the parameter of 40% is used, as it offers a 
good compromise between excessively large extended elements, while maintaining good conditioning for moderately 
high-order elements (p ≤ 5) in both two and three dimensions. For further observations regarding the effect of the 
threshold on conditioning, see, e.g., Johansson and Larson [1] where its effect on elliptic PDE problems is analysed both 
theoretically and experimentally.



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.7 (1-36)

R. Saye / Journal of Computational Physics ••• (••••) •••–••• 7
Fig. 2. Face nomenclature and definition of the jump operator [·]. (left) A schematic of a two-phase mesh: intraphase faces are defined as faces shared by 
elements in the same phase, whereas interphase faces and boundary faces are located on �i j and ∂�, respectively. The orientation of the normal of the 
interface is such that n points from the phase with highest index i into the phase with lowest index j. (right) Two elements are separated by a face with 
the indicated normal n; the jump of a function u is such that [u] = u− −u+ , where “−” and “+” denotes the element on the “left” and “right”, respectively, 
while u± denotes the values of the function upon restriction to the left and right element.

• Last, note that in some circumstances, the merging process may fail. In other words, a small phase cell may be identified 
having no suitable neighbours to merge with. This typically happens when the interface is under-resolved, such as 
an isolated droplet a small fraction of the cell size, or, during topological changes, such as merging or breaking of 
the interface. A variety of strategies could be adopted in such circumstances, e.g., temporarily weakening the fraction 
threshold or subdividing the cell locally as a form of adaptive mesh refinement. Conversely, provided the interface is 
sufficiently resolved, the merging process always succeeds: in particular, the merging process never failed for any of the 
results presented in this work.

In summary, the construction of an implicitly defined mesh takes as input: (i) a quadtree/octree background grid together 
with (ii) an implicit description of the interface; and outputs a collection of elements, E = ⋃

i Ei , each of which belongs 
in its entirety to a single phase j. Implicit in this description is a collection of faces representing the boundaries between 
elements, determined by (i) the cell boundaries of the quadtree/octree, (ii) the implicitly defined interface, and (iii) the 
domain boundary. These faces are either flat (when they arise from the cell boundaries of the background grid) or curved 
(when they arise from the implicitly defined interface or perhaps an implicitly defined domain boundary).

2.2. Preliminaries

In order to design an implicit mesh dG framework making use of implicitly defined meshes, we first define some notation 
and consider a variety of aspects which underpin much of the framework’s construction.

2.2.1. Notation
We consider a multiphase domain � = ⋃

i �i in Rd , and let � = ⋃
i> j �i j denote the interface, where �i j = ∂�i ∩ ∂� j

is the interface between phase i and phase j. Let n denote the unit normal of the interface �i j , pointing from �i into � j
when i > j, or, in the case of the domain boundary, let n denote the unit outwards-pointing normal. Let E denote the set 
of elements of the mesh, and let χ(E) denote the phase of an element E ∈ E , i.e. if E ⊆ �i , then χ(E) = i.

In the discontinuous Galerkin framework, quantities of state (such as fluid velocity) are piecewise-polynomial. In this 
work, the background grid is a quadtree (in 2D) or octree (in 3D), and so most of the elements of the implicit mesh are 
rectangular. It is therefore natural to choose a tensor product polynomial space (though this is not the only possibility). Let 
p ≥ 1 be an integer and define Qp(E) to be the space of tensor product polynomials of degree p on the element E . For 
example, Q3 is the space of bicubic (in 2D) or tricubic (in 3D) polynomials having 16 or 64 degrees of freedom, respectively. 
Let Vh be the corresponding space of discontinuous piecewise polynomials on the mesh:

Vh := {
u : � →R

∣∣ u|E ∈ Qp(E) for every E ∈ E
}
.

Define also V d
h to be the space of piecewise polynomial vector fields,

V d
h := {

u : � →R
d

∣∣ (u · ei)|E ∈ Qp(E) for every E ∈ E and 1 ≤ i ≤ d
}
.

Here, ei denotes the standard basis vector in the direction of the ith coordinate. The natural L2 inner product on Vh is 
denoted by (·, ·), ‖ · ‖ denotes the corresponding norm, ‖u‖2 = (u, u), with analogous definitions for V d

h .
Regarding the faces of the mesh, define intraphase faces as those shared by two elements of the same phase; interphase 

faces as those shared by two elements of differing phases (and thus are situated on �i j for some i > j); and boundary 
faces as those situated on ∂�; see Fig. 2. Define also �0 as the set of all points belonging to intraphase faces. Each face 
has a corresponding normal vector: intraphase faces, which are flat, lie in a particular coordinate plane and n is defined 
to point from “left-to-right”, i.e., for vertical faces in 2D, n = x̂, and for horizontal faces, n = ŷ. Interphase faces adopt 
the same normal vector as the interface �i j on which they are situated, i.e. the normal of a interphase face points from 



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.8 (1-36)

8 R. Saye / Journal of Computational Physics ••• (••••) •••–•••
Fig. 3. Examples of quadrature schemes for implicitly defined phase cells, as constructed by the algorithms of [29] with q = 4. (left three) Integration in two 
dimensions, for an implicitly defined curve and area on either side. (right two) Integration in three dimensions, for an implicitly defined curved surface and 
the volume underneath. The weights are coloured according to a scale that is normalised for each particular case: denotes a small weight, a medium 
weight, and a large weight. (Figures adapted from [29].) (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)

the phase with largest index (“left”), into the phase with smallest index (“right”). Lastly, boundary faces adopt the natural 
outwards-pointing unit normal, in which “left” means the side of the face interior to the domain.

The notation [·] denotes the jump of a quantity, and is used in two ways: (i) in the definition of PDE problem, to denote 
the jump of a function across an interface, and (ii) to denote the jump of a piecewise polynomial function across any 
intraphase or interphase face. In the first case, the jump adopts the same orientation as that of the normal vector of the 
interface, i.e., on �i j we have [ f ] := ( f i − f j)|�i j , where f i is the value of f in phase i. In the second case, the jump adopts 
the same orientation as the normal of the face. In particular, define u− to be the trace of the polynomial on the “left” side 
of the face, u+ to be the trace of the polynomial on the “right” side of the face, and [u] = u− − u+ . These definitions are 
also illustrated in Fig. 2.

2.2.2. Quadrature for element and face integration
Of fundamental importance in a finite element method is the weak formulation, requiring integration of functions (most 

often polynomials) on individual mesh elements and faces. For rectangular elements of the implicitly defined mesh, one 
can apply standard quadrature schemes, such as tensor product Gauss–Legendre or Gauss–Lobatto quadrature for both the 
element and its rectangular faces.

For curved elements, curved faces, or flat faces cut by the interface or an implicitly defined domain boundary, the domain 
of integration is implicitly defined by a level set function. It follows that a quadrature scheme must be computed, and in this 
work, the high-order accurate quadrature algorithms developed in [29] are adopted. These algorithms have been designed 
specifically for implicitly defined surfaces and volumes in hyperrectangles, and yield quadrature schemes with the same 
order of accuracy as tensor-product Gaussian quadrature. In particular, in d dimensions, based on a Gaussian quadrature 
scheme with q nodes, the number of quadrature nodes is O(qd) in the case of volume integrals and O(qd−1) in the case of 
surface integrals; for sufficiently smooth problems, the order of accuracy is approximately 2q. Importantly, the quadrature 
weights computed by these schemes are strictly positive—this ensures that individual elemental mass matrices, which are 
symmetric positive definite in theory, have the same property in practice. The parameter q is a user-chosen parameter, 
which is chosen large enough to ensure computed integrals sufficiently minimise associated “variational crimes” within the 
dG method. Since the integration over a curved element or face implicitly takes into account a Jacobian relating to the 
curvature of the corresponding domain, it is typically necessary to choose q larger than p. In this work, the parameter is 
fixed to be q = 10 independent of 1 ≤ p ≤ 5; this is because the cost of computing the quadrature scheme (accumulated 
across all curved elements and faces) is essentially negligible compared to other components of the implicit mesh dG 
framework. The quadrature algorithm is applied to each individual phase cell making up a non-rectangular element; when 
such an element consists of more than one phase cell, the quadrature schemes are appended and accumulated to define a 
quadrature scheme for the entire element. Fig. 3 illustrates the typical quadrature node layout and weights computed by 
the quadrature algorithm with a variety of cases using q = 4.

The quadrature algorithms developed in [29] make use of a technique that computes bounds on the range of attainable 
values of a given function in a given hyperrectangle. This technique is used within the algorithm to identify whether the 
zero level set of a function intersects the cells of the background quadtree/octree or their boundaries. In other words, the 
quadrature algorithm automatically identifies “small” phase cells, even in the case, for example, a cell contains an isolated 
tiny droplet. This feature is exploited in the construction of the implicitly defined mesh to correctly identify the small 
phase cells in the merging process, thereby avoiding the issues lower-order methods (such as marching cubes or marching 
tetrahedra) may have in failing to detect such cells (as mentioned in §2.1). However, it is not important to accurately 
compute the associated volume fractions,2 and so a smaller value of q can be used for this purpose; in this work, the value 
q = 1 is used.

2 Recall that the volume fraction quantities are used only to classify non-empty phase cells as either small, large, or entire. To calculate the “true” volume 
of a mesh element or phase cell, the full-order quadrature scheme can be used.



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.9 (1-36)

R. Saye / Journal of Computational Physics ••• (••••) •••–••• 9
Fig. 4. Nodal basis for the elements of the implicitly defined mesh, demonstrated with p = 3, i.e., piecewise bicubic polynomials. (left) A standard rectangular 
element uses the tensor-product Gauss–Lobatto nodes. (middle) An unextended curved element, whose shape is implicitly defined by the interface or 
domain boundary, consisting of only one large phase cell, uses a tensor-product Gauss–Lobatto nodal basis relative to that cell, i.e., its parent cell of the 
quadtree/octree (dashed). (right) Similarly, an extended curved element, which consists of a parent phase cell and one or more child small phase cells, uses 
a nodal basis relative to its parent cell in the quadtree/octree.

2.2.3. Choice of basis
Although much of a dG method can be stated variationally—and thus independent of a basis—from a computational 

perspective it is necessary to choose a basis of Vh . In this work a nodal basis is employed, which, for standard rectangular 
elements, consists of the tensor-product Gauss–Lobatto nodes (p + 1 nodes per dimension, for a total of (p + 1)d nodes per 
element), see Fig. 4 left. For simplicity of implementation, curved elements, i.e., both extended and unextended elements 
(see Fig. 1) adopt the same Gauss–Lobatto nodal basis relative to their “parent” cell in the quadtree/octree. This implies 
that, in some cases, nodes are “outside” of the element (Fig. 4 middle), whereas in other cases, polynomial values are 
“extrapolated” based on the nodal values into the extended parts of an element (Fig. 4 right). Nevertheless, two aspects 
must be emphasised: (i) from a theoretical point of view, this is merely a specification of a basis for Vh; and (ii) with 
regard to variational statements, L2 projections, etc., a polynomial on a curved element is determined by the geometry of 
the element, and not on whether a node is inside or outside. Thus, the viewpoint of “extrapolation” is in some regards 
simply an interpretation of the role of the nodal basis. Stated differently, since the following dG framework is defined 
variationally (i.e., via integration over the elements and faces of the mesh), the placement of the nodes is more of a means 
to an end, rather than being of direct importance like in a finite difference method. On the other hand, this choice of 
basis does factor into numerical conditioning, such as in the conditioning of elemental mass matrices. In practical settings, 
for moderately high-order elements (p ≤ 5), in both two and three dimensions, with a small volume fraction threshold of 
≈ 40% (as used in §2.1), experiments indicated that the elemental mass matrices are always sufficiently well-conditioned 
for double precision arithmetic.

On occasion, it will be convenient to slightly abuse notation and refer to a piecewise polynomial function u in two ways: 
(i) as a member of Vh , in which case u is to be understood as a function in L2(�); and (ii) as a vector of coefficients relative 
to the nodal basis of Vh , in which case u ∈ R

ndof where ndof is the number of degrees of freedom. The former is principally 
used within variational statements, whereas the latter is used in statements involving matrices and linear systems. Given 
such a u, it should be clear from context which of these interpretations is intended.

2.2.4. Mass matrices
Let ME denote the mass matrix for an element E ∈ E relative to the above choice of basis, i.e.,3 ME,i j = ∫

E 
i
 j , where 
i , 
i = 1, . . . , (p +1)d , is an ordering of the (p +1)d nodal basis functions. In particular, if one adopts the natural ordering given 
by the position of node i = (i1, . . . , id) in the tensor-product lattice of Gauss–Lobatto nodes, then it is straightforward to 
show that, for rectangular elements, ME is a scalar multiple of a tensor product of one-dimensional mass matrices defined 
relative to the one-dimensional standard reference element occupying the interval (−1, 1). In this work, these reference 
mass matrices and their inverses are precomputed to full-precision accuracy and stored in code. For each non-rectangular 
element, i.e., elements E whose shape is determined implicitly by embedded interfaces or domain boundaries, a quadrature 
scheme is computed as part of defining the implicit mesh. The scheme is of the form 

∫
E f ≈ ∑n

k=1 wk f (xk), where xk are the 
n quadrature nodes having weights wk , and is used to define ME,i j = ∑n

k=1 wk
i(xk)
 j(xk). It can be shown that the resulting 
discrete mass matrix is automatically symmetric positive definite, based on the operation of the quadrature algorithms in 
[29] together with the assumption that q ≥ p. In addition to computing the mass matrix for each non-rectangular element, 
its Cholesky decomposition is also computed and stored. The Cholesky factorisation of each non-rectangular element is used 
whenever M−1

E u is calculated for some elemental polynomial u. Last, denote by M the ensemble block-diagonal mass matrix 
for the entire mesh, i.e., M = diag(M1, . . . , M|E |), where E1, . . . , E |E | is some particular ordering of the |E | elements of the 
mesh; note that the ensemble inverse mass matrix M−1 is also block-diagonal.

2.2.5. Summary
To summarise the construction so far, given a quadtree/octree of rectangular cells Ui ⊂ R

d , such that � ⊆ ⋃
i U i , together 

with an implicit description of �i for each phase i:

3 For brevity of presentation, throughout this work, the differential indicating the measure of integration is omitted whenever the context allows it; e.g., ∫
U f = ∫

U f (x) dx whenever U ⊆R
d is a volumetric domain, and ∫U f = ∫

U f dS whenever U is a codimension-one surface.



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.10 (1-36)

10 R. Saye / Journal of Computational Physics ••• (••••) •••–•••
1. Compute the volume of each phase cell Ui ∩� j using the quadrature algorithms of [29] with q = 1, and classify according 
to its volume fraction θ = |Ui ∩ � j |/|Ui |: if θ = 0, mark as empty; if 0 < θ < 0.4, mark as small; if 0.4 ≤ θ < 1, mark as 
large; else mark as entire.

2. Merge small phase cells with neighbouring non-small phase cells by assigning to each small phase cell a parent: for 
each small phase cell C , choose from among its neighbours (which are large or entire and in the same phase) sharing a 
face, edge, or vertex with C (in that order4), the cell with largest volume fraction.

3. Define the set of elements as the result of step two, i.e., each element corresponds to either a large or entire phase cell 
(the element’s parent phase cell), and zero or more small phase cells (the element’s children phase cells). The nodal basis 
of each element is defined to correspond to the tensor-product Gauss–Lobatto nodes positioned relative to its parent 
phase cell.

4. Compute the geometry of each element: if the element’s parent phase cell is entire, and it has no children, then the 
element is rectangular and a standard reference element can be used. Otherwise, the element is curved: for each of 
its parent and child phase cells, compute and store a quadrature scheme using the algorithms of [29] with parameter 
q; with the accumulated quadrature scheme for the entire element, compute its mass matrix and associated Cholesky 
factorisation.

5. Loop over every face of the mesh by visiting each parent and child phase cell of each element and use the quadtree or 
octree to find neighbouring phase cells and their associated elements. Most of the faces have an entire phase cell on 
one side, and are thus rectangular, allowing standard face quadrature rules to be used. For all other faces (e.g., including 
those on �i j), compute and store a quadrature scheme using the quadrature algorithms of [29] with parameter q; in 
some cases, the quadrature is a curved surface integral applied to the implicitly defined interface �i j or perhaps an 
implicitly defined domain boundary ∂�; in other cases, it is applied to a flat face, whose boundary is defined implicitly, 
which itself is an implicitly defined volume integral but in one fewer dimensions.

The result of this process is a collection of mesh elements and an enumeration of the faces of the mesh. Each curved 
element and non-rectangular face has a quadrature scheme precomputed for later usage. These quadrature schemes will 
benefit a variety of operations within the dG framework, including L2 projections, numerical flux integration, discretisation 
of advection terms, as well as, for example, computing forces and torques on rigid bodies embedded within a fluid.

2.3. Local discontinuous Galerkin methods for elliptic interface problems

In this section we consider the numerical discretisation of a variety of elliptic interface PDE problems which impose jump 
conditions on a function and its normal derivative across embedded interfaces. The goal is to develop a discretisation which 
is symmetric positive (semi)definite, so that one can utilise efficient solution algorithms such as multigrid-preconditioned 
conjugate gradient methods. In this work, a local discontinuous Galerkin (LDG) [54] approximation is adopted, as the con-
struction offers a variety of properties well-suited to projection operators used within incompressible fluid dynamics.

2.3.1. Model problem description
The simplest elliptic interface problem consists of solving for a function u : � →R such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�u = f in �i
[u] = gij on �i j

[∂nu] = hij on �i j
u = g on �D

∂nu = h on �N .

(1)

Here, ∂n := n · ∇ denotes the derivative in the normal direction, while �D and �N denote the components of the domain 
boundary which impose Dirichlet and Neumann boundary conditions. (Either one of �D or �N may be empty, however 
�D ∪ �N = ∂� always holds.) Thus, this elliptic interface problem consists of solving for u, with source term f , boundary 
data g and h, and interfacial jump data gij and hij .

