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We introduce a numerical framework, the Voronoi Implicit Inter-
face Method for tracking multiple interacting and evolving regions
(phases) whose motion is determined by complex physics (fluids,
mechanics, elasticity, etc.), intricate jump conditions, internal con-
straints, and boundary conditions. The method works in two and
three dimensions, handles tens of thousands of interfaces and
separate phases, and easily and automatically handles multiple
junctions, triple points, and quadruple points in two dimensions, as
well as triple lines, etc., in higher dimensions. Topological changes
occur naturally, with no surgery required. The method is first-order
accurate at junction points/lines, and of arbitrarily high-order
accuracy away from such degeneracies. The method uses a single
function to describe all phases simultaneously, represented on a
fixed Eulerian mesh. We test the method’s accuracy through con-
vergence tests, and demonstrate its applications to geometric
flows, accurate prediction of von Neumann’s law for multiphase
curvature flow, and robustness under complex fluid flow with
surface tension and large shearing forces.

multiple interface dynamics ∣ level set methods ∣ foams ∣ minimal surfaces

There are a host of physical problems that involve intercon-
nected moving interfaces, including dry foams, crystal grain

growth, mixing of multiple materials, and multicellular structures.
These interfaces are the boundaries of individual regions/cells,
which we refer to as phases. The physics, chemistry, and mechanics
that drive the motion of these interfaces are often complex, and
include topological challenges when interfaces are destroyed and
created.

Producing good mathematical models that capture the motion
of these interfaces, especially at degeneracies, such as triple
points and triple lines where multiple interfaces meet, is challen-
ging. Building robust numerical methods to tackle these problems
is equally difficult, requiring numerical resolution of sharp cor-
ners and singularities, and recharacterization of domains when
topologies change. A variety of methods have been proposed to
handle these problems, including (i) front tracking methods,
which explicitly track the interface, modeled as moving segments
in two dimensions and moving triangles in three dimensions,
(ii) volume of fluid methods, which use fixed Eulerian cells and
assign a volume fraction for each phase within a cell, (iii) level set
methods (1), which use an implicit formulation to represent the
interface, and treat each region/phase separately, followed by a
repair procedure which reattaches the evolving regions to each
other (1–3), and (iv) diffusion generated motion which combine
diffusion via convolution with reconstruction procedures to simu-
late multiphase mean curvature flow (4). Although there are ad-
vantages and disadvantages to each of these approaches, it has
remained a challenge to robustly and accurately handle the wide
range of possible motions of evolving, highly complex intercon-
nected interfaces separating a large number of phases under
time-resolved physics.

In this paper, we present a numerical method for tracking
the interface in general multiphase problems. We call this method
the Voronoi Implicit Interface Method (VIIM), because it relies
on a robust interaction between Voronoi diagrams and implicit

interface methods. The method has a variety of important
features, including:

• Efficiency and consistency: The method uses a fixed Eulerian
mesh, and a single function plus an indicator function to track
the entire multiphase system. Phases are coupled together in a
consistent fashion, with no gaps, overlaps, or ambiguities.

• Multiple junctions and topological change: Triple points and
triple lines, where more than two phases touch, as well as
breakage, merger, creation, and disappearance of phases, are
all handled naturally. Transition events occur automatically,
with no special attention paid to discontinuous topological
change.

• Coupling with time-dependent physics: The method uses a
physical time step, and complex physics may be solved at each
time step and correctly incorporated into the interface evolu-
tion. Feedback from the physics affects the interface, and
changes in the interface affects the physics.

• Accurate calculation of geometric quantities and extension to
any dimension: The method allows one to accurately calculate
curvature and geometric constraints as part of the interface
evolution, and is fundamentally unchanged, regardless of the
dimension of the problems.

After a short background about implicit interface level set
methods, we introduce the basic VIIM. We next summarize some
of the convergence tests, and then demonstrate the basic method
on a collection of geometrical and fluid mechanics problems.

The Voronoi Implicit Interface Method
Background.We begin by recalling the basics of level set methods,
introduced by Osher and Sethian (5), which rely in part on the
theory of curve and surface evolution given in refs. 6 and 7,
and the link between front propagation and hyperbolic conserva-
tion laws discussed in ref. 8. Start with an interface Γ separating
two phases A and B, and moving with a given speed F in its nor-
mal direction. We can interpret this interface as an n − 1 dimen-
sional hypersurface in Rn, and then embed this interface as the
zero level set of a signed distance function ϕðxÞ, so that ϕðxÞ is the
initial (signed) distance to the interface Γ, chosen to be positive
inside one phase and negative inside the other. The zero level
set fϕ ¼ 0g corresponds to the original interface Γ separating
A and B. Adding time, we can ensure that the zero level set of
this function ϕ always corresponds to the evolving interface Γ
through the initial value partial-differential equation given by

ϕt þ Fj∇ϕj ¼ 0.

Here, the speed function F may depend on a variety of factors,
including local geometry (normal direction and curvature), inte-
gral properties (enclosed area/volume), as well as the solution
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of complex partial differential equations (PDEs), such as fluid
flow, material elasticity, diffusion, etc., with jump conditions and
source terms supplied by the interface position.

This initial value PDE is approximated using upwind finite
difference schemes: In the original formulation presented in
ref. 5, the interface is embedded throughout the entire computa-
tional domain and hence adds unnecessary labor. More sophis-
ticated versions employ the Narrow Band Level Set Method
(9), which adaptively focuses computation in a small thin tube
around the moving interfaces, and hence reduces the complexity
of the algorithm to roughly the number of elements on the front.
For details and a comprehensive review on the level set method,
see ref. 1.

Consider now three different regions, or phases, A, B, and C.
The standard level set construction, which relies on a signed dis-
tance function whose zero level set is the interface of interest,
breaks down at triple points where three interfaces meet, because
there is no longer an inside and an outside. Various authors have
approached this problem by using multiple level set functions, in
most cases by simply dividing the region into three separate level
set functions, namely, inside A and not inside A, inside B and not
inside B, etc., advancing each level set function separately.
Although more economical classifications can be formed, they
all boil down to using multiple functions in multiple regions.

Voronoi Sets. Given a set of m nodes in Rn, the Voronoi diagram
is the decomposition of Rn into different cells such that all the
points in a given cell are closer to one node than any other. The
boundaries of these cells are then a set of points, which are equi-
distant from at least two nodes. This construction may be ex-
tended to a set of regions A1;…;Am instead of nodes, which may
be curves, surfaces, or any other objects: The tessellation of the
domain into cells still provides a Voronoi subdivision such that all
points in a particular cell are closer to region Ai than to any other,
and the boundaries of these cells are equidistant from at least two
regions.

Using this idea, we now formulate the VIIM, which is a PDE-
based method based on a single function, defined on a fixed
Eulerian background mesh, and tracks evolving interface pro-
blems of multiple regions in two and three dimensions, regardless
of the complexity of the multiply-connected junctions.

The Voronoi Implicit Interface Method. Given a domain in Rn,
we imagine a collection of phases such that each point x in the
domain is either in a unique phase, or on the boundary between
two or more phases: This boundary (which is really a collection of
boundaries) will be known as the interface. These are the initial
conditions for the problem; we further assume that we are given a
speed F (or velocity field u) defined on the interface.

At each point x of the domain, we let ϕðxÞ be the distance from
x to the closest point on the interface: ϕðxÞ is the embedding of
the interface as the zero level set of an unsigned distance func-
tion. Furthermore, we create an extension velocity, which defines
a speed function FextðxÞ in all of the domain. This extension
velocity can be constructed so that it smoothly varies away from
the interface itself.

The key idea is to rely on a main feature of level set methods:
The level set corresponding to the interface is embedded in a
family of nearby level sets. Thus, the motion of the zero level set
corresponding to the interface is bracketed by the motion of sur-
rounding level sets. This property is an immediate consequence
of a comparison theorem under suitable restrictions on the speed
function that moves the neighboring level sets, and these restric-
tions are often satisfied through the construction of extension
velocities as outlined in ref. 10.

We utilize this property to construct the VIIM. The motion
of the interface in a multiphase system is determined by nearby
level sets, given by the ϵ-level sets of ϕ, where ϵ > 0. Although the

interface where multiple phases touch may have high-order junc-
tions such as triple points and triple lines, the ϵ-level sets are
hypersurfaces, which exist solely in a single phase and do not con-
tain such degeneracies. The motion of these nearby interfaces
controls the evolution of the multiphase interface through the
Voronoi construction, as follows.