2.3.2. Discretisation
In the LDG formulation, a temporary flux variable q := ∇u is introduced and the Laplacian is written as the divergence 

of q. Both q and its divergence are defined weakly with the assistance of numerical fluxes defined on each mesh face. We 
define5 q ∈ V d

h such that

4 To be more precise, in searching for a suitable candidate neighbour cell for C , neighbouring candidate cells sharing a face are first considered (i.e., 
extension occurs along only one axis). If no such neighbours exist, then all neighbours that share an edge (in 3D) or vertex (in 2D) are considered (i.e, 
extension occurs along a diagonal, in two axis directions only). In 3D, if no such neighbours exist, vertex-based neighbours are considered. This ad hoc 
prioritisation given to the set of neighbours of C minimises the number of axes across which the extension occurs, and improves the aspect ratio of the 
extended element.

5 See the later footnote regarding equation (4).



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.11 (1-36)

R. Saye / Journal of Computational Physics ••• (••••) •••–••• 11
Fig. 5. Schematic of the numerical flux function u� defined by (3) and used within the evaluation of the discrete gradient of u. Except for interphase faces, 
the flux is single-valued and defined by the polynomial on the “left” of the face (recall that the normal n points “left-to-right”). For interphase faces, in 
order to compensate for imposed jump conditions [u] = gij on �i j (i > j), the flux depends on the phase of the element.

∫
E

q · ω = −
∫
E

u ∇ · ω +
∫
∂ E

u�
χ(E)ω · n (2)

for every element E ∈ E having phase χ(E) and every test function ω ∈ V d
h . There are a variety of methods for defining the 

numerical flux u� leading to different discretisations. In this work, a one-sided directional principle is employed, in which u�

is defined by elements on the “left” of the face (see also [55,56]). Moreover, and although the numerical flux is traditionally 
single-valued, in this application involving interfacial jump conditions it is advantageous to define a multi-valued numerical 
flux. Referring to Fig. 5, define

u�
χ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u− on any intraphase face,
u− on �χ i if χ > i,

u− − giχ on �iχ if i > χ ,
u− on �N ,
g on �D .

(3)

Note that the flux is multivalued on interphase faces with value depending on χ , i.e., the phase of the element in consid-
eration in (2). On these faces, the interfacial jump condition data is taken into account as follows: if an element “reaches 
across” the interface into another phase in order to determine its numerical flux, a jump in the solution occurs—this jump 
is then accounted for by subtracting the interfacial jump condition [u] = gij . Meanwhile, for a face on the Neumann part 
of the domain boundary, the numerical flux is given by the interior element; for a face on the Dirichlet part of the domain 
boundary, the numerical flux is given by the boundary data.

Note that (2) is equivalent6 to
∫
E

q · ω =
∫
E

∇u · ω +
∫
∂ E

(u�
χ(E) − u)ω · n, (4)

which upon summing over every element of the mesh states that, for any ω ∈ V d
h ,

∫
�

q · ω =
∑
E∈E

∫
E

∇u · ω +
∫
�0

(u� − u−)ω− · n − (u� − u+)ω+ · n +
∑
i> j

∫
�i j

(u�
i − u−)ω− · n − (u�

j − u+)ω+ · n

+
∫
�D

(u� − u−)ω− · n +
∫
�N

(u� − u−)ω− · n

=
∑

i

∫
Ei

∇u · ω −
∫
�0

(u− − u+)ω+ · n −
∑
i> j

∫
�i j

(u− − gij − u+)ω+ · n +
∫
�D

(g − u−)ω− · n. (5)

We now define the following operators:

• Let ∇h : Vh → V d
h be the broken gradient operator, and let L : Vh → V d

h be the lifting operator, such that

6 On a first reading, (2) and (4) may be regarded as being equivalent for motivational purposes. On closer inspection, one may note that there is a subtle 
distinction between (2) and (4) when approximate numerical quadrature schemes are utilised (e.g., as used on a curved element E), as such schemes do not 
in general exactly satisfy the identity of integration by parts. In other words, the numerical approximation of (2) may result in a different polynomial for q
on E compared to the numerical approximation of (4); the difference corresponds to the truncation error of the quadrature scheme. In the nomenclature 
of [28], (2) is referred to as the weak form and (4) as the strong form. The difference between the two forms comes into play in the symmetry of the final 
discrete Laplacian operator, as q is defined via the strong form and the divergence of q via the weak form. In short, in the remainder of this section, q is 
to be interpreted as being defined solely by (4) whether or not approximate numerical quadrature is used.



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.12 (1-36)

12 R. Saye / Journal of Computational Physics ••• (••••) •••–•••

∫
�

(∇hu) · ω =
∑
E∈E

∫
E

∇u · ω,

∫
�

(Lu) · ω =
∫
�0

(u+ − u−)ω+ · n +
∑
i> j

∫
�i j

(u+ − u−)ω+ · n −
∫
�D

u−ω− · n,

holds for every ω ∈ V d
h . Thus, ∇h evaluates the gradient of each polynomial on each element, while L computes the 

jump in u across the set of faces (excluding those on �N ), multiplies by the associated normal vector of each face, and 
“lifts” the result into the interior. Note that these operators are uniquely defined, since, if 

∫
�

ω̃ · ω = 0 for all ω ∈ V d
h , 

then ω̃ must necessarily be zero.
• Define J g(g, gij) ∈ V d

h such that
∫
�

J g(g, gij) · ω =
∑
i> j

∫
�i j

gi j ω
+ · n +

∫
�D

g ω− · n,

holds for every ω ∈ V d
h . Note that the domain of the operator J g is not specified, since we do not assume the interfacial 

jump data gij or boundary data g belongs to any particular space. (In some applications however, these data may in 
fact be the trace of a function in Vh .)

With these definitions, (5) is equivalent to the statement that

q = (∇h + L)u + J g(g, gij) = Gu + J g(g, gij), (6)

where G : Vh → V d
h is the discrete gradient operator,

G := ∇h + L. (7)

The formula (6) implements the weak statement that q = ∇u, taking into account the interfacial jump conditions and 
Dirichlet boundary data.

We now consider the weak formulation for computing the divergence of q. Given q ∈ V d
h , define w ∈ Vh such that

∫
E

w v = −
∫
E

q · ∇v +
∫
∂ E

v q�
χ(E) · n (8)

holds for every test function v ∈ Vh and every element E ∈ E with phase χ(E). In this case, the numerical flux is again 
determined by a one-sided directional principle, but in the opposite direction to that used by u� . For simplicity of presen-
tation, the numerical flux in the following is vector-valued; however, only the normal component of the flux is used. We 
define

q�
χ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q+ on any intraphase face,
q+ + hχ in on �χ i if χ > i,

q+ on �iχ if i > χ ,
q− on �D ,
hn on �N ,

(9)

with the orientation of the normal n adopted from the associated interface/boundary. Thus, the numerical flux for the diver-
gence of q is defined by elements on the “right”. It is multivalued on interphase faces, where the interfacial jump condition 
is taken into account whenever an element reaches across the interface into another phase. For a face on the Neumann part 
of the domain boundary, the flux is given by the boundary data; for the Dirichlet part of the domain boundary, it is given 
by the interior element. Summing (8) over every element, we have that, for every v ∈ Vh ,∫

�

w v = −
∑
E∈E

∫
E

q · ∇v +
∫
�0

(v− − v+)q� · n +
∑
i> j

∫
�i j

(v−q�
i − v+q�

j) · n +
∫
�D

v−q� · n +
∫
�N

v−q� · n

= −
∑
E∈E

∫
E

q · ∇v +
∫
�0

(v− − v+)q+ · n +
∑
i> j

∫
�i j

v−hij + (v− − v+)q+ · n +
∫
�D

v−q− · n +
∫
�N

v−h. (10)

Similar to the operator J g defined above, let Jh(h, hij) ∈ Vh be such that 
∫
�

Jh(h, hij) v = ∑
i> j

∫
�i j

hi j v− + ∫
�N

h v− for all 
v ∈ Vh . Then, (10) is equivalent to the statement that, for all v ∈ Vh ,

(w, v) = −(∇h v,q) − (Lv,q) + (
Jh(h,hij), v

) = −(G v,q) + (
Jh(h,hij), v

)
. (11)

This is the weak statement for w = ∇ · q, taking into account the interfacial jump conditions and Neumann boundary data.



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.13 (1-36)

R. Saye / Journal of Computational Physics ••• (••••) •••–••• 13
We are almost in a position to define the discrete solution of the elliptic interface problem (1). Formally, it consists of 
finding u ∈ Vh such that q = ∇u, w = ∇ · q, and −w = f (all in the weak sense), which, upon combining (6) and (11), 
implies that u solves the variational problem

(Gu, G v) + (
G v, J g(g, gij)

) − (
Jh(h,hij), v

) = ( f , v) for all v ∈ Vh.

However, as is commonplace in discontinuous Galerkin methods, it is sometimes necessary to include penalty terms to 
ensure well-posedness of the discrete problem [28,54]. These stabilisation parameters, which couple elements together via 
shared faces by penalising discontinuities, are used to ensure that the kernel of the discrete Laplacian is trivial when �D

is non-empty, or contains only the constant functions when �D is empty. To implement stabilisation, we consider three 
types of penalty parameters: τ0 ≥ 0, τi j ≥ 0 and τD ≥ 0, for the intraphase, interphase and Dirichlet boundary mesh faces, 
respectively. For intraphase faces, discontinuities in the solution u are penalised by adding to the variational problem a 
term of the form τ0

∫
�0

[u][v]. For the Dirichlet part of the domain boundary, the difference between u and g is penalised 
by adding a term of the form τD

∫
�D

(u− − g)v− . Last, for the interphase faces, the jump in u (after adjusting for interfacial 
jump conditions) is penalised by adding a term of the form τi j

∫
�i j

([u] − gij)[v]. (For motivation regarding the particular 
forms employed here the reader is referred to, e.g., [28,54] for discussion.) With these additions to the variational problem, 
we are led to the final variational statement for solving the elliptic interface problem (1): find u ∈ Vh such that

(Gu, G v) + (
G v, J g(g, gij)

) − (
Jh(h,hij), v

) + τ0

∫
�0

[u][v] +
∑
i> j

τi j

∫
�i j

([u] − gij)[v] + τD

∫
�D

(u− − g)v− = ( f , v)

(12)

holds for every v ∈ Vh . Several remarks are in order.

• Note that the bilinear part of the variational form, i.e., a : Vh × Vh → R, where

a(u, v) := (Gu, G v) + τ0

∫
�0

[u][v] +
∑
i> j

τi j

∫
�i j

[u][v] + τD

∫
�D

u−v−, (13)

is symmetric positive semidefinite. In fact, assuming that all of the penalty parameters are positive (and the domain 
simply connected), if u is such that a(u, u) = 0, then u must be uniformly constant throughout �. A simple proof is as 
follows: suppose a(u, u) = 0; then all of the penalty integrals are zero, and so u is continuous across all interphase and 
intraphase faces; thus u is continuous throughout �; hence, since ‖Gu‖2 = 0 and Lu = 0, it follows that ‖∇hu‖2 = 0; 
therefore, u is constant throughout �. If, in addition, �D is non-empty, then the last penalty term of (13) implies that 
u = 0, showing that in this case a is in fact symmetric positive definite.

• It follows from the previous point that the discrete problem is well-posed: provided the penalty parameters are suitably 
chosen, if �D is non-empty, then there exists a unique solution u ∈ Vh to (12). Alternatively, if �D is empty, i.e., only 
Neumann boundary conditions are imposed, then, assuming f and the interfacial jump data satisfy the compatibility 
condition ( f + Jh(h, hij), 1) = 0, then u ∈ Vh is unique up to a global constant.

• Note that, putting aside the penalty terms, the bilinear component of the variational form is simply (Gu, G v). Therefore 
the discrete Laplacian has the form −G∗G , where G∗ is the adjoint of G . In other words, the negative adjoint of G
plays the role of a discrete divergence operator. This property is also reflective of the choice of the one-sided directional 
strategy defining the numerical fluxes u� and q�—by “upwinding” from the left to calculate the gradient, the adjoint of 
the gradient should “upwind” from the right; the composition of the gradient and divergence therefore makes use of 
information in both directions.

• To illustrate, consider a one-dimensional case in which the polynomial space is piecewise constant and denote the 
solution by ui on each interval [ih, (i + 1)h] (where h is the element width). Then the gradient operator upwinds from 
the left and yields (∇u)i = 1

h (ui − ui−1); the divergence operator upwinds from the right and yields (∇ · q)i = 1
h (qi+1 −

qi). The combined operation yields ∇ · ∇u = 1
h2 (ui+1 − 2ui + ui−1), which is the standard second-order finite difference 

operator. This extends to higher-order elements, and in one dimension yields a stencil for the discrete Laplacian of width 
±1. On a regular Cartesian grid in 2D (respectively, 3D) the discrete Laplacian is a stencil involving 5 (respectively, 7) 
elements in the standard cross pattern, also of width ±1. For more general unstructured meshes, as for example in 
the implicit meshes used in this work, the stencil may be less compact and involve elements in a neighbourhood two 
elements away in connectivity.

• As will be demonstrated in forthcoming convergence tests, experiments indicate that the above LDG formulation has 
optimal-order accuracy: the computed solution is order p + 1 accurate in the L∞ norm, assuming the interfacial jump, 
boundary, and source data admit a sufficiently smooth solution. This applies to curved domains as well as multiple 
interfaces. The discrete operators are also amenable to geometric multigrid methods, as will be discussed in §2.4.

• Regarding the penalty parameters, strictly positive parameters are sufficient to ensure invertibility of the discrete prob-
lem. However this is not a necessary condition. For example, on a regular Cartesian grid (without any interfaces), τ0
can be taken zero. For meshes with less structure on element connectivity, such as a triangulated mesh, or the implicit 



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.14 (1-36)

14 R. Saye / Journal of Computational Physics ••• (••••) •••–•••
meshes considered in this work, a positive τ0 may be necessary in order to ensure there are no non-trivial components 
of the element connectivity graph associated with the discrete Laplacian [28,54]. On the other hand, excessively large 
penalty parameters tend to worsen the conditioning of the linear system, so it is advantageous to keep them a moderate 
size. It is outside the scope of this work to extensively analyse the effect of the penalty parameters on accuracy and 
conditioning. Instead, the following is noted, reflective of a wide range of tests involving the multigrid-preconditioned 
conjugate gradient algorithm described in §2.4: it was found that τi j ≈ 0.1 was effective in ensuring high-order accuracy 
and excellent conditioning, especially in terms of the performance of multigrid cycles; τ0 = 0 sufficed in all cases, de-
spite the aforementioned warnings; and τD ≈ 1000 allows multigrid relaxation to efficiently impose Dirichlet boundary 
conditions, without causing any unnecessary ill-conditioning.

• Last, it is worthwhile to note that the choice of numerical flux for u� and q� can be generalised in various ways. One 
such possibility is to replace the numerical flux on interphase faces with a general convex combination of the left and 
right values, i.e., to choose

u�
χ =

{
c1u− + c2(u+ + gχ i) on �χ i if χ > i,
c1(u− − giχ ) + c2u+ on �iχ if i > χ ,

and correspondingly weight the numerical flux for q in the opposite direction,

q�
χ =

{
c2q− + c1(q+ + hχ in) on �χ i if χ > i,
c2(q− − hiχ n) + c1q+ on �iχ if i > χ .

The choice c1 = 1, c2 = 0 corresponds to the one-sided strategy defined above in (3) and (9), while c1 = 0, c2 = 1
“upwinds” in the opposite direction, and c1 = c2 = 1

2 is a central flux. (Note that these fluxes appropriately compensate 
for the imposed interfacial jump conditions [u] = gij and [q · n] = hij on �i j .) According to preliminary experiments, 
the performance of multigrid solvers for elliptic interface problems with very large jumps in ellipticity coefficient (see 
also §2.3.4) can be considerably improved by carefully choosing the weights c1 and c2 in a way that depends on 
the interfacial values of the ellipticity coefficient. Such a procedure may therefore lead to large practical benefits for 
multiphase fluid flow, particularly when there is a large ratio in the density of the fluids involved, however we do not 
further pursue this idea in the present work.

2.3.3. Briefly on numerical implementation
With the aid of the quadrature schemes discussed in §2.2.2, one can precompute the lifting operator L and therefore the 

discrete gradient operator G defined in (7) as a block-sparse matrix (with each block corresponding to a particular element) 
such that a block (i, j) is non-zero if there is (at least one) face between element i and element j with j on the “left” 
of i. In particular, recalling that the codomain of G is the set of piecewise polynomial vector fields, denote by Gk , 1 ≤ k ≤ d, 
as the components of the vector field, such that Gu = (G1u, . . . , Gdu). Then the bilinear form (Gu, G v) can be rewritten 
as vᵀ(

∑d
k=1 Gᵀ

k MGk)u, where M is the block-diagonal mass matrix. (Here and in the following, we slightly abuse notation 
by considering u and v as elements of Vh as well as vectors of coefficients relative to the nodal basis of Vh .) A similar 
consideration holds for the jump penalty integrals, allowing (12) to be rewritten as

vᵀ( ∑
1≤k≤d

Gᵀ
k MGk

)
u + τ0 vᵀ A0u +

∑
i> j

τi j vᵀ Aiju + τD vᵀ AD u

= vᵀM f̃ − vᵀ( ∑
1≤k≤d

Gᵀ
k M J g,k(g, gij)

) + vᵀM Jh(h,hij) +
∑
i> j

τi j vᵀaij(gij) + τD vᵀaD(g),

(14)

where

• A0 is the block-sparse symmetric matrix such that vᵀ A0u = ∫
�0

[u][v] for all u, v . Block (i, j) of A0 is nonzero if and 
only if there exists an intraphase face between element i and element j.

• Aij is the block-sparse symmetric matrix such that vᵀ Aiju = ∫
�i j

[u][v], in which block (i, j) is nonzero if and only if 
element i and j share an interphase face.