The VIIM method consists of three steps. First, we evolve the
unsigned distance function a small time step Δt by solving the
governing PDE. For a short period of time, the neighboring level
sets will remain nice hypersurfaces. Next, we reconstruct the in-
terface after timeΔt as the Voronoi interface of the nearby ϵ-level
sets. Obviously, Δt and the choice of the value of ϵ are linked: We
need to choose ϵ large enough (or conversely,Δt small enough) so
that the ϵ-level sets remain hypersurfaces during the time step.
Finally, we use the Voronoi interface to construct a new unsigned
distance function at time Δt.

Two Illustrative Examples. We illustrate with two simple examples.
Imagine an interface (Fig. 1) in one spatial dimension, which is a
single point located at x ¼ XðtÞ at time t, moving with speed
Fðx;tÞ, thus dXðtÞ

dt ¼ FðXðtÞ;tÞ. At t ¼ 0, the zero level set of the
unsigned distance function ϕ corresponds to the initial location
of the point, and is at an extremum of ϕ. However, at the nearby
level sets with value ϵ, the distance function is smooth. Hence, we
can update the distance function everywhere away from the zero
level set in a straightforward manner. What remains is to obtain
a suitable definition of the zero level set at time Δt in such a
manner that it corresponds to the location of the front at this
time. We can do so by defining the zero level set as the point equi-
distant from the ϵ level set from each side: This single point is the
Voronoi set.

In higher dimensions, and in the presence of high-order junc-
tions, this same construction works. In Fig. 2 (Left) we see a triple
point of an unsigned distance function, which is nonnegative
everywhere. In Fig. 2 (Middle) we show the ϵ-level sets, and,
Fig. 2 (Right), the Voronoi interface reconstructed from those
ϵ-level sets.

Algorithm and Implementation
Given a multiphase problem with N different phases, our goal
is to transform the above into a numerical method. Begin by
defining the unsigned distance function ϕðxÞ, which is zero on
the boundary of each phase, and measures the positive distance

level set
zero level set corresponding

level set level set
zero level set should correspond

to interface atto

Fig. 1. Evolution of an unsigned distance function ϕ for an interface in one
dimension.

level set level set

level set

Triple point of unsigned
distance function

level sets
Voronoi reconstruction of

interface

Fig. 2. Reconstruction of a triple point from an unsigned distance function
and the Voronoi interface.
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to the boundary everywhere else. Let there also be an indicator
function χðxÞ, which indicates the phase in which the point x is
located. Let us further suppose that we are given a speed function
F, defined in all of space (and which can depend on position,
normal, and curvature, as well as associated physics.) We fix ϵ
and Δt. Our goal is to execute the following sequence:

1. Advance the unsigned level set distance function in time by
solving the standard level set equation, using forward Euler
with a time step Δt depending on F.

2. Reconstruct the unsigned distance function ϕ at the new
time step, using the Voronoi interface reconstructed from
the ϵ-level sets and the old indicator function χ.

3. Update the speed function F to reflect the appropriate physics,
mechanics, etc., by solving the relevant equations of motion.
This calculation may involve computing geometric quantities
from the Voronoi interface, as well as extracting jump condi-
tions, source terms, etc., from the Voronoi interface as input to
PDE solvers, as well as building extension velocities to define
the speed within the domain. Loop to 1.

This formulation, by construction, cannot create overlaps or
vacuums: Each point in the domain is part of a unique phase at
all times. Our reconstruction differs from existing algorithms in
that there is neither a no overlap/vacuum condition, nor is there a
penalty term that penalizes region of vacuums or overlap. The
interface is always well-defined at every time step. Furthermore,
the time t in the above algorithm has physical meaning: The inter-
face moves under physical speed F during the time step Δt.