• AD is such that vᵀ AD u = ∫
�D

[u][v]; it is block-diagonal and symmetric, having non-zero diagonal blocks only for 
elements situated on the Dirichlet boundary.

• aij(gij) and aD(g) are the (unique) elements of Vh which lift the jump data g into the interior, i.e., vᵀaij(gij) = ∫
�i j

gi j[v]
and vᵀaD(g) = ∫

�D
gv− for all v ∈ Vh . Similarly, f̃ is such that vᵀM f̃ = (v, f ) for all v ∈ Vh , i.e., f̃ is the L2 projection 

of f ; alternatively, one can often replace the projection with an approximation in which f̃ is defined as the nodal 
interpolant of f .

Since (14) holds for every v , it follows that



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.15 (1-36)

R. Saye / Journal of Computational Physics ••• (••••) •••–••• 15
[( ∑
1≤k≤d

Gᵀ
k MGk

) + τ0 A0 +
∑
i> j

τi j Ai j + τD AD

]
u

= M f̃ − ( ∑
1≤k≤d

Gᵀ
k M J g,k(g, gij)

) + M Jh(h,hij) +
∑
i> j

τi jai j(gij) + τDaD(g). (15)

The matrix acting on u in (15) is block-sparse, symmetric, and positive semidefinite. (It is in fact positive definite if �D
is nonempty and the penalty parameters are suitably chosen.) In this work, the matrix is precomputed in a block-sparse 
format; doing so allows for a simpler implementation of multigrid and conjugate gradient algorithms. Note also that, pre-
multiplying (15) by M−1 and putting aside the penalty terms for the sake of illustration, one obtains the linear system 
M−1 ∑

k Gᵀ
k MGku = f̃ + · · ·; thus, the matrix M−1 ∑

k Gᵀ
k MGk essentially plays the role of the discrete Laplacian. This inter-

pretation factors into the design of multigrid algorithms, as discussed in §2.4.

2.3.4. Extension to variable coefficient elliptic operators
The previous elliptic interface problem considered the case in which the ellipticity coefficient is uniformly constant. A 

more general elliptic interface problem involves a variable coefficient elliptic operator,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∇ · (αi∇u) = f in �i
[u] = gij on �i j

n · [α∇u] = hij on �i j
u = g on �D

α∂nu = h on �N ,

(16)

where αi is phase-dependent coefficient, either a scalar or a matrix, which may vary in space. In particular, the problem is 
non-degenerate if αi is either a positive scalar or a positive-definite matrix. It arises, for example, in multiphase fluid flow 
problems involving phase-dependent fluid density as well as in multi-scale modelling and multi-physics problems where α
could relate to material phase changes like evaporation.

It is relatively straightforward to adapt the above LDG formulation to this new problem involving variable coefficients. 
Define q̃ ∈ V d

h via (6) as the weak gradient of u, taking into account the interfacial jump condition [u] = gij on �i j . Next, 
formally define q := αq̃. Note, however, that q may not be an element of V d

h , since α may vary in space. Nevertheless, one 
can follow the construction as before, taking the weak divergence of q and compensating for the interfacial jump condition 
n · [α∇u] = hij with unaltered numerical flux (9). This results in the following variational problem: find u ∈ Vh such that

(αGu, G v)+ (
G v,α J g(g, gij)

)− (
Jh(h,hij), v

)+ τ0

∫
�0

[u][v]+
∑
i> j

τi j

∫
�i j

([u]− gij)[v]+ τD

∫
�D

(u− − g)v− = ( f , v)

(17)

holds for every v ∈ Vh . Note that the essential component of the bilinear form, (αGu, G v) continues to be symmetric 
positive semidefinite, since α is assumed to be symmetric positive definite.

• In the present work, we only have need for the simplest case in which αi > 0 is scalar, uniformly constant throughout 
�i . In this case, q ∈ V d

h and only two simple modifications of the linear system (15) are necessary: letting αn denote the 
nodal interpolant of α (i.e., vᵀMαn = ∫

�
αv for all v ∈ Vh), then 

∑d
k=1 Gᵀ

k MGk in (15) is replaced by 
∑d

k=1 Gᵀ
k MAGk

where A = diag(αn), while 
∑d

k=1 Gᵀ
k M J g,k(g, gij) is replaced by 

∑d
k=1 Gᵀ

k MA J g,k(g, gij).
• For the more general case, in which α is a symmetric positive definite matrix varying in space, note that the inner 

products in (17) depending on α are no longer integrals of the product of two functions in Vh . Consequently, one must 
take care in computing the integrals to avoid or minimise associated “variational crimes,” as it may be necessary to 
use higher-order quadrature schemes. One may also need to consider rapidly varying coefficients of ellipticity, such 
as in material phase change problems like solidification and evaporation in which α may contain boundary layers. 
Alternatively, provided α is sufficiently smooth, a nodal interpolant may suffice; in this case, to maintain symmetry 
of the matrix in the resulting linear system, one possibility is to use the nodal interpolant of 

√
α (i.e., the principal 

square root of α) such that the primary component of the linear system reads 
∑d

k=1 Gᵀ
k AMAGk where A= diag(

√
α). 

Together with a suitable implementation of (G v, α J g(g, gij)), this discretisation of (16) results in a symmetric positive 
(semi)definite linear system to solve for u.

• Note that, in addition to the dependence on element size h, polynomial degree p and choice of penalty parameters 
τ [28,54], the conditioning of the elliptic interface problem in (16) also depends on α. Although it is difficult to fully 
characterise the conditioning for general α, one particular observation is that large jumps in α across the interface 
create gaps in the spectrum of the linear operator and consequently increases the condition number in proportion to 
the jump ratio. This may impact the performance of associated linear solvers. As shown in §2.4, it is possible to design 
multigrid solvers which mitigate these effects by designing coarse mesh spaces which sharply represent the interface 
and the discontinuities in α.



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.16 (1-36)

16 R. Saye / Journal of Computational Physics ••• (••••) •••–•••
2.3.5. Extension to a vector-valued elliptic interface problem
We will also need to solve the following vector-valued elliptic interface problem: find u : � → R

d such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∇ · (αi(∇u + ∇uᵀ)) = f in �i
[u] = gi j on �i j

[α(∇u + ∇uᵀ)] · n = hi j on �i j
u = g on �D

(α∇u) · n = h on �N .

(18)

In this case, the source terms and boundary/jump data are vector-valued functions, as is the solution u. (We assume here 
that αi > 0 is constant on each phase �i , though extension to variable α or symmetric positive definite-valued α is straight-
forward.) The elliptic operator in this problem arises from the divergence of the viscous stress for a fluid with velocity 
field u; it will have application for multiphase fluid flow in which different phases have different viscosities μ, as well as 
in free surface flow.

Although the problem in (18) does not depend on the coordinate system, it is simplest to derive a discrete form assuming 
a Cartesian coordinate system. Let uk ∈ Vh be the kth component of the vector field u ∈ V d

h . Define qk = Guk to be the weak 
gradient of uk , taking into account the interfacial jump condition [uk] = gi j · ek via the straightforward analogy of (6). 
Let the components of qk be denoted qk,
 , 
 = 1, . . . , d. Furthermore, define the components of the symmetric stress tensor 
σ := α(∇u +∇uᵀ) as σk,
 = α(qk,
 +q
,k). Considering each row σ k of σ as an element of V d

h , we take the weak divergence 
of σ k , taking into account its interfacial jump condition [σ k] = hi j · ek , and set the result equal to f · ek . This leads to the 
following linear system for u ∈ V d

h : solve for u1, . . . , ud ∈ Vh such that, for each 1 ≤ 
 ≤ d,
∑

1≤k≤d

Gᵀ
k MA(Gku
 + G
uk) + τ0 A0u
 +

∑
i> j

τi j Ai ju
 + τD AD u


= Mf · e
 − ( ∑
1≤k≤d

Gᵀ
k MA Jk
(g,gi j)

) + M Jh(h · e
,hi j · e
) +
∑
i> j

τi jai j(gi j · el) + τDaD(g · el),

(19)

where A is the diagonal matrix such that Au = αu and Jk
 = J g,k(g · e
, gi j · e
) + J g,
(g · ek, gi j · ek) is the source term 
depending on the Dirichlet boundary and jump data, appropriately symmetrised as per the definition of σ . Note that, as 
one may expect from (18), the components of the vector field u are coupled. To illustrate, in three dimensions, and ignoring 
the penalty terms, the linear system in (19) has block form⎛

⎜⎝
2Gᵀ

1 MAG1 + Gᵀ
2 MAG2 + Gᵀ

3 MAG3 Gᵀ
2 MAG1 Gᵀ

3 MAG1

Gᵀ
1 MAG2 Gᵀ

1 MAG1 + 2Gᵀ
2 MAG2 + Gᵀ

3 MAG3 Gᵀ
3 MAG2

Gᵀ
1 MAG3 Gᵀ

2 MAG3 Gᵀ
1 MAG1 + Gᵀ

2 MAG2 + 2Gᵀ
3 MAG3

⎞
⎟⎠

×
⎛
⎝u1

u2
u3

⎞
⎠ =

⎛
⎝ · · ·

· · ·
· · ·

⎞
⎠ ,

while the penalty matrices add a diagonal component to this block form. Thus, the solution u ∈ V d
h depends on and couples 

across all components of the interfacial jump data and boundary data. Moreover, the matrix of (19) is symmetric positive 
semidefinite (in fact, it is positive definite if �D is nonempty and the penalty parameters are suitably chosen), and is 
amenable to both multigrid and conjugate gradient methods.

2.3.6. Convergence tests
Thus far, we have considered a local dG discretisation of various elliptic interface problems, suitable for implicitly defined 

meshes and multiphase domains. Each of these methods yield optimal-order accuracy, and this property is demonstrated 
here with a series of grid convergence tests. Three problem types are considered:

(a) Uniform ellipticity coefficient on a curved, four-phase domain and interfaces with triple junctions. This test problem consists of 
solving (1) on the two-dimensional disc � = {x2 + y2 < 1}, with Neumann boundary conditions, �N = ∂�, �D = ∅, with 
a “H” shaped interface defined by a four-phase system, as depicted in Fig. 6. The interfacial jump data, boundary data, 
and right hand side source terms in (1) are defined such that the exact solution is given by u = cos x sin y, u = x2 + y2, 
u = sin x sin y, and u = 1

4 ex+y − 1, for phases A, B, C, and D, respectively.
(b) Two-phase elliptic interface problem, with a large ratio jump in ellipticity coefficient. This test problem consists of solving (16), 

in two and three dimensions:
• In two dimensions, the chosen domain is a square, � = (− 1

2 , 12 ) × (− 1
2 , 12 ), Dirichlet boundary conditions are imposed 

on the bottom face, �D = {y = − 1
2 }, Neumann boundary conditions on the top face, �N = {y = 1

2 }, periodic boundary 
conditions on the left and right side, and the interface is implicitly defined by the zero level set of φ = φ(x, y) =



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.17 (1-36)

R. Saye / Journal of Computational Physics ••• (••••) •••–••• 17
Fig. 6. Results of the grid convergence test problem (a) in §2.3.6. In the specific case of a 16 × 16 background Cartesian grid and p = 4 biquartic elements, 
the computed discrete solution u is a piecewise polynomial function defined on the depicted implicitly defined mesh; the middle-right figure plots the error 
in the discrete solution, which exhibits discontinuities in alignment with the element boundaries. The graph provides the results of the grid convergence 
analysis, showing the maximum-norm error in the discrete solution as a function of typical element size h and order p, comparing against the exact 
solution. Data points represent measured errors, whereas the lines of indicated slope illustrate the observed order of accuracy. × denotes p = 1, • denotes 
p = 2, denotes p = 3, denotes p = 4.

y − 0.1 cos(2πx). The exact solution is chosen to be u = cos 2πx cos 3
2 π y or u = sin 2πx sin 3

2 π y, for phases one and 
two, respectively.

• In three dimensions, the domain is a cube, � = (− 1
2 , 12 )3, Dirichlet boundary conditions are imposed on �D =

{y = − 1
2 }, Neumann boundary conditions on the opposite face, �N = {y = 1

2 }, with periodic boundary conditions 
on all other sides. The interface is defined similarly to the two-dimensional problem, except its amplitude is 
modulated in the z-direction such that φ = y − 0.1(0.6 + 0.4 cos 2π z) cos 2πx. The exact solution is chosen to be 
u = cos 2πx cos 3

2 π y cos 2π z, u = sin 2πx sin 3
2 π y sin 2π z, for phases one and two, respectively.

In both 2D and 3D, phase one has ellipticity coefficient α = 1, whereas phase two has α = 1000; last, the interfacial 
jump data, boundary data, and right hand side source terms in (16) are defined corresponding to the chosen exact 
solution.

(c) Heat operator, vector-valued, elliptic interface problem with phase-dependent coefficients. In this last problem, we consider 
a simple variation of the vector-valued elliptic interface problem in (18), which arises in a backward Euler or Crank–
Nicolson solve for a fluid with phase-dependent density and viscosity, whereby the solution u : � →R

d to the following 
problem is sought:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

βiu − ∇ · (αi(∇u + ∇uᵀ)) = f in �i

[u] = gi j on �i j

[α(∇u + ∇uᵀ)] · n = hi j on �i j

u = g on �D

(α∇u) · n = h on �N .

(20)

Its discretisation is a simple modification of that described in the previous section §2.3.5, involving the addition of 
MB to the diagonal terms of the block form, where B is the diagonal matrix corresponding to the nodal interpolant 
of the phase-dependent coefficient β > 0, here assumed uniformly constant within each phase. The test problem do-
main, interface, and boundary conditions are identical to (b) above. In two dimensions, the exact solution is given 
by u = (u, v), where u = cos 2πx cos 3

2 π y, v = sin 2πx sin 3
2 π y in phase one; u = sin 2πx sin 3

2 π y, v = cos 2πx cos 3
2 π y

in phase two. In three dimensions, the exact solution is given by u = (u, v, w), where u = cos 2πx cos 3
2 π y cos 2π z, 

v = sin 2πx sin 3
2 π y sin 2π z, w = u in phase one; u = sin 2πx sin 3

2 π y sin 2π z, v = cos 2πx cos 3
2 π y cos 2π z, w = u in 

phase two. Last, α1 = 1, α2 = 16, β1 = 1, and β2 = 4.

For each of these problems, a series of grid convergence tests is conducted, wherein the implicit mesh is defined by a 
background uniform Cartesian grid of size 2 × 2 (×2), 4 × 4 (×4), 8 × 8 (×8), etc., and errors in the computed discrete 
solution are measured in the maximum norm; denote by h as the cell size of the grid, and thus also the typical element 
size within the implicitly defined mesh. We consider p = 1, 2, 3, and 4, corresponding to bilinear, biquadratic, bicubic, and 
biquartic polynomials in two dimensions, and trilinear, triquadratic, tricubic, and triquartic polynomials in three dimensions. 
Corresponding to each problem:

(a) Fig. 6 illustrates the mesh in the case of a 16 × 16 background Cartesian grid, showing that implicitly defined meshes 
can also be applied to multiphase systems with triple junctions. Shown also is the computed discrete solution on the 
same mesh, using p = 4 biquartic elements, together with its pointwise error; the error has discontinuities in alignment 
with mesh boundaries, as one may expect in a dG method. The graph collects the results of the grid convergence study 
and shows that the maximum-norm error in the discrete solution is O(hp+1) for all p considered. (Here and in the 



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.18 (1-36)

18 R. Saye / Journal of Computational Physics ••• (••••) •••–•••
Fig. 7. Corresponding to the grid convergence test problem (b) in §2.3.6, in the specific case of a 8 × 8 background Cartesian grid and p = 4 biquartic 
elements, the computed discrete solution u is a piecewise polynomial function on the depicted implicitly defined mesh and is shown together with its 
pointwise error.

Fig. 8. Grid convergence results for test problem (b) in §2.3.6, showing the maximum-norm error in the discrete solution as a function of typical element 
size h and order p, comparing against the exact solution. Data points represent measured errors, whereas the lines of indicated slope illustrate the observed 
order of accuracy. × denotes p = 1, • denotes p = 2, denotes p = 3, denotes p = 4.

following, i.e., in the graphs of Figs. 6, 8, and 9, some data points may appear “missing”; in these cases, corresponding 
to the smallest h and highest p, the error is saturated by double-precision arithmetic errors caused by the numerical 
conditioning of the linear system.)

(b) Fig. 7 and Fig. 8 show the results for test problem (b). The first figure illustrates the mesh and the discrete solution 
for p = 4 corresponding to a background 8 × 8 Cartesian grid, and the second figure graphs the maximum-norm error 
as a function of element size h and order p for the two-dimensional and three-dimensional test cases. Once again, the 
observed order of accuracy is p + 1, which is optimal for the degree p elements considered.

(c) Analogously, Fig. 9 contains the results for test problem (c). The experiments also show that the error in the maximum 
norm has order of accuracy approximately p + 1, in both two and three dimensions.

2.3.7. Projection operators
To conclude this section on LDG methods for elliptic operators on implicit meshes, we consider the discretisation of a 

certain class of projection operators used within incompressible fluid flow. These operators implement the Helmholtz–Hodge 
decomposition to decompose a given vector field m : � → R

d as the sum of a divergence-free vector field and the gradient 
of a scalar field. To uniquely specify the decomposition, one must impose boundary conditions and interfacial jump condi-
tions on each of these parts. We consider here the projection operator P such that u = P(m) returns the divergence-free 
component of m, where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u = m − ∇ϕ in �i

∇ · u = 0 in �i

u · n = un on ∂�

[u · n] = 0 on �i j.

Here, ϕ : � → R is the aforementioned scalar field of the Helmholtz–Hodge decomposition, while un : ∂� → R is a given 
inflow/outflow boundary condition for the normal component of u on ∂�. It follows that ϕ satisfies the elliptic interface 
problem



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.19 (1-36)

R. Saye / Journal of Computational Physics ••• (••••) •••–••• 19
Fig. 9. Results of the grid convergence test problem (c) in §2.3.6. In the specific case of a 8 × 8 background Cartesian grid and p = 4 biquartic elements, 
the computed discrete solution u = (u, v) is a piecewise polynomial function defined on the depicted implicitly defined mesh; the figures plot the discrete 
solution together with its pointwise error. The graphs provide the results of the grid convergence analysis, showing the maximum-norm error in the discrete 
solution as a function of typical element size h and order p, comparing against the exact solution. Data points represent measured errors, whereas the 
lines of indicated slope illustrate the observed order of accuracy. × denotes p = 1, • denotes p = 2, denotes p = 3, denotes p = 4.

⎧⎪⎨
⎪⎩

�ϕ = ∇ · m in �i

∂nϕ = m · n − un on ∂�

[∂nϕ] = [m · n] on �i j .

(21)

Note that this is not yet a well-posed problem for ϕ , as a condition on the interfacial jump [ϕ] is missing: here we take 
for simplicity [ϕ] = 0 on �i j . Appended with this extra condition, (21) uniquely determines ϕ up to a global constant; the 
constant, however, is irrelevant when computing u = m − ∇ϕ .

In applications, it is typically the case that m is given as a piecewise polynomial vector field defined on the implicit 
mesh. It follows that one must calculate its discrete divergence in order to form the right hand side of the linear system 
corresponding to (21). For reasons shortly seen, it is particularly natural to compute ∇ ·m with the same discrete divergence 
operator as defined by the LDG method. Note though, since the interfacial jumps in m are a priori unknown, the jump data 
functional Jh(h, hij) required by (11) must be inferred from m itself. However, note also that precisely the same jump data 
is required to impose the interfacial jump conditions in (21) involving [m ·n]. In effect, these two sources of interfacial jump 
data cancel, and thus, by an appropriate modification to (15), we are left with the following linear system:

[( ∑
1≤k≤d

Gᵀ
k MGk

) + τ0 A0 +
∑
i> j

τi j Ai j

]
ϕ =

∑
1≤k≤d

Gᵀ
k Mmk − M J (un), (22)

where mi ∈ Vh , 1 ≤ i ≤ d, are the components of m, and J (un) ∈ Vh is the lifting of the un boundary data such that ∫
�

J (un)v = ∫
∂�

un v− for all v ∈ Vh . Once (22) is inverted to determine ϕ , the discrete gradient of ϕ is then computed to 
find the projected velocity field u = m − Gϕ . The discrete projection operator Ph : V d

h → V d
h is therefore given by

Ph(m) = m − G
[( ∑

1≤k≤d

Gᵀ
k MGk

) + τ0 A0 +
∑
i> j

τi j Ai j

]−1( ∑
1≤k≤d

Gᵀ
k Mmk − M J (un)

)
.

We note several aspects:

• Computing the discrete divergence of u = Ph(m) = m − Gϕ using (11) and the boundary data for u, one obtains

−
∑

M−1Gᵀ
k Muk + J (un) = −

∑
M−1Gᵀ

k M(mk − Gkϕ) + J (un)
1≤k≤d 1≤k≤d



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.20 (1-36)

20 R. Saye / Journal of Computational Physics ••• (••••) •••–•••
= M−1
(
−

∑
1≤k≤d

Gᵀ
k Mmk + M J (un)

)
+ M−1

∑
1≤k≤d

Gᵀ
k MGkϕ

= −M−1
[
τ0 A0 + τi j

∑
i> j

τi j Ai j

]
ϕ.

Therefore, if the penalty parameters are such that τ0 = τi j = 0, or if ϕ is continuous across intraphase/interphase faces, 
the discrete divergence of u is zero. Hence, ignoring the influence of the penalty parameters, the projection operator 
is discretely idempotent, i.e., PhPh = Ph . As discussed in §2.3.2, it is sometimes necessary to include penalty terms 
to ensure the linear system in (22) is well-posed, which in this context means that the kernel of the linear operator 
consists only of the constant functions. In this work, τ0 = 0 always sufficed, whereas interphase faces only needed a 
small amount of stabilisation, τi j = 0.1. In practice, the computed ϕ is very nearly continuous across all faces, i.e., the 
magnitude of the discontinuity is a small fraction of O(hp+1). Hence, in practice, the discrete projection operator is 
essentially discretely idempotent.

• As remarked above, the discrete projection operator has the convenient property that neither [m · n] on �i j nor m · n
on � need to be computed or provided as source data. Experiments indicate that this property actually increases the 
stability and robustness of projection operators used within the interfacial gauge methods considered later in this work; 
in other words, even if jump conditions on m slowly “drift”, the projected velocity always satisfies [u · n] = 0 (up to 
discretisation errors), which aids in accurately evolving quantities by the fluid velocity u.

• Another interpretation of the Helmholtz–Hodge decomposition, and in particular its discrete implementation, is to find 
a divergence-free vector field u that is closest to m in the L2 norm. To see this, let δ ∈ V d

h be the smallest perturbation 
to m whose discrete divergence (with boundary data un) is zero, i.e., M−1 ∑

k Gᵀ
k M(mk + δk) − J (un) = 0. Using the 

method of Lagrange multipliers, since ‖δ‖2 = ∑
k δ

ᵀ
k Mδk , the problem amounts to minimising the functional (δ, λ) �→

1
2

∑
k δ

ᵀ
k Mδk + (M−1 ∑

k Gᵀ
k M(mk + δk) − J (un))ᵀλ where λ is a vector of length equal to the dimension of Vh . Straight-

forward manipulation shows that the minimum satisfies δk = −Gk M−1λ and 
∑

k Gᵀ
k MGk M−1λ = ∑

k Gᵀ
k Mmk − M J (un). 

Note that, ignoring the penalty terms, this is equivalent to (22), once we identify M−1λ = ϕ and the correction as 
δ = −GM−1λ = −Gϕ . Thus, putting aside the influence of the penalty parameters, one may also view the projection 
operator as an orthogonal projection onto the space of discretely divergence-free vector fields satisfying the boundary 
condition u · n = un .

In general, the order of accuracy of the described discrete projection operator is as follows: assuming m is sufficiently 
smooth, ϕ attains full, optimal-order accuracy of p + 1 in the maximum norm, whereas u attains one order less, i.e., a 
sub-optimal order of accuracy p in the maximum norm. Experiments indicate that the order reduction occurs wherever 
the mesh has non-uniform structure or at the boundary of the domain: for example, within or near curved elements, or 
at the boundaries of different levels of refinement within an adaptively refined quadtree/octree. Conversely, on a uniform 
Cartesian grid with periodic boundary conditions, the projection operator attains full order accuracy in both u and ϕ; this 
result is attributed to the special structure a Cartesian grid has in relation to the purely “one-sided” flux within the discrete 
divergence and gradient operators [55,56]. To demonstrate the order reduction, we consider here a simple grid convergence 
study: the test problem consists of finding the projection of m = (sin 2x cos 2y + yexy, − cos 2x sin 2y + xexy) defined on the 
two-dimensional unit disc � = {x2 + y2 < 1} with boundary data un = (sin 2x cos 2y, − cos 2x sin 2y) · n; the exact solution 
satisfies u = P(m) = (sin 2x cos 2y, − cos 2x sin 2y) and ϕ = exy + C , where C is an arbitrary constant. Fig. 10 illustrates the 
discrete solution and its error in the specific case of an implicit mesh defined by a 16 × 16 background grid with p = 4
biquartic elements; note that the error in u has greatest magnitude near the boundaries of curved elements situated near 
∂�, and has a smaller error in the interior. (The arbitrary constant C in the gauge field is chosen such that the computed 
solution and exact solution have the same mean value 

∫
�

ϕ .) Fig. 11 collects the results of a grid convergence study for this 
problem, using grid sizes ranging from 8 × 8 to 128 × 128 and p = 1, 2, 3, and 4 elements, and shows the maximum-norm 
and L2-norm error in the computed gauge field ϕ and u. In both norms, ϕ attains optimal order accuracy, i.e., p + 1. 
However, in the maximum norm, u has order of accuracy approximately p, and in the L2 norm, order approximately p + 1

2 . 
(Note that the half-order increase in the L2 norm is consistent with there being O(h−1) many boundary elements in which 
the solution is O(hp) accurate, whereas the interior elements have order of accuracy approximately O(hp+1).) Similar 
conclusions hold for three-dimensional meshes as well as multiphase problems with interfaces.

2.4. Geometric multigrid

Before pursuing aspects of implicit mesh dG methods for time-dependent problems, we next consider efficient solution 
algorithms for the elliptic interface problems discussed in §2.3 by designing a set of geometric multigrid methods. When 
used as part of a standard V-cycle, these algorithms preserve the symmetric positive (semi)definite property of the discrete 
problems, allowing V-cycles to be used as a preconditioners for the conjugate gradient method. The combination of multi-
grid preconditioned conjugate gradient algorithm combines the advantages of both solvers: the multigrid preconditioner is 
efficient in the interior of the domain where the elliptic behaviour of the matrix dominates, while the conjugate gradient 



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.21 (1-36)

R. Saye / Journal of Computational Physics ••• (••••) •••–••• 21
Fig. 10. Corresponding to the projection operator convergence study in §2.3.7, the discrete solution is shown in the specific case of an 16 × 16 background 
Cartesian grid and p = 4 biquartic elements. The top row illustrates the computed velocity field u = (u, v) and gauge field ϕ , which are each piecewise 
polynomial functions on the depicted implicitly defined mesh; the bottom row plots the error in the discrete solution, which exhibits discontinuities in 
alignment with the element boundaries.

Fig. 11. Results of a grid convergence analysis for the projection operator showing the maximum-norm and L2-norm error in the computed velocity field u
and gauge field ϕ as a function of element size h and element order p, comparing against the exact (reference) solution. Data points represent measured 
errors, whereas the lines of indicated slope illustrate the observed order of accuracy. × denotes p = 1, • denotes p = 2, denotes p = 3, denotes p = 4.

method effectively treats the remaining eigenmodes associated with imposing boundary conditions and interfacial jump 
conditions. Here we restrict attention to developing an h-multigrid method, i.e., one in which the mesh is coarsened at 
each level. p-multigrid methods are also possible, which hold the mesh fixed and instead coarsen the polynomial space by 
effectively reducing p each level. The latter methods are more efficient when high order dG methods are considered, and 
would likely be of benefit for the implicit mesh framework considered here, however they have not been considered as part 
of this work.

Briefly, the ingredients of a multigrid method are a mesh hierarchy, an interpolation operator to transfer approximate 
solutions from a coarse mesh onto a fine mesh, a restriction operator which helps formulate a coarse mesh correction 
problem by restricting the residual, and a smoother/relaxation method. We consider these first and then combine them 
into a V-cycle suitable for preconditioning the conjugate gradient method. Experimental results indicative of the overall 
convergence efficiency are then shown. It is assumed here that the reader is familiar with multigrid methods; see for 
example [57] for a review of their design and operation.

2.4.1. Mesh hierarchy
Recall that, in a geometric multigrid method applied to a hierarchy of meshes with progressively coarser resolution, the 

role of the coarse mesh problem is to (approximately) solve for a correction in the residual equation of a fine mesh problem. 
In particular, the coarse mesh problem solves an elliptic PDE problem identical to (or perhaps reminiscent of) the elliptic 



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.22 (1-36)

22 R. Saye / Journal of Computational Physics ••• (••••) •••–•••
PDE problem posed on the finest mesh. In the elliptic interface problems considered in this work, we have a choice as to 
whether to include the interfacial geometry on the coarse meshes. For example:

• In the simplest of elliptic interface problems,

−�u = f in � \ �, [u] = g on �, [∂nu] = h on �,

the interfacial jump data g and h is “lifted” into the interior in a way that is essentially equivalent to solving

−�u = f̃ in �, [u] = 0 on �, [∂nu] = 0 on �,

where f̃ is equal to f plus source terms depending on g and h. In this case, because the coarse mesh problem assumes 
homogeneous interfacial jump conditions, it follows that the coarse mesh problem effectively solves a standard Poisson 
problem with uniform ellipticity coefficient. As a result, it is unnecessary for the coarse mesh to sharply represent the 
interface, i.e., the shape of coarse mesh elements can be oblivious to the location of the interface.

• In an elliptic interface problem with a jump in ellipticity coefficient, e.g.,

−∇ · (α∇u) = f in � \ �, [u] = g on �, [α∂nu] = h on �,

where [α] �= 0, for optimal convergence properties it is ideal for the coarse mesh problem to have identical jumps in the 
ellipticity coefficient. In this case, the coarse mesh benefits from being interface conforming, i.e., elements are curved 
and sharply represent the interface.

Regarding the mesh hierarchy, in this work quadtrees/octrees are used to implicitly define the principal (finest) mesh; the 
tree naturally defines a hierarchy which coarsens the mesh by a factor of two in each dimension for each level. In particular, 
when the tree is used to implement adaptive mesh refinement (see §2.6.6), the cell size is not uniform throughout the 
domain. In this case, a variety of strategies could be used; here we consider two possibilities:

• Rapid coarsening – cells within the quadtree/octree are coarsened as rapidly as possible, i.e., the cells of the next-coarsest 
level consist of those nodes in the tree having all children cells members of the current level.

• Height-based – only the smallest cells of each level are coarsened to determine the next level of the hierarchy.

These two strategies are identical when the quadtree/octree is uniformly refined throughout the domain, but have different 
rates of removing degrees of freedom when the refinement is nonuniform.

The combination of the above four choices (two for whether or not implicitly defined coarse meshes are interface con-
forming, two for the coarsening strategy within the quadtree/octree itself) leads to four different possible mesh hierarchies, 
as illustrated by Fig. 12. A few remarks are in order:

• When the coarse meshes depend on the implicitly defined interface, a suitable definition of the level set function φ is 
required for the coarse grids of the quadtree/octree. Note however, whilst a fine mesh may have features in the interface 
with small length scales (e.g., small capillary waves), it is unnecessary for a very coarse mesh to represent the same 
length scales. Thus, one may also coarsen the level set function as one coarsens the mesh. It is unclear, however, what 
the optimal strategy may be in this regard. In this work, φ is defined on the coarse grid cells of the quadtree/octree as 
a piecewise tensor-product polynomial of degree pd , the nodal values of which are interpolated from φ on the finest 
mesh.

• The coarse grid elliptic interface problem is constructed with the same LDG discretisations discussed in §2.3. On each 
mesh, this leads to a block-sparse symmetric positive (semi)definite matrix A.

• On a square/cubic domain, such that coarse meshes ignore interface geometry, one can coarsen the mesh all the way 
to one element covering the whole domain. When the domain has less simple geometry, it may be impractical to 
coarsen to one element; in this case, the hierarchy can be stopped short such that the coarsest mesh is a handful of 
elements, consequently relying more heavily on an efficient bottom solver within a multigrid V-cycle. On a related note, 
when the coarse meshes include interface geometry, it is possible that small phase cells will be encountered that have 
no appropriate neighbours with which to merge. One strategy to handle this issue is to halt the mesh hierarchy as 
soon as the situation arises. However, an alternate, more efficient strategy is to overrule the classification and force any 
such cells encountered to be considered “large”, and continue the mesh hierarchy. Thus, while tiny cells are a significant 
problem in regards to ill-conditioning and time step constraints on the finest mesh, small cells in the coarsest of meshes 
in the multigrid hierarchy do not appear to be a problem.

There are a wide variety of additional factors that play a role in the efficiency of a geometric multigrid method. Here our 
primary focus is on a simple implementation, and as such we forgo additional considerations.

2.4.2. Interpolation operator
The interpolation operator transfers a piecewise polynomial function uc ∈ V 2h(�c) (defined on a coarse mesh) to a 

piecewise polynomial function u f ∈ Vh(� f ) (defined on a fine mesh) via some kind of interpolation. Note that uc may 



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.23 (1-36)

R. Saye / Journal of Computational Physics ••• (••••) •••–••• 23
Fig. 12. Mesh hierarchy possibilities for geometric multigrid, with each row illustrating a different option. Top two rows: coarser levels in the hierarchy are 
oblivious to the location of the interface. Bottom two rows: coarser level meshes are implicitly defined by a coarse representation of the interface. In the 
height-based strategy, only the smallest cells of the current quadtree level are merged to define the next level; in the rapid coarsening strategy, children 
cells of a parent node in the quadtree are merged provided they are all leaf nodes.

be discontinuous across element boundaries, and so one must define an operator appropriately treating this ambiguity; a 
natural approach is to adopt the geometric structure of the quadtree/octree, as follows. To define u f |E f for a fine mesh 
element E f , note that E f has its degrees of freedom associated to a “parent cell” c in the tree (as discussed in §2.2.5). The 
parent P (c) of c in the quadtree/octree hierarchy on the next coarsest level is then found. P (c), whether it is small, large, or 
entire in the nomenclature of the implicit mesh defined on the coarse grid, must necessarily be associated with an element 
Ec on the coarse mesh;7 it is this element which the fine mesh’s element interpolates from, i.e., u f |E f is defined to be 
the same polynomial as uc |Ec . Thus, with the aid of the tree structure of the quadtree/octree background grid, this defines 
an interpolation operator I f

c : V 2h(�c) → Vh(� f ). The operator is linear and has the property that it preserves constant 
functions, i.e., uc ≡ 1 is mapped to u f ≡ 1. This property ensures that, throughout a V-cycle, the coarse mesh discrete 
problems preserves the compatibility condition required in semidefinite elliptic interface problems (having only Neumann 
boundary conditions), as discussed later.

2.4.3. Restriction operator
The restriction operator Rc

f : Vh(� f ) → V 2h(�c) is defined to be the adjoint of the interpolation operator, i.e., such that

(Rc
f u f , uc)�c = (u f , I f

c uc)� f (23)

holds for every u f ∈ Vh(� f ) and every uc ∈ V 2h(�c). Abusing notation and letting I f
c , Rc

f , uc , and u f also denote the 
matrices and vectors relative to the nodal basis of Vh(� f ) and V 2h(�c), (23) implies that

(Rc
f u f )

ᵀMcuc = uᵀ
f M f I f

c uc,

where Mc and M f are the block-diagonal mass matrices of the coarse and fine mesh, respectively. Thus, in the nodal basis,

7 When the coarse levels of the mesh hierarchy are multiphase, i.e., conform to the interface, the coarse mesh element attached to P (c) having the same 
phase as c is used.



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.24 (1-36)

24 R. Saye / Journal of Computational Physics ••• (••••) •••–•••
Algorithm 1 One application of the relaxation/smoothing operator S�(x, b), given a matrix A with blocks Aij and damping 
parameter ω.
1: for each processor p do
2: Let I = (i j)

np

j=1 denote the user-chosen ordering of the np elements owned by processor p.
3: If smoothing operator is called with reverse order, S← , reverse the order of I .
4: Make a local copy of x.
5: for i ∈ I (in order) do
6: Solve for α such that Aiiα = bi − ∑

j �=i Ai j x j .
7: Replace xi ← (1 − ω)xi + ωα.

8: return x as computed by each processor.

Rc
f = M−1

c (I f
c )ᵀM f . (24)

An interpretation of the restriction operator is that it averages elemental polynomials on the fine mesh to determine a coars-
ened piecewise-polynomial representation of u f on the coarse mesh. This averaging automatically handles cases where the 
fine mesh and coarse mesh have different structure (for example, near the interface or domain boundary where different 
cell merging decisions may have taken place, or near boundaries of different resolution in a mesh with adaptive mesh re-
finement). Moreover, the averaging is performed in a way that locally preserves the “mass” of u f : indeed, since I f

c preserves 
constant functions, we have that (Rc

f u f ,1)�c = (u f ,1)� f for all u f ∈ Vh(� f ).

2.4.4. Relaxation
Recall that the LDG discretisation of the elliptic interface problems in §2.3 results in a symmetric positive (semi)defi-

nite block-sparse matrix A, where each nonzero (i, j) block of A represents a dependence between element i and j. For 
the relaxation/smoothing method of multigrid, in this work a block Gauss–Seidel smoother is adopted (in fact, successive 
over-relaxation), considering two possible orderings for Gauss–Seidel:

• Red-black ordering. On a simple uniform Cartesian grid mesh, the LDG discretisation (with one-sided directional fluxes 
as used in §2.3) results in a linear operator with a block red-black property. Thus, one may expect a red-black Gauss–
Seidel method to offer excellent smoothing properties. However, since the implicit meshes used in this work have more 
complicated connectivity near the interface or curved boundary, the corresponding discrete Laplacian does not in gen-
eral have the red-black property. Nevertheless, one may define an ordering based on the colour of the cells in the 
quadtree/octree reminiscent of a red-black ordering.

• Z-ordering. A natural ordering of the elements in an implicit mesh comes from the depth-first traversal of their corre-
sponding parent cells in the quadtree/octree. This results in an ordering similar to the Z-order curve.

We consider two more aspects before defining the relaxation algorithm. First, in order to use a block Gauss–Seidel method, 
the diagonal blocks of the discrete Laplacian must be inverted. One possibility, adopted here, is to precompute a Cholesky 
decomposition of each diagonal block. (The diagonal blocks of a symmetric positive (semi)definite matrix must themselves 
be symmetric positive (semi)definite.) According to experiment, precomputing the Cholesky factorisation of the block-
diagonal matrix has negligible cost compared to the overall multigrid algorithm.

Second, with a view to a simple parallelisation of the multigrid algorithms, the relaxation is mildly damped, thereby 
replacing the Gauss–Seidel scheme with a form of successive over relaxation (SOR), as follows. Except for special cases like 
red-black ordering on a highly structured block domain decomposition (which as previously remarked does not apply to 
implicit meshes), Gauss–Seidel relaxation does not lend itself to a straightforward parallelisation [58]. Instead of adopting 
subtle synchronisation strategies (see, e.g., [59]) consider applying Gauss–Seidel locally to the set of elements on each 
processor, synchronising neighbouring “ghost” elements at the end of each pass (referred to as processor block Gauss–Seidel 
by Adams et al. [58]). Note, however, in the limit of one element per processor, this strategy collapses to a block-Jacobi 
smoother. As an iterative solver, block-Jacobi is not guaranteed to converge; indeed, it often fails to converge for the discrete 
Laplacians considered in this work. On the other hand, damped block-Jacobi converges, provided the damping factor is 
suitably chosen. Thus, to ensure convergence, even in the case that there are multiple elements per processor, we here 
dampen the Gauss–Seidel method according to an SOR scheme.

The resulting relaxation operator is defined in Algorithm 1. A few brief remarks are in order:

• S→ denotes SOR relaxation in which the elements (for each processor p) are visited in a fixed, user-chosen order; S←
denotes SOR relaxation with the reverse ordering. As discussed shortly, the ability to reverse the order is needed when 
designing a symmetric multigrid V-cycle.

• On a uniform Cartesian grid, experiments indicate the difference in efficiency between red-black ordering and Z-
orderings is not significant. (However, this was not extensively tested, and may involve a variety of factors, such as 
damping, cache effects, number of processors, etc.)

• On implicitly defined meshes with curved boundaries and interfaces, the Z-ordering outperformed the red-black order-
ing in all test cases.



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.25 (1-36)

R. Saye / Journal of Computational Physics ••• (••••) •••–••• 25
Algorithm 2 Multigrid V-cycle V (x f , b f ) on fine mesh � f , with ν pre-smoothing and post-smoothing steps (νc in the case 
of the coarsest mesh).
1: if � f is the coarsest mesh then
2: repeat νc times, x f = S→(x f , b f ).
3: repeat νc times, x f = S←(x f , b f ).
4: else
5: repeat ν times, x f = S→(x f , b f ).
6: Restrict and solve correction equation on coarse mesh to compute xc = V

(
0, (I f

c )ᵀ(A f x f − b f )
)
.

7: Interpolate and update x f = x f − I f
c xc .

8: repeat ν times, x f = S←(x f , b f ).

9: return x f .

• In the present work, the SOR parameter is fixed to ω = 0.8. Without parallelisation (i.e., only one processor), ω = 1 is 
optimal; as more processors are added, it is necessary to reduce ω to ensure convergence. A value of 0.8 was found to 
be approximately the largest possible while reliably obtaining convergence independent of the number of processors. At 
this value, convergence efficiency does not appear to be markedly impacted (when coupled to multigrid preconditioned 
conjugate gradient methods), whereas values less than 0.7 tend to slow convergence.

2.4.5. Multigrid preconditioned conjugate gradient
Recall that a geometric multigrid method utilises a combination of relaxation/smoothing together with interpolated ap-

proximate solutions of coarse-grained problems. In the present case, the coarse-grained problem solves for the correction 
in a residual equation for the same elliptic problem except on a coarser mesh. In particular, it is important to note that 
the LDG methods developed in §2.3 operate in the “mass basis”, i.e., instead of solving �hu = f , where �h is the discrete 
Laplacian, one instead solves M�hu = M f , as the latter system is symmetric positive (semi)definite. Thus, to appropriately 
define the coarse mesh problem, one may: (i) calculate the residual of the fine mesh linear system A f x f = b f , (ii) multiply 
the residual by M−1 to correctly determine the residual as a piecewise polynomial function, (iii) restrict the residual to 
the coarse mesh, and then (iv) multiply this residual by M of the coarse mesh. Thus, the coarse mesh problem consists of 
(approximately) solving for xc such that

Acxc = Mc
(

Rc
f

[
M−1

f (A f x f − b f )
])

.

In fact, according to the derived restriction operator (24), this conveniently simplifies to

Acxc = (I f
c )ᵀ(A f x f − b f ),

and so it is unnecessary to multiply by mass matrices in the implementation of the multigrid method; instead, one can 
simply apply the transpose of the interpolation matrix. With this consideration in mind, the design of a multigrid V-cycle is 
relatively straightforward and is outlined in Algorithm 2. We note several important aspects:

• Called from the finest mesh of the hierarchy, with initial guess zero, the V-cycle is linear in its argument b. To use it 
as a preconditioner in a conjugate gradient method, it is necessary for the associated linear operator to be symmetric 
positive semidefinite. To ensure symmetry in particular, it is necessary to reverse the order of elements visited in the 
SOR/Gauss–Seidel algorithm as follows: on travelling down the V-cycle (pre-smoothing), a fixed order is used, i.e., S→; 
on travelling up the V-cycle (post-smoothing), the reversed order is used, i.e., S← . This results in a symmetric operator 
for an arbitrary number of parallel processors and arbitrary domain decomposition. It is outside the scope of this work 
to prove that the resulting V-cycle is indeed symmetric positive (semi)definite, though in practice it always has this 
property.

• The V-cycle consists of ν pre-smoothing and ν post-smoothing steps at each level of the mesh hierarchy. On the coarsest 
mesh of the hierarchy, a variety of options exist for solving A f x f = b f , including applying a direct method, a conjugate 
gradient algorithm, or even setting x f = 0. In this work, νc = 4 smoothing steps are applied, having nearly identical 
convergence rates compared to using an exact solver on the coarsest mesh but with improved efficiency.

• Experiments indicate that ν = 2 or ν = 3 provides the best efficiency when coupled to a preconditioned conjugate 
gradient algorithm. (Note that, although larger ν typically leads to accelerated convergence rates, doing so comes at the 
expense of more smoothing steps and hence more computational effort.) It is noted that the design and implementation 
of the geometric multigrid algorithm is relatively simple; more efficient algorithms may be possible with the aid of more 
sophisticated relaxation methods, W-cycles, F-cycles, attention to memory cache effects, etc., but these aspects are not 
pursued further here. In fact, for p ≥ 3 it is expected that p-multigrid would provide the largest reward in improving 
computational efficiency, as opposed to optimising the described h-multigrid method.

• Recall that, in the case of Neumann boundary conditions, more precisely when �D is empty, the elliptic interface prob-
lems of §2.3 are positive semidefinite, with kernel equal to the space of constant functions. The convergence properties 
of both multigrid and conjugate gradient are unaffected by this zero eigenmode, provided the right hand side satis-
fies the compatibility condition ( f , 1) = 0. Assuming f has mean zero on the finest mesh, it follows that the residual 



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.26 (1-36)

26 R. Saye / Journal of Computational Physics ••• (••••) •••–•••
Fig. 13. Iteration counts for the multigrid-preconditioned conjugate gradient algorithm applied to a variety of elliptic PDE problems, plotting the number 
of iterations required to reduce the norm of the residual by a factor of 1010; in all cases, the initial iterate (i.e., initial guess to the linear system) is the 
zero vector. n denotes the size of the background Cartesian grid used, i.e., n × n in 2D or n × n × n in 3D. The left column corresponds to problem (b) of 
§2.3.6, the middle column corresponds to problem (c), top-right corresponds to problem (a), and bottom-right to the convergence test in §2.3.7. × denotes 
p = 1, • denotes p = 2, denotes p = 3, denotes p = 4. (Data points which appear “missing” correspond to cases in which the conditioning of the linear 
system exceeds the operating limits of the conjugate gradient algorithm in double-precision arithmetic for the 1010 threshold, i.e., the order of magnitude 
of the condition number approximately exceeds 106.)

(for any approximate solution) on the finest mesh also has mean zero. Therefore, since (Rc
f u, 1)�c = (u, 1)� f for all 

u ∈ Vh(� f ), it follows that the coarse mesh problem automatically satisfies the compatibility condition. Applied recur-
sively, the compatibility condition is thus automatically satisfied throughout the V-cycle, which ensures that the V-cycle 
by itself converges and that it can also be used as a preconditioner for conjugate gradient. It is sometimes necessary, 
however, to enforce the compatibility condition discretely due to the accumulation of round-off error—in practice, the 
right hand side f is projected onto the space of mean-zero functions, for the finest mesh of the hierarchy as well as 
the coarsest mesh, but not for any of the levels in between.

It is straightforward to incorporate the V-cycle as a preconditioner in a conjugate gradient method: the resulting algorithm 
is used for all of the elliptic interface problems presented in this work. Generally speaking, the number of steps required 
to reduce the norm of the residual by a constant factor is independent of the number of elements or processor count, 
and thus the solution algorithm has optimal computational complexity. To illustrate, Fig. 13 plots the recorded number of 
iterations—using a threshold of 1010 reduction in the residual norm—for each of the grid convergence studies considered 
in §2.3.6 and §2.3.7. (For problem (a), having uniform ellipticity coefficient, the mesh hierarchy used coarse meshes obliv-
ious to the interface location; for problems (b) and (c), which have jumps in the ellipticity coefficient, coarse meshes are 
interface-conforming.) The results collected in Fig. 13 reflect a variety of trends consistently observed throughout this work: 
elliptic interface problems with larger p require more iterations than those with smaller p; the number of iterations is ap-
proximately independent of the element size h; problems with uniform ellipticity coefficient generally require less iterations 
than those with jumps in the ellipticity coefficient (note, though, test problem (b) had a large factor of 1000 change in the 
ellipticity coefficient, yet the multigrid algorithm retains reasonable efficiency); and 3D problems require more iterations 
than 2D problems. Recall that the presented algorithm is based solely on h-multigrid, i.e., only the mesh is coarsened each 
level. It is quite likely that further improvements could be gained by using p-multigrid strategies in addition to h-multigrid, 
however this is not pursued further in this work.

2.5. Advection

In this section we briefly consider the discretisation of advective terms in conservative form. In the present work, this is 
required in two places: (i) in the advection of the level set function φ by fluid velocity, ∇ · (uφ), and (ii) in the advection 
term of the Navier–Stokes equations, ∇ · (uui), 1 ≤ i ≤ d. In both cases, the velocity field u = (u1, . . . , ud) is assumed to have 
zero divergence.

Let A(u, ψ) denote the discretisation of ∇ · (uψ) for u ∈ V d
h and ψ ∈ Vh . A ∈ Vh is defined weakly such that

∫
A(u,ψ) v = −

∫
ψ u · ∇v +

∫
v (uψ)� · n (25)
E E ∂ E



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.27 (1-36)

R. Saye / Journal of Computational Physics ••• (••••) •••–••• 27
holds for every element E ∈ E and every test function v ∈ Vh . Here, (uψ)� denotes a numerical flux which can take on 
a variety of forms: here, we employ an upwind flux and a (local) Lax–Friedrichs flux. In the following, for simplicity of 
presentation, these fluxes are defined to be vector-valued; however, only the normal component of the flux is used in (25).

For the upwinding flux, consider three cases: internal mesh faces, faces with inflow boundary conditions, and faces with 
outflow boundary conditions. On internal faces (i.e., either an intraphase or interphase face), define (see, e.g., [60])

(uψ)�upwind :=

⎧⎪⎨
⎪⎩

uLψLn if uL > 0 and uL + uR > 0,

uRψR n if uR < 0 and uL + uR < 0,

0 otherwise,

where uL := u− · n, uR := u+ · n, ψL = ψ− , ψR = ψ+ , and n is the unit normal of the face. On outflow boundary faces, 
we define (uψ)� := u−ψ− , and for inflow boundary faces, (uψ)� := u∂ψ∂ , where u∂ and ψ∂ are given boundary conditions 
for u and ψ , respectively (though, only the normal component of u∂ needs definition). For the local Lax–Friedrichs flux, on 
internal faces (i.e., either intraphase or interphase) define

(uψ)�LLF := 1
2 (ψLuL + ψR uR) + C max(|uL · n|, |uR · n|) (ψL − ψR)n,

whereas for inflow and outflow boundary faces, the same values as those employed by the upwind flux are adopted. Here, 
C ≥ 1 is a constant that factors into the evolutionary stability of a scheme which solves, e.g., ψt + ∇ · (uψ) = 0, and in this 
work is set to C = 1.5. Two remarks are in order:

• The Lax–Friedrichs flux is often not the preferred choice when solving a hyperbolic conservation law, as it has a 
comparatively large amount of numerical dissipation. On the other hand, the Lax–Friedrichs flux often introduces less 
discontinuity than other choices of flux, and consequently may be more apt when the advected quantity is expected to 
be smooth. In fact, for the purposes of advecting the level set function, it was found in this work that the Lax–Friedrichs 
flux performed better than alternatives.

• Note that the governing integrals on the right hand side of (25) involve the product of three polynomials in Vh . To avoid 
aliasing errors (a form of variational crime, see, e.g., [28]) it is necessary to compute these integrals with quadrature 
schemes of sufficient accuracy. For rectangular elements and rectangular faces, a tensor-product Gaussian quadrature 
scheme with � 3p+1

2 � points per dimension is used. For all other elements and faces, the precomputed quadrature 
schemes determined as part of the construction of the implicit mesh (see §2.2.2) are re-used. Thus, it is implicitly 
assumed that the corresponding quadrature schemes are sufficiently accurate; this aspect can be controlled with the 
user-chosen parameter q in the algorithms of [29].

2.6. Evolving meshes

We consider now a variety of topics relating to evolving interfaces, and thus evolving meshes. It is conceptually straight-
forward to incorporate an evolving interface into the implicit mesh dG framework: at every time step, the mesh is implicitly 
defined by the background quadtree/octree, together with the evolving level set function. Elements near the interface there-
fore change shape, and so their mass matrices and face integration rules are recomputed every time step. Since the interface 
does not move significantly between one time step and the next, the nodal basis of Vh corresponding to the mesh at one 
time step and the nodal basis of Vh for the mesh at the next time step is, for the most part, identical.8 Consequently, 
the state (fluid velocity, pressure, etc.) can be injected from one mesh into the next, in essentially the same way as an 
Eulerian method; compare this to, e.g., Lagrangian or ALE methods, wherein the degrees of freedom move over time. Note, 
however, evolving element geometry implies changing discrete differential operators. In designing time stepping methods 
for the accurate computation of interface dynamics, one must therefore use the correct discrete operator applied at the ap-
propriate point in time. We return to this topic later when specific applications are considered. In this section, our focus is 
on establishing the essential tools needed for an evolving interface problem, including: (i) choosing how to advect the level 
set function, (ii) considerations relating to computing high-order accurate distance functions, (iii) representing the level set 
function on the quadtree/octree to implicitly define the mesh, (iv) transferring state between one mesh and the next, and, 
last (v) a brief discussion regarding adaptive mesh refinement. In much of the following, for simplicity of presentation, we 
consider multiphase problems with at most two phases, and assume that the interface is implicitly defined by a single level 
set function φ.

2.6.1. Interface evolution
In implicit interface methods, such as the level set method [8,61,62] and the Voronoi implicit interface method [49,63], 

the evolution of the interface is determined by advecting a level set function φ using an appropriately defined extension 
velocity field [61,64]. The chosen velocity field must necessarily impose the correct physical speed of the interface, on the 
interface; elsewhere, it must be appropriately extended. There are two natural choices for the construction:

8 A more precise account of changing mesh topology is given later in §2.6.4.



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.28 (1-36)

28 R. Saye / Journal of Computational Physics ••• (••••) •••–•••
• Extension by adopting the physical velocity field – In this case, φ is advected with the same velocity field as that given by 
the physics (e.g., the Navier–Stokes equations). It is important to note that—since the physical velocity field is usually 
not smooth across the interface, i.e., its higher-order derivatives may exhibit jumps—φ will become non-smooth across 
the interface. For example, in two-phase fluid flow driven by surface tension, in which the two phases have different 
fluid viscosities, the velocity field is continuous across �, but ∇u generally exhibits jumps across �; consequently, φ
will develop jumps in its gradient at the interface, the magnitude of which grows in time.

• Extension by closest point – in this case, one defines an extension velocity field v by v(x, t) := u(cp(x, t), t) and solves the 
advection equation φt + v · ∇φ = 0, where cp(x, t) denotes the closest point to x on the interface at time t . Advection 
by this extension velocity has the property that if φ is a distance function at time t = 0, then it remains a distance 
function for all time [64]. Consequently, the evolving level set function exhibits less shearing than in the first option: in 
many cases, the technique offers improved numerical accuracy, such as in the numerical conservation of mass. Although 
one must construct the velocity field every time step, there are fast methods for doing so [64,65] incurring little com-
putational expense. However, this method also has a strong reliance on being able to accurately interpolate the physical 
velocity at the interface, which means one must also take into account the non-smoothness of the physical velocity 
field.

In choosing one of these techniques for the implicit mesh dG framework, we recall an important aspect of the framework: 
state quantities, such as fluid velocity, are representable to high-order accuracy (assuming they are sufficiently smooth 
on either side of the interface), because the elements of the mesh are interface conforming, i.e., the interface is sharply 
represented. Thus, of the above two options, it is particularly natural to choose the first, wherein the level set function is 
represented as a piecewise polynomial function on the implicitly defined mesh. There are at least two reasons for doing so. 
First, it is natural to solve advection equations in a finite element method when the quantities involved are defined on the 
same mesh. Second, although the physical velocity is computed to high-order accuracy, its pointwise error is usually greatest 
on the curved interphase faces (see, e.g., Fig. 7 of part two [3]). It follows that the method of closest point extension would 
propagate these inaccuracies throughout the domain. On the other hand, advecting a piecewise polynomial level set function 
with the piecewise polynomial physical velocity results in an advection that has a weaker dependence on the accuracy at 
interphase faces. Again, it is emphasised that the resulting advected level set function will generally exhibit jumps in its 
derivatives across the interface, however it can nevertheless be computed with high-order accuracy.

2.6.2. High-order accurate reinitialisation
In theory, one may evolve the level set function using the physical velocity for an arbitrary time interval. However, it 

is often the case that physical currents and boundary effects cause the level set function to undergo a large amount of 
shearing, leading to large gradients and, eventually, decreased numerical accuracy. Thus, in practice, it is often advisable 
to periodically reinitialise the level set function by replacing it with a new function, usually the distance function to the 
interface. Such a reinitialisation procedure is nowadays commonplace in level set methods [61,62].

Here, the high-order accurate algorithm of [65] is adopted to reinitialise the level set function. Briefly, the algorithm 
works by first sampling the zero level set of φ to create a cloud of points on the interface having approximately uniform 
density. These “seed points” are approximately a distance Ch from one another, where 0.1 � C � 0.5 and h is the local 
element size. Then, to compute the closest point on the interface to a given arbitrary point x0 ∈ R

d , one (i) finds the closest 
seed point x to x0 using a k–d tree, and then (ii) improves x by inputting it into Newton’s method to compute the true 
closest point on the interface of the polynomial that locally defines φ. Since the seed point is a good approximation to the 
true closest point, Newton’s method typically converges to machine precision in as few as 2–3 iterations. The open source 
algorithms of [65], which include a k–d tree optimised for codimension-one point clouds, have been implemented in C++ 
and are freely available.

In this application, the level set function being reinitialised is an element of Vh , i.e., piecewise polynomial. To seed the 
point cloud, one can conveniently make use of the already-computed quadrature schemes for interphase faces by reusing 
the associated quadrature nodes to define the seed points. Within Newton’s method, which begins with the closest seed 
point x to a given input x0, the polynomial that implicitly defines the interface must be specified: since we know that x
belongs to an interphase face, we define the required polynomial as the average of the two elemental polynomials defining 
φ on either side of the face. With these implementation details, the algorithm in [65] evaluates a high-order approximation 
to the closest point function, cp : Rd → R

d . In turn, this defines the signed distance function, dφ : Rd → R, defined by 
dφ(x) = ±‖x − cp(x)‖, where the sign is chosen appropriately according to the phase of x. Due to the optimised k–d tree 
and the efficient Newton’s method, experiments show that the computational cost of the algorithm is in practical settings 
insignificant. Moreover, since the computed closest point is (to machine precision) the exact closest point corresponding to 
the given polynomial, it follows that the order of accuracy of dφ is at least p + 1 [65]; for example, one can demonstrate 
sixth order accurate reinitialisation using degree five polynomials.

To reinitialise φ, we replace φ with the L2 projection of dφ , i.e., for each element E ∈ E , we define

φ|E = arg min
u∈Qp(E)

∫
(u − dφ)2,
E



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.29 (1-36)

R. Saye / Journal of Computational Physics ••• (••••) •••–••• 29
Fig. 14. A simplified and exaggerated depiction of the discontinuities introduced in a level set function as a result of advection via dG methods. Three 
square elements are shown, together with the contours of a fictitious level set function on each element; the thick contour represents the zero level set. 
On the right side, a possibly remedy for bridging the gaps in the interface: introduce small interfacial faces aligned with the boundaries of the cells (see 
centre of blue circles). However, such a technique is overly complicated and intricate, especially in three dimensions; it is not employed in this work. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

where, recall, Qp is the space of tensor product polynomials used in the dG method. In practice, for rectangular elements, 
the integral is approximated with a tensor-product Gaussian quadrature with � 3p+1

2 � nodes per dimension; for curved ele-
ments, the precomputed quadrature schemes (see §2.2.2) are reused; in both cases, the L2 minimisation problem amounts 
to a symmetric positive definite linear system for the nodal coefficients of u, which is solved with a Cholesky factorisation 
of the elements mass matrix. In general, for the applications presented in this work involving an evolving level set function, 
reinitialisation is performed about every 100 time steps—a typical period of time by which physical currents near the inter-
face begin to appreciably shear the level set function. Note that, between reinitialisation steps, φ will develop discontinuities 
in the derivative across the interface, yet high-order accuracy is nevertheless attained as previously remarked.

2.6.3. Elemental to cellular conversion of the level set function
Thus far, we have defined the discrete level set function φ ∈ Vh as a piecewise polynomial function to be evolved within 

a dG method. Consequently, note that φ is likely to develop discontinuities (of magnitude comparable to the spatial dis-
cretisation error) across element boundaries as it evolves. These discontinuities, if left unaccounted for, leave “gaps” in the 
implicitly defined interface, as illustrated in Fig. 14. In order to define an implicit mesh using φ, which by construction 
assumed that ∂{φ < 0} ∩ ∂{φ > 0} = �, these gaps should be accounted for; one possibility is to somehow bridge the gaps, 
e.g., by creating small interphase faces that are flat and aligned with the faces of the background quadtree/octree, see, e.g., 
Fig. 14 right. However, this construction leads to an unnecessarily complex and overly complicated implementation, espe-
cially in three dimensions. Another possibility is to, in some sense, leave gaps behind in the interface—however, although 
the gaps are of size equal to the spatial discretisation error and thus very small, experiments indicated the LDG operators 
defined in §2.3 are sensitive to gaps in a way that compromises high-order accuracy. The preceding discussion partly moti-
vates the following design goals: after evolving φ for one or more time steps, for the sole purpose of defining the implicit 
mesh, we would like to:

• Remove the discontinuities in φ (that are introduced by dG advection), in order to provide a well-defined implicit 
description of each phase and each interface;

• Straightforwardly compute the volume fractions for the cell merging procedure;
• Employ the high-order quadrature schemes in [29]—which operate with hyperrectangles and are most efficient when 

applied to polynomial level set functions—to build quadrature schemes for curved elements and non-trivial faces.

All three of these goals can be accomplished by using the high-order accurate distance algorithms discussed in the previous 
section, as follows. For a two-phase system, for each cell in the quadtree/octree, we define a tensor-product polynomial of 
one-dimensional degree p (thus coinciding with the degree of the dG polynomial space), as the nodal interpolant (using 
tensor-product Gauss–Lobatto nodes) of x �→ dφ(x), where dφ is the signed distance function (computed with input φ) as 
defined in the previous section §2.6.2. This algorithm defines a piecewise polynomial function ψ that (i) preserves the 
location of the interface with high-order accuracy, and (ii) is continuous throughout the domain.9 A few remarks are in 
order:

• The piecewise polynomial function φ is referred to as elemental, whereas the piecewise polynomial function ψ is re-
ferred to as cellular. The cellular function converts φ, defined on the implicit mesh, to a function defined on the cells of 
the background quadtree/octree.

• The primary reason for performing the conversion is so that one can construct high-order quadrature schemes for im-
plicitly defined surfaces and volumes. In this work, the algorithms of [29] are used, and these assume that the function 
implicitly defining the geometry is itself smooth. Consequently, one cannot use φ itself (even if its discontinuities across 
mesh faces were removed), as physical currents generally render φ nonsmooth across the interface. Among a variety 

9 Assuming all quadtree/octree cells containing the interface are the same size, the piecewise polynomial nodal interpolant of dφ must necessarily be 
continuous across all such cells. When the quadtree/octree has regions of different refinement levels, in which some parts of the interface exist in large 
cells whilst other parts in small cells, it is possible to define ψ in a way that preserves continuity, though we do not consider this further in this work.



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.30 (1-36)

30 R. Saye / Journal of Computational Physics ••• (••••) •••–•••
of choices for defining a smooth function with a specific zero level set, the signed distance function is particularly 
natural.10

• The cellular level set function does not replace the elemental level set function: ψ is solely used to define the implicit 
mesh at every time step, but φ itself is left unaltered. This prevents errors from accumulating over many time steps.

• In practice, it is unnecessary to define ψ on all cells of the quadtree/octree: instead, one can calculate ψ in a small 
narrow band on either side of the interface. The methods of §2.6.2—in particular, searching for closest seed points 
within a given distance threshold as part of the k–d tree mechanism—easily allow for efficient implementation of a 
narrow banding procedure such as this. Consequently, the computational cost of constructing ψ every time step is 
negligible: for the applications presented in this work, timing measurements indicate that creating ψ is cheaper than 
evaluating curved elemental mass matrices, which, in turn, is significantly cheaper than the solution to various PDE 
problems.

In summary, although at first it may seem undesirable to compute ψ each time step, the combined operation of φ and ψ
yields several advantages, including: (i) one can advect φ by the physical velocity u using high-order accurate dG methods 
that have minimal artificial viscosity/numerical dissipation, (ii) maintain high-order accuracy in defining the implicit mesh 
at every time step, and (iii) increase computational efficiency of the quadrature schemes for implicitly defined surfaces and 
volumes, as they are most efficient when applied to piecewise polynomial functions.

2.6.4. Transferring state between meshes and preserving mesh topology
To summarise the discussion so far on evolving meshes, we have defined how to evolve the interface (by evolving an 

elemental piecewise polynomial function φ) and how to use the discrete level set function to build an implicit function 
(denoted ψ in the previous section) suitable for the construction of the implicit mesh in §2.1. In this section, we consider 
how to incorporate this into a time stepping scheme, focusing on the transference of state (φ, u, etc.) between one mesh 
(at one time step) and the next mesh (at the next time step).

State transference. To illustrate the essential concepts, we consider here a simple first order time stepping scheme, based 
on forward Euler. Specific applications in part two—see [3]—will consider higher-order accurate time stepping schemes. 
Abstractly, the time stepping loop consists of:

1. Define, at t = 0, the initial mesh (denoted �n=0) and thus the piecewise polynomial space V n=0
h .

2. Initialise φ0 ∈ V 0
h at t = 0.

3. For n = 0, 1, 2, . . .
i) Define the velocity un ∈ V d,n

h at time step n.
ii) Compute φn+1 ∈ V n

h such that 1
�t (φ

n+1 − φn) + (un · ∇n
h )φn = 0, where un · ∇n

h denotes the discretisation of the 
advection operator at time step n.

iii) Use φn+1 to build a cellular level set function ψ ; use ψ to define the mesh at the next time step, �n+1, and thus 
the dG space V n+1

h .

iv) Transfer φn+1 ∈ V n
h to the new mesh such that φn+1 ∈ V n+1

h .
v) Loop to top.

Fig. 15 motivates the ideas behind steps (ii)–(iv) with a two-dimensional representative example involving two elements on 
either side of an interface, such that the smoothness of φ on either side is clearly different. Step by step, first note that (3ii) 
computes an updated level set function φn+1 at time step n + 1, but the updated function is nevertheless defined on the 
old mesh. This is important because the regularity (i.e., the smoothness) of the quantities φn and un are aligned with the 
interface at time step n. Thus, un · ∇n

h φn can be computed with high-order spatial accuracy on the mesh at time step n. It 
follows that, using a one-sided Taylor series argument, the interface defined by φn+1 is high-order accurate in space and has 
a temporal local truncation error of size O(�t2). The discrete level set function can thus be used to define the mesh at the 
next time step n + 1.11 Having done so, state quantities, including φn+1 are then “instantaneously” transferred to the new 
mesh. This process is referred to as instantaneous because there is no evolution in transferring φn+1 ∈ V n

h to φn+1 ∈ V n+1
h . 

Instead, this transference is reflective of the fact that the state quantities at time step n + 1 are expected to have their 
smoothness align with the interface at time step n + 1. Fig. 15 illustrates these ideas: one can observe that φn+1 ∈ V n

h is 
not high-order accurate on the old mesh, whereas, on the new mesh, φn+1 ∈ V n+1

h recovers high-order accuracy because its 
smoothness conforms to the new interface location. These concepts apply equally to other quantities of state, such as fluid 

10 More precisely, the signed distance function is smooth except for the set of points which do not have a unique closest point. It is generally assumed 
in this work that the curvature of the interface is resolved, and thus there is at least one cell on both sides of the interface in which the signed distance 
function is smooth.
11 In more detail, φn+1 ∈ V n

h is first converted to a cellular level set function ψ using the method described in §2.6.3. This, in turn, uses the high-order 
accurate distance functions computed by the algorithm in §2.6.2. In that algorithm, the polynomial used to implicitly define the interface is defined by the 
average of the two elemental polynomials on either side of the interface. This average polynomial, which involves a small amount of extrapolation of the 
polynomials of φn+1 ∈ V n

h , is itself smooth, and accurately defines the interface at time step n + 1.



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.31 (1-36)

R. Saye / Journal of Computational Physics ••• (••••) •••–••• 31
Fig. 15. A schematic of the steps comprising the evolution of a level set function φ and the implicitly defined mesh. (a) At time step n, �n separates an 
element in one phase from an element in a different phase. (b) Contours of a level set function φ at time step n; note the change in contour behaviour 
across the interface, illustrating the property that φ may have different smoothness in each phase (e.g., ∇φ may exhibit a discontinuity across �). (c) After 
time stepping φ for one time step (e.g., by forward Euler), φn+1 is, temporarily, defined on the old mesh. The computed interface is accurate, however 
φn+1 develops discontinuities across the (old) interface �n . (d) Using the zero level set of φn+1 ∈ V n

h , a new mesh at time step n + 1 is implicitly defined. 
(e) By copying the polynomial of φn+1 from the old mesh into the new, φn+1 is “injected” into the new mesh with the result that φn+1 ∈ V n+1

h recovers 
high-order spatial accuracy.

Fig. 16. Representative examples of evolving phase cells and element shapes, demonstrated with a biquadratic nodal basis. (a) A rectangular element 
unchanging in shape. (b) A rectangular element changing to an unextended curved element. (c) Unextended to extended curved element, involving the 
creation of a small phase cell. (d) Disappearance of a small phase cell. (e) A large phase cell changing shape. (f) Large and small phase cells changing 
shape, preserving the same cell merging operation. (g) A small phase cell increases in size to become a large phase cell, thereby creating a new element. 
(h) A large phase cell decreases in size to become small, thereby destroying an element. In all cases except for (g, h), the values of the degrees of freedom 
(of un+1 ∈ V n

h ) are directly copied to the new mesh (such that un+1 ∈ V n+1
h ), i.e., the polynomial is copied. In case (g), an element is born, and its degrees 

of freedom are specified by polynomial interpolation. In case (h), an element is destroyed and absorbed into the new element; the polynomial on the new 
element is defined by an L2 projection of the piecewise polynomial defined by the old two elements.

velocity: un+1 ∈ V d,n
h is not high-order accurate, but when transferred to the new mesh, un+1 ∈ V d,n+1

h , recovers high-order 
accuracy.

Consider now how to transfer state defined on an old mesh, �old, to a new mesh, �new. (Here, “state”, denoted u, means 
a quantity like the level set function or velocity field, understood to be valid at a point in time coinciding with �new.) The 
transference operator is defined in two ways: first schematically, by identifying the different ways elements change shape, 
and second, in an equivalent way as a form of L2 projection. Conceptually there are three different possibilities for how the 
elements have evolved (see also Fig. 16, which illustrates a variety of representative cases):

(a) On all elements with unchanged shape, it is clear how to proceed: simply preserve the coefficients in the dG basis, in 
precisely the same way as an Eulerian PDE method. (Note that this operation is equivalent to both nodal interpolation 
and local element-wise L2 projection.)

(b) For all elements that are determined by the same cell-merging procedure, “inject” the polynomial from the old mesh 
element Eold into the new element Enew by preserving its coefficients. This possibility covers the case that an element 
may grow or shrink slightly due to a moving interface, but whose children phase cells (in the nomenclature of §2.2.5) 
remain identical. The injection procedure implies that, for all points x ∈ Enew such that x /∈ Eold, the value of the state 
quantity at x is determined by extrapolating the polynomial on Eold.

(c) For all other elements, a type of L2 projection is used which essentially: (i) creates a new element (with its own set 
of degrees of freedom) whenever a small phase cell on �old increases in size to become a large phase cell on �new, 
and/or (ii) absorbs the degrees of freedom of an element on �old whenever it was associated with a large phase cell 
and subsequently shrunk to a small phase cell on �new. This L2 projection procedure is local and utilises a extrapolation 
similar to (b), and is defined next.

We now state an equivalent mechanism for the transfer operator, covering all of the cases above. Given u ∈ V old
h on the old 

mesh, a piecewise polynomial cellular function uc is defined on the phase cells of the new mesh, as follows. Let Ui ∩ �new
j

denote a nonempty phase cell of the new mesh—we consider three cases:



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.32 (1-36)

32 R. Saye / Journal of Computational Physics ••• (••••) •••–•••
• If Ui ∩ �new
j is entire, then Ui ∩ �old

j on the old mesh must be large or entire. (Throughout this section, we assume that 
the time step �t is a sufficiently small fraction of the CFL condition, and thus, the interface cannot move more than 
25%, say, across a cell in a single time step.) We define uc on Ui ∩ �new

j as the polynomial coinciding with u restricted 
to Ui ∩ �old

j .

• If Ui ∩ �new
j is large, then Ui ∩ �old

j on the old mesh is either small, large, or entire. Again, we define uc on Ui ∩ �new
j

as the polynomial coinciding with u restricted to Ui ∩ �old
j .

• If Ui ∩ �new
j is small, then Ui ∩ �old

j on the old mesh is either empty, small, or large.

– If Ui ∩ �old
j on the old mesh is small or large, we again define uc on Ui ∩ �new

j as the polynomial coinciding with u

restricted to Ui ∩ �old
j .

– On the other hand, if Ui ∩ �old
j on the old mesh is empty, then we are in a situation where a small phase cell (on the 

new mesh) is “born.” This new small phase cell has already been merged with a large/entire phase cell on the new 
mesh (denoted Uk ∩ �new

j ). Because the interface is assumed to only move a maximum fraction of each cell in each 
time step, it must be the case that Uk ∩ �old

j must be nonempty on the old mesh. We define in this scenario uc on 
Ui ∩ �new

j to be the polynomial extrapolation of u restricted to Uk ∩ �old
j .

With the cellular function uc in hand, we define u on the new mesh �new to be the L2 projection of uc . Specifically, for 
every element E of �new, E is the union of a large/entire phase cell, plus zero or more small phase cells, E = ⋃

i∈I Ui ∩
�χ(E) , and so

u|E = arg min
p∈P

∑
i∈I

∫
Ui∩�new

χ(E)

(p − uc)
2,

where P is the space of tensor product polynomials employed by the dG method. The solution of this optimisation problem 
is straightforward: briefly, it consists of finding u|E such that (

∑
i∈I Mi)u|E = ∑

i∈I Miuc,i , where Mi is the mass matrix for 
the phase cell Ui ∩ �new

χ(E) relative to the nodal basis of E and uc,i is the restriction of uc to Ui ∩ �new
χ(E) in the nodal basis of 

E; the resulting linear system is symmetric positive definite and can be solved via Cholesky factorisation.
The above construction effectively absorbs degrees of freedom from the old mesh whenever a large phase cell changes 

to a small phase cell (see, e.g., Fig. 16h), and creates degrees of freedom on the new mesh whenever a small phase cell 
grows in size to become a large phase cell (see, e.g., Fig. 16g). Although the description defines the transfer operator in full 
generality, in practice it is unnecessary to build uc globally, nor perform the L2 projection for every element: for the vast 
majority of elements and time steps, situations (a) and (b) above apply and it is simple to copy/inject the polynomials from 
one mesh to the next; when situation (c) occurs, the function uc can be built locally and the local L2 projection efficiently 
computed.

Preserving mesh topology. To conclude the discussion on remeshing, we consider a simple improvement to the cell 
merging algorithm used in the construction of implicitly defined meshes. The modification minimises errors introduced by 
state transference, increases remeshing efficiency, and forms a key component in accurately computing temporal derivatives 
within the interfacial gauge methods considered in part two [3].

As motivation, note that the state transfer operator is particularly simple when there is a one-to-one correspondence 
between elements on the old mesh and those on the new. Specifically, when only situation (a) or (b) above occurs, there 
is natural mapping from u ∈ V old

h to u ∈ V new
h which essentially leaves the degrees of freedoms unaltered. Thus, it would 

be beneficial to maximise the chances of this event, and this can be achieved by utilising “fuzzy” thresholds in the cell 
merging procedure of §2.1. To illustrate, consider a case where, for example, a phase cell has a volume fraction of 39% at 
one time step and 41% at the next. If a hard threshold of 40% (as used in §2.1) is used, then the two time steps would 
involve different cell merging procedures. However, the phase cell is essentially the same for both time steps, and so in this 
regard a hard threshold is unnecessary. In constructing the new mesh, one can instead classify (as small or large) the new 
phase cell in the same way as the corresponding phase cell on the old mesh, and identify when doing so is inadvisable (i.e., 
the interface has moved too far) with a fuzzy threshold. Specifically, let θ = |Ui ∩ �new

j |/|Ui | denote the volume fraction of 
the new phase cell, then:

• If the old phase cell is small and θ > 0, then mark the new phase cell as small. If θ > 0.45, then set a flag to true.
• If the old phase cell is large and θ ≤ 0.4, then mark the new phase cell as large. If θ < 0.35, then set a flag to true.

In addition, in assigning small phase cells to parent phase cells as part of the cell merging procedure, when possible, the 
small phase cells of the new mesh are assigned to the same parents as were used on the old mesh. Combined, these 
alterations redefine the construction of the implicit mesh in §2.1 by forcing the cell classifications to be almost12 the same. 

12 Large cells are permitted to change to entire cells and vice versa, while small cells are permitted to appear and disappear.



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.33 (1-36)

R. Saye / Journal of Computational Physics ••• (••••) •••–••• 33
Consequently, a one-to-one correspondence exists between elements on the old mesh and the new. And, except for the 
creation or destruction of small interphase/intraphase faces associated with the emergence or disappearance of small cells, 
the topology of the two meshes is the same (i.e., the topology of the graph with elements representing nodes and faces 
between elements representing edges). This procedure of using fuzzy thresholds—to match the construction of an implicit 
mesh with an existing mesh—is referred to as “preserving the mesh topology.”

The role of the flag in the above is to ascertain whether the interface has moved too far, e.g., a small phase cell really 
should be classified as large, and vice versa. (In the above, this is controlled with a ±0.05 threshold, a user-chosen parameter 
of reasonable size so as to be neither too strict nor too relaxed.) This flag is used to trigger a remeshing operation in which 
the new implicitly defined mesh is constructed without any knowledge of an existing mesh, i.e., a 40% volume fraction 
threshold is used throughout. The applications in part two—see [3]—describe further how this trigger is used.

For the vast majority of time steps, the topology of the mesh can be preserved in this way. Thus, the L2 projection 
procedure described previously is, on the whole, executed relatively infrequently. This minimises errors associated with 
the L2 projection (which themselves are uncorrelated with �t) from accumulating unnecessarily often. For example, the 
procedure automatically stabilises cases in which cell volume fractions oscillate between slightly less than 40% and slightly 
greater than 40%, without having to frequently create and destroy elements in the process.

Summary. In this section, we discussed and defined operators which transfer state between evolving meshes in a time 
stepping algorithm. A simple modification to the construction of implicitly defined meshes, using fuzzy thresholds, allows 
the state to be transferred very simply, as frequently as possible, i.e., by copying the nodal values of the piecewise poly-
nomial functions. In this way, the remeshing procedure and time stepping methods are essentially Eulerian in character 
(compared to, say, Lagrangian). The Eulerian formulation provides a variety of advantages, including benefiting from the 
regularisation properties of level set methods [8], relatively simple time stepping algorithms, and straightforward calcula-
tion of temporal derivatives, ∂

∂t , as seen in the applications considered in part two [3].

2.6.5. Briefly on conservation properties
In the context of evolving interface problems, the described implicit mesh dG framework is not, in general, conservative. 

In other words, if the governing physical equations of motion conserve some quantity such as mass or momentum, the same 
quantity in the discrete setting may not be exactly conserved by the discrete method. There are two main causes for this. 
First, for problems in which one may expect conservation of volume of each phase (e.g., in incompressible multiphase fluid 
flow), neither the evolution of the level set function φ (§2.6.1) nor the element-to-cellular conversion of φ to ψ (§2.6.3) is 
expected to conserve the volume of each phase to machine precision. Second, owing to the polynomial injection operation 
in the state transference procedure (§2.6.4), transferring state between one mesh and the next involves a small amount 
of extrapolation of polynomial field values whenever an element grows in size. Thus, conservation of discrete quantities 
is unlikely to hold in practice for moving interface problems. Nevertheless, note that these discrepancies in conservation 
generally relate to high-order spatial truncation errors. Note also that these observations apply only to that part of the mesh 
with changing element shape—for a static implicit mesh, or away from a moving interface, the usual conservation properties 
of dG methods hold, e.g., quantities evolved by a hyperbolic conservation law are conserved locally by the discrete method.

Notwithstanding the above, it is important to note the implicit mesh dG methodology nevertheless recovers conserved 
quantities to high-order accuracy whenever the dynamics are sufficiently resolved. For example, a two-phase surface tension 
dynamics example considered in part two [3]—which considers a soap bubble oscillation problem on a moderately refined 
mesh, with a Reynolds number in the tens of thousands, and makes no attempt to conserve mass of the gas inside and 
outside the bubble in the discrete setting—conserves mass to one part in 8000. Under-resolved cases, e.g., dispersal of 
liquid droplets with diameter comparable to or smaller than the typical element size, are not considered as part of the 
present work. In under-resolved cases, the construction of the implicit mesh and the transference of state may need to be 
augmented with other strategies to assist with any desired conservation properties; possibilities may include, for example, 
adopting ideas from volume of fluid methods [13], which can conserve fluid mass to machine precision, to develop a hybrid 
interface tracking algorithm, see, e.g., [66,67].

2.6.6. Adaptive mesh refinement
To conclude the development of the implicit mesh dG framework, we briefly discuss the possibility of adaptive mesh 

refinement (AMR). Owing to the flexibility discontinuous Galerkin methods have in using unstructured meshes, it is rela-
tively straightforward to implement a form of AMR within implicitly defined meshes, essentially by refining the background 
quadtree/octree. In this work, sophisticated refinement strategies based on locally computed error metrics have not been 
considered; instead, either (i) no refinement, (ii) static, “hand-crafted” refinement, or (iii) refinement based on proximity 
to the evolving interface is used. In each case, the background quadtree/octree is refined based on a length scale function 
h : � →R, such that cells within the quadtree/octree halt subdivision as soon as their width is smaller than h(xc )h0, where 
xc is the centroid of the cell and the constant h0 is a user-supplied length scale. In case (i), h ≡ 1; in case (ii), h varies in 
space but is fixed throughout the computation, and in case (iii), h is periodically updated as a function of the distance to 
the interface. For an example, see Fig. 13 of part two [3]. After adaptively refining the background quadtree/octree, the cell 
merging procedure and thus the construction of the implicit mesh proceeds unaltered. In particular, we make note of one 
aspect: if the quadtree/octree refinement is such that one part of the interface has small cells (denoted region “A” in the 
following), whereas other parts of the interface have larger cells (region “B”), then the mesh will change grade somewhere 



JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.34 (1-36)

34 R. Saye / Journal of Computational Physics ••• (••••) •••–•••
on the interface; with ad hoc merging strategies, the cell merging procedure may produce unideal results, as small phase 
cells from region B could be merged with large phase cells in region A in such a way that highly skewed elements are 
formed. A simple strategy—whereby small phase cells (from any region) are merged with neighbouring phase cells based on 
the largest volume fraction (i.e., |Ui ∩ � j |/|Ui |)—avoids this issue and results in more ideal element shapes. This strategy, 
being based on volume fractions rather than the volume of each phase cell, is that which is already described by the algo-
rithms detailed in §2.1. More sophisticated cell merging strategies may be possible, particularly in the case of a mesh with 
rapidly varying levels of refinement, however this is not pursued further here; see also, e.g., [1,30,31] for considerations of 
other cell merging procedures.

3. Interim remarks

In the presentation so far, we have discussed an implicit mesh dG framework based around the idea of an implicitly 
defined mesh, having in mind the goal of computing high-order accurate interface dynamics. In the second part of this 
work—see [3]—the framework is applied to a collection of fluid dynamics problems, ranging from single phase flow to mul-
tiphase flow, rigid body fluid–structure interaction, and free surface flow. For each of these applications, the equations of 
motion are stated, suitable time stepping methods are designed, and convergence analyses are performed to verify high-
order accuracy. Part two also discusses how to adapt the implicit mesh dG framework to axisymmetric modelling, and 
concludes with a summary of the main ideas underlying the methodologies developed in the present paper as well as part 
two.

Acknowledgements

I thank Per-Olof Persson for many interesting discussions regarding the design of discontinuous Galerkin methods, and 
in particular, for initially pointing out that among a variety of possible discretisations of elliptic PDE problems, the local 
discontinuous Galerkin method combined with one-sided numerical fluxes (as used in this work) has the useful property 
that the projection operator is discretely idempotent (ignoring penalty parameters). This research was supported by a Luis 
W. Alvarez Postdoctoral Fellowship at Lawrence Berkeley National Laboratory, the Laboratory Directed Research and Devel-
opment Program of LBNL, and by the Applied Mathematics Program of the U.S. DOE Office of Advanced Scientific Computing 
Research under contract number DE-AC02-05CH11231. Some computations used resources of the National Energy Research 
Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department 
of Energy under Contract No. DE-AC02-05CH11231.

References

[1] A. Johansson, M.G. Larson, A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary, Numer. Math. 123 (4) 
(2013) 607–628, http://dx.doi.org/10.1007/s00211-012-0497-1.

[2] R. Saye, Interfacial gauge methods for incompressible fluid dynamics, Sci. Adv. 2 (6) (2016), http://dx.doi.org/10.1126/sciadv.1501869.
[3] R. Saye, Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with 

applications to surface tension dynamics, rigid body fluid–structure interaction, and free surface flow: Part II, J. Comput. Phys. (2017), 
http://dx.doi.org/10.1016/j.jcp.2017.05.003.

[4] C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479–517, http://dx.doi.org/10.1017/S0962492902000077.
[5] R. Mittal, G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech. 37 (2005) 239–261, http://dx.doi.org/10.1146/annurev.fluid.37.061903.

175743.
[6] R.J. LeVeque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 

31 (4) (1994) 1019–1044, http://dx.doi.org/10.1137/0731054.
[7] Z. Li, K. Ito, The Immersed Interface Method: Numerical Solutions of PDES Involving Interfaces and Irregular Domains, Society for Industrial and Applied 

Mathematics, 2006.
[8] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys. 79 (1) 

(1988) 12–49, http://dx.doi.org/10.1016/0021-9991(88)90002-2.
[9] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (2) (1992) 335–354, http://dx.doi.org/

10.1016/0021-9991(92)90240-Y.
[10] M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys. 114 (1) (1994) 

146–159, http://dx.doi.org/10.1006/jcph.1994.1155.
[11] J.A. Sethian, P. Smereka, Level set methods for fluid interfaces, Annu. Rev. Fluid Mech. 35 (2003) 341–372, http://dx.doi.org/10.1146/annurev.fluid.

35.101101.161105.
[12] R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method), J. 

Comput. Phys. 152 (2) (1999) 457–492, http://dx.doi.org/10.1006/jcph.1999.6236.
[13] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1981) 201–225, http://dx.doi.org/

10.1016/0021-9991(81)90145-5.
[14] V.-T. Nguyen, J. Peraire, B.C. Khoo, P.-O. Persson, A discontinuous Galerkin front tracking method for two-phase flows with surface tension, Comput. 

Fluids 39 (1) (2010) 1–14, http://dx.doi.org/10.1016/j.compfluid.2009.06.007.
[15] N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng. 46 (1) (1999) 131–150, 

http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J.
[16] F. Alauzet, B. Fabrèges, M.A. Fernández, M. Landajuela, Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures, 

Comput. Methods Appl. Mech. Eng. 301 (2016) 300–335, http://dx.doi.org/10.1016/j.cma.2015.12.015.
[17] A.J. Lew, G.C. Buscaglia, A discontinuous-Galerkin-based immersed boundary method, Int. J. Numer. Methods Eng. 76 (4) (2008) 427–454, http://

dx.doi.org/10.1002/nme.2312.

http://dx.doi.org/10.1007/s00211-012-0497-1
http://dx.doi.org/10.1126/sciadv.1501869
http://dx.doi.org/10.1016/j.jcp.2017.05.003
http://dx.doi.org/10.1017/S0962492902000077
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175743
http://dx.doi.org/10.1137/0731054
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib4C6949746Fs1
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib4C6949746Fs1
http://dx.doi.org/10.1016/0021-9991(88)90002-2
http://dx.doi.org/10.1016/0021-9991(92)90240-Y
http://dx.doi.org/10.1006/jcph.1994.1155
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161105
http://dx.doi.org/10.1006/jcph.1999.6236
http://dx.doi.org/10.1016/0021-9991(81)90145-5
http://dx.doi.org/10.1016/j.compfluid.2009.06.007
http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
http://dx.doi.org/10.1016/j.cma.2015.12.015
http://dx.doi.org/10.1002/nme.2312
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175743
http://dx.doi.org/10.1016/0021-9991(92)90240-Y
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161105
http://dx.doi.org/10.1016/0021-9991(81)90145-5
http://dx.doi.org/10.1002/nme.2312


JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.35 (1-36)

R. Saye / Journal of Computational Physics ••• (••••) •••–••• 35
[18] P. Bastian, C. Engwer, An unfitted finite element method using discontinuous Galerkin, Int. J. Numer. Methods Eng. 79 (12) (2009) 1557–1576, http://
dx.doi.org/10.1002/nme.2631.

[19] F. Heimann, C. Engwer, O. Ippisch, P. Bastian, An unfitted interior penalty discontinuous Galerkin method for incompressible Navier–Stokes two-phase 
flow, Int. J. Numer. Methods Fluids 71 (3) (2013) 269–293, http://dx.doi.org/10.1002/fld.3653.

[20] D. Devendran, D.T. Graves, H. Johansen, A higher-order finite-volume discretization method for Poisson’s equation in cut cell geometries, ArXiv e-prints, 
Nov. 2014, arXiv:1411.4283.

[21] B. Muralidharan, S. Menon, A high-order adaptive Cartesian cut-cell method for simulation of compressible viscous flow over immersed bodies, J. 
Comput. Phys. 321 (2016) 342–368, http://dx.doi.org/10.1016/j.jcp.2016.05.050.

[22] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen 
sind, Abh. Math. Semin. Univ. Hamb. 36 (1) (1971) 9–15, http://dx.doi.org/10.1007/BF02995904.

[23] S. Sticko, G. Kreiss, A stabilized Nitsche cut element method for the wave equation, Comput. Methods Appl. Mech. Eng. 309 (2016) 364–387, http://
dx.doi.org/10.1016/j.cma.2016.06.001.

[24] E. Burman, P. Hansbo, M.G. Larson, A. Massing, A cut discontinuous Galerkin method for the Laplace–Beltrami operator, IMA J. Numer. Anal. 37 (1) 
(2017) 138–169, http://dx.doi.org/10.1093/imanum/drv068.

[25] P. Hansbo, M.G. Larson, S. Zahedi, A cut finite element method for a Stokes interface problem, Appl. Numer. Math. 85 (2014) 90–114, http://dx.doi.org/
10.1016/j.apnum.2014.06.009.

[26] A. Johansson, M. Garzon, J.A. Sethian, A three-dimensional coupled Nitsche and level set method for electrohydrodynamic potential flows in moving 
domains, J. Comput. Phys. 309 (2016) 88–111, http://dx.doi.org/10.1016/j.jcp.2015.12.026.

[27] E. Burman, S. Claus, P. Hansbo, M.G. Larson, A. Massing, CutFEM: discretizing geometry and partial differential equations, Int. J. Numer. Methods Eng. 
104 (7) (2015) 472–501, http://dx.doi.org/10.1002/nme.4823.

[28] J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer, 2008.
[29] R.I. Saye, High-order quadrature methods for implicitly defined surfaces and volumes in hyperrectangles, SIAM J. Sci. Comput. 37 (2) (2015) 

A993–A1019, http://dx.doi.org/10.1137/140966290.
[30] J. Hunt, An Adaptive 3D Cartesian Approach for the Parallel Computation of Inviscid Flow About Static and Dynamic Configurations, PhD thesis, 

University of Michigan, 2004.
[31] A. Fröhlcke, A Boundary Conformal Discontinuous Galerkin Method for Electromagnetic Field Problems on Cartesian Grids, PhD thesis, Technische 

Universität, Darmstadt, 2013.
[32] B. Müller, S. Krämer-Eis, F. Kummer, M. Oberlack, A high-order discontinuous Galerkin method for compressible flows with immersed boundaries, Int. 

J. Numer. Methods Eng. 110 (1) (2017) 3–30, http://dx.doi.org/10.1002/nme.5343.
[33] G. Brandstetter, S. Govindjee, A high-order immersed boundary discontinuous-Galerkin method for Poisson’s equation with discontinuous coefficients 

and singular sources, Int. J. Numer. Methods Eng. 101 (11) (2015) 847–869, http://dx.doi.org/10.1002/nme.4835.
[34] F. Kummer, Extended discontinuous Galerkin methods for two-phase flows: the spatial discretization, Int. J. Numer. Methods Eng. 109 (2) (2017) 

259–289, http://dx.doi.org/10.1002/nme.5288.
[35] B. Müller, F. Kummer, M. Oberlack, Highly accurate surface and volume integration on implicit domains by means of moment-fitting, Int. J. Numer. 

Methods Eng. 96 (8) (2013) 512–528, http://dx.doi.org/10.1002/nme.4569.
[36] P.F. Antonietti, A. Cangiani, J. Collis, Z. Dong, E.H. Georgoulis, S. Giani, P. Houston, Review of discontinuous Galerkin finite element methods for partial 

differential equations on complicated domains, in: Lecture Notes in Computational Science and Engineering, Springer-Verlag, Berlin, Heidelberg, 2015, 
pp. 1–28.

[37] A.J. Chorin, Numerical solution of the Navier–Stokes equations, Math. Comput. 22 (104) (1968) 745–762, http://dx.doi.org/10.1090/S0025-5718-
1968-0242392-2.

[38] D.L. Brown, R. Cortez, M.L. Minion, Accurate projection methods for the incompressible Navier–Stokes equations, J. Comput. Phys. 168 (2) (2001) 
464–499, http://dx.doi.org/10.1006/jcph.2001.6715.

[39] J. Kim, P. Moin, Application of a fractional-step method to incompressible Navier–Stokes equations, J. Comput. Phys. 59 (2) (1985) 308–323, http://
dx.doi.org/10.1016/0021-9991(85)90148-2.

[40] J.L. Guermond, P. Minev, J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng. 195 (2006) 
6011–6045, http://dx.doi.org/10.1016/j.cma.2005.10.010.

[41] J.-G. Liu, J. Liu, R.L. Pego, Stable and accurate pressure approximation for unsteady incompressible viscous flow, J. Comput. Phys. 229 (9) (2010) 
3428–3453, http://dx.doi.org/10.1016/j.jcp.2010.01.010.

[42] M.L. Minion, Semi-implicit projection methods for incompressible flow based on spectral deferred corrections, Appl. Numer. Math. 48 (2004) 369–387, 
http://dx.doi.org/10.1016/j.apnum.2003.11.005.

[43] S.Y. Kadioglu, R. Klein, M.L. Minion, A fourth-order auxiliary variable projection method for zero-Mach number gas dynamics, J. Comput. Phys. 227 (3) 
(2008) 2012–2043, http://dx.doi.org/10.1016/j.jcp.2007.10.008.

[44] A.S. Almgren, A.J. Aspden, J.B. Bell, M.L. Minion, On the use of higher-order projection methods for incompressible turbulent flow, SIAM J. Sci. Comput. 
35 (1) (2013) B25–B42, http://dx.doi.org/10.1137/110829386.

[45] M.M. Francois, S.J. Cummins, E.D. Dendy, D.B. Kothe, J.M. Sicilian, M.W. Williams, A balanced-force algorithm for continuous and sharp interfacial 
surface tension models within a volume tracking framework, J. Comput. Phys. 213 (1) (2006) 141–173, http://dx.doi.org/10.1016/j.jcp.2005.08.004.

[46] M. Herrmann, A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids, J. Comput. Phys. 227 (4) (2008) 
2674–2706, http://dx.doi.org/10.1016/j.jcp.2007.11.002.

[47] V.I. Oseledets. On a new way of writing the Navier–Stokes equation. The Hamiltonian formalism. Russ. Math. Surv. 44 (3) (1989) 210–211 [translated 
from Comm. Moscow Math. Soc. 1988]. http://dx.doi.org/10.1070/RM1989v044n03ABEH002122.

[48] P.H. Roberts, A Hamiltonian theory for weakly interacting vortices, Mathematika 19 (2) (1972) 169–179, http://dx.doi.org/10.1112/S0025579300005611.
[49] R.I. Saye, J.A. Sethian, The Voronoi implicit interface method for computing multiphase physics, Proc. Natl. Acad. Sci. USA 108 (49) (2011) 19498–19503, 

http://dx.doi.org/10.1073/pnas.1111557108.
[50] W.E. Lorensen, H.E. Cline, Marching cubes: a high resolution 3D surface construction algorithm, Comput. Graph. 21 (4) (1987) 163–169, http://

dx.doi.org/10.1145/37402.37422.
[51] A. Guéziec, R. Hummel, Exploiting triangulated surface extraction using tetrahedral decomposition, IEEE Trans. Vis. Comput. Graph. 1 (4) (1995) 

328–342, http://dx.doi.org/10.1109/2945.485620.
[52] B.A. Payne, A.W. Toga, Surface mapping brain function on 3D models, IEEE Comput. Graph. Appl. 10 (5) (1990) 33–41, http://dx.doi.org/10.1109/38.

59034.
[53] S.L. Chan, E.O. Purisima, A new tetrahedral tesselation scheme for isosurface generation, Comput. Graph. 22 (1) (1998) 83–90, http://dx.doi.org/10.1016/

S0097-8493(97)00085-X.
[54] D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (5) 

(2002) 1749–1779, http://dx.doi.org/10.1137/S0036142901384162.
[55] P. Castillo, An optimal estimate for the local discontinuous Galerkin method, in: B. Cockburn, G.E. Karniadakis, C.-W. Shu (Eds.), Discontinuous Galerkin 

Methods: Theory, Computation and Applications, Springer, Berlin, Heidelberg, 2000, pp. 285–290.

http://dx.doi.org/10.1002/nme.2631
http://dx.doi.org/10.1002/fld.3653
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib446576656E6472616E4772617665734A6F68616E73656Es1
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib446576656E6472616E4772617665734A6F68616E73656Es1
http://dx.doi.org/10.1016/j.jcp.2016.05.050
http://dx.doi.org/10.1007/BF02995904
http://dx.doi.org/10.1016/j.cma.2016.06.001
http://dx.doi.org/10.1093/imanum/drv068
http://dx.doi.org/10.1016/j.apnum.2014.06.009
http://dx.doi.org/10.1016/j.jcp.2015.12.026
http://dx.doi.org/10.1002/nme.4823
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib48657374686176656E576172627572746F6Es1
http://dx.doi.org/10.1137/140966290
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib48756E74546865736973s1
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib48756E74546865736973s1
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib46726F686C636B65s1
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib46726F686C636B65s1
http://dx.doi.org/10.1002/nme.5343
http://dx.doi.org/10.1002/nme.4835
http://dx.doi.org/10.1002/nme.5288
http://dx.doi.org/10.1002/nme.4569
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib523336s1
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib523336s1
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib523336s1
http://dx.doi.org/10.1090/S0025-5718-1968-0242392-2
http://dx.doi.org/10.1006/jcph.2001.6715
http://dx.doi.org/10.1016/0021-9991(85)90148-2
http://dx.doi.org/10.1016/j.cma.2005.10.010
http://dx.doi.org/10.1016/j.jcp.2010.01.010
http://dx.doi.org/10.1016/j.apnum.2003.11.005
http://dx.doi.org/10.1016/j.jcp.2007.10.008
http://dx.doi.org/10.1137/110829386
http://dx.doi.org/10.1016/j.jcp.2005.08.004
http://dx.doi.org/10.1016/j.jcp.2007.11.002
http://dx.doi.org/10.1070/RM1989v044n03ABEH002122
http://dx.doi.org/10.1112/S0025579300005611
http://dx.doi.org/10.1073/pnas.1111557108
http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/10.1109/2945.485620
http://dx.doi.org/10.1109/38.59034
http://dx.doi.org/10.1016/S0097-8493(97)00085-X
http://dx.doi.org/10.1137/S0036142901384162
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib43617374696C6C6F32303030s1
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib43617374696C6C6F32303030s1
http://dx.doi.org/10.1002/nme.2631
http://dx.doi.org/10.1016/j.cma.2016.06.001
http://dx.doi.org/10.1016/j.apnum.2014.06.009
http://dx.doi.org/10.1090/S0025-5718-1968-0242392-2
http://dx.doi.org/10.1016/0021-9991(85)90148-2
http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/10.1109/38.59034
http://dx.doi.org/10.1016/S0097-8493(97)00085-X


JID:YJCPH AID:7342 /FLA [m3G; v1.217; Prn:18/05/2017; 13:26] P.36 (1-36)

36 R. Saye / Journal of Computational Physics ••• (••••) •••–•••
[56] B. Cockburn, G. Kanschat, I. Perugia, D. Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, 
SIAM J. Numer. Anal. 39 (1) (2001) 264–285, http://dx.doi.org/10.1137/S0036142900371544.

[57] W.L. Briggs, V.E. Henson, S.F. McCormick, A Multigrid Tutorial, Second edition, Society for Industrial and Applied Mathematics, 2000.
[58] M. Adams, M. Brezina, J. Hu, R. Tuminaro, Parallel multigrid smoothing: polynomial versus Gauss–Seidel, J. Comput. Phys. 188 (2) (2003) 593–610, 

http://dx.doi.org/10.1016/S0021-9991(03)00194-3.
[59] M.F. Adams, A distributed memory unstructured Gauss–Seidel algorithm for multigrid smoothers, in: Proceedings of the 2001 ACM/IEEE Conference on 

Supercomputing, ACM, New York, NY, USA, 2001, pp. 1–18.
[60] A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell, M.L. Welcome, A conservative adaptive projection method for the variable density incompressible Navier–

Stokes equations, J. Comput. Phys. 142 (1) (1998) 1–46, http://dx.doi.org/10.1006/jcph.1998.5890.
[61] J.A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and 

Materials Sciences, Cambridge University Press, 1999.
[62] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer, 2003.
[63] R.I. Saye, J.A. Sethian, Analysis and applications of the Voronoi implicit interface method, J. Comput. Phys. 231 (18) (2012) 6051–6085, http://dx.doi.org/

10.1016/j.jcp.2012.04.004.
[64] D. Adalsteinsson, J.A. Sethian, The fast construction of extension velocities in level set methods, J. Comput. Phys. 148 (1) (1999) 2–22, http://dx.doi.org/

10.1006/jcph.1998.6090.
[65] R.I. Saye, High-order methods for computing distances to implicitly defined surfaces, Commun. Appl. Math. Comput. Sci. 9 (1) (2014) 107–141, http://

dx.doi.org/10.2140/camcos.2014.9.107.
[66] M. Sussman, E.G. Puckett, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, 

J. Comput. Phys. 162 (2) (2000) 301–337, http://dx.doi.org/10.1006/jcph.2000.6537.
[67] M. Owkes, O. Desjardins, A computational framework for conservative, three-dimensional, unsplit, geometric transport with application to the volume-

of-fluid (VOF) method, J. Comput. Phys. 270 (2014) 587–612, http://dx.doi.org/10.1016/j.jcp.2014.04.022.

http://dx.doi.org/10.1137/S0036142900371544
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib4D756C7469677269645475746F7269616Cs1
http://dx.doi.org/10.1016/S0021-9991(03)00194-3
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib4164616D73s1
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib4164616D73s1
http://dx.doi.org/10.1006/jcph.1998.5890
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib53657468426F6F6Bs1
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib53657468426F6F6Bs1
http://refhub.elsevier.com/S0021-9991(17)30364-9/bib4F73686572426F6F6Bs1
http://dx.doi.org/10.1016/j.jcp.2012.04.004
http://dx.doi.org/10.1006/jcph.1998.6090
http://dx.doi.org/10.2140/camcos.2014.9.107
http://dx.doi.org/10.1006/jcph.2000.6537
http://dx.doi.org/10.1016/j.jcp.2014.04.022
http://dx.doi.org/10.1016/j.jcp.2012.04.004
http://dx.doi.org/10.1006/jcph.1998.6090
http://dx.doi.org/10.2140/camcos.2014.9.107

	Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body ﬂuid-structure interaction, and free surface ﬂow: Part I
	1 Introduction
	1.1 Background and motivation
	1.2 Outline

	2 An implicit mesh discontinuous Galerkin framework
	2.1 Implicitly deﬁned meshes
	2.2 Preliminaries
	2.2.1 Notation
	2.2.2 Quadrature for element and face integration
	2.2.3 Choice of basis
	2.2.4 Mass matrices
	2.2.5 Summary

	2.3 Local discontinuous Galerkin methods for elliptic interface problems
	2.3.1 Model problem description
	2.3.2 Discretisation
	2.3.3 Brieﬂy on numerical implementation
	2.3.4 Extension to variable coefﬁcient elliptic operators
	2.3.5 Extension to a vector-valued elliptic interface problem
	2.3.6 Convergence tests
	2.3.7 Projection operators

	2.4 Geometric multigrid
	2.4.1 Mesh hierarchy
	2.4.2 Interpolation operator
	2.4.3 Restriction operator
	2.4.4 Relaxation
	2.4.5 Multigrid preconditioned conjugate gradient

	2.5 Advection
	2.6 Evolving meshes
	2.6.1 Interface evolution
	2.6.2 High-order accurate reinitialisation
	2.6.3 Elemental to cellular conversion of the level set function
	2.6.4 Transferring state between meshes and preserving mesh topology
	2.6.5 Brieﬂy on conservation properties
	2.6.6 Adaptive mesh reﬁnement


	3 Interim remarks
	Acknowledgements
	References