The key to the above is an accurate and fast way to execute
step 2, namely to construct the new unsigned distance function
from the ϵ-level sets. This procedure involves the computation
of distances from the ϵ-level sets on an Eulerian mesh, and so the
core tool is an Eikonal equation solver. We make extensive use of
the accurate and fast Eikonal reinitialization algorithm devel-
oped by Chopp (11), which utilizes bicubic [tricubic in three
dimensions (3D)] interpolation to accurately initialize an initial
band. In more detail, if a grid cell is identified to contain the zero
level set of a function ψ (which need not be a distance function),
then ψ is interpolated in that cell using a bicubic/tricubic patch.
A Newton solver is then used to find the closest point on the in-
terpolated interface, from which the exact distance to the inter-
polated interface is computed at the nodes of all such grid cells.
Note that this construction does not require explicit construction
of the zero level set of ψ . This procedure creates a small initial
band that can be input to the efficient Fast Marching Method
(12), which is a Dijkstra-like ordered upwind finite difference
scheme for solving the Eikonal equation outside this initial band.
A different Dijkstra-like control theoretic discretization of the
Eikonal equation stemming from optimal control was developed
in ref. 13, and we refer the reader to ref. 14 for a detailed dis-
cussion and extensions of Fast Marching Methods to more gen-
eral front propagation problems.

VIIM uses this methodology as follows. First, without explicit
construction, by locating cells containing the ϵ-level sets and
building bi/tricubic patches, we solve the Eikonal equation with
zero boundary value on these sets. With this solution, we locate
cells containing the Voronoi set, build bi/tricubic patches, and
again solve the Eikonal equation to provide the new unsigned
distance function.

Convergence Tests
An extensive convergence analysis of the VIIM has been per-
formed, analyzing convergence for various values of time step Δt,
grid size h, and choice of parameter ϵ. One may fix ϵ from the
outset, and study convergence as the grid size h vanishes. Here,
we instead couple ϵ to the grid size and choose ϵ ¼ αh, where α
is a constant. Generally speaking, larger values of ϵ give larger
numerical errors, but with judicious programming, α can be taken

as any nonnegative number. Here, we summarize some of the key
findings.

Convergence Tests for Smooth Interfaces.Consider a problem invol-
ving a single interface separating two phases, for example, a circle
collapsing under its curvature. In this case, no corners occur in the
moving interface. Using second-order finite difference schemes
in space and second-order in time, the VIIM gives second-order
convergence to the known exact solution.

Convergence Test of T-Junction to Y-Junction. For multiphase pro-
blems with more than two phases, and in the presence of triple
points, etc., exact solutions are less well-known, and hence we rely
on grid convergence. We first analyze the motion of a single
T-junction that evolves into a Y-junction under curvature flow,
that is, F ¼ κ. Suitably interpreted, it is well-known that curvature
flow applied to a triple point results in 120° angles: This property
is known as Young’s law, and arises as a natural consequence of
interpreting curvature flow as minimizing length (surface area in
3D). We consider Dirichlet boundary conditions, in which the
junction is anchored at the boundary of the domain ½0;1�2 in two
dimensions, and evolve over a time interval 0 ≤ t ≤ T. In Fig. 3,
we show a snapshot of the evolution, which shows that the junc-
tion develops 120° angles, and ultimately converges to a triple
point with three straight lines. In Table 1, we show convergence
results using grid refinement for various grid sizes, coupling the
choice of ϵ to h, where h is the size of one grid cell of a uniform
Cartesian grid. Here, dðΓ1;Γ2Þ≔ 1

T ∫
T
0 dHðΓ1ðtÞ;Γ2ðtÞÞdt is a metric

using the Hausdorff distance dH in space and measures the con-
vergence of the interface evolution in both space and time. The
results show first-order convergence. It is important to note that
first-order convergence at triple points is probably all that can be
expected in this framework.

Convergence Test Using von Neumann–Mullins’ Law. Imagine now a
large number of phases with a connected network of interfaces
and many triple points. von Neumann and Mullins, under the
assumption of Young’s law (15), showed that if the speed of the
interface is a constant multiple γ of curvature,* then the rate of
change of area of a particular phase depends on its number of
sides, namely

dA
dt

¼ 2πγ

�
n
6
− 1

�
:

We use this result to further test the convergence of the VIIM.
Start with 25 randomly positioned phases and apply curvature
flow (γ ¼ 1, grid size 256 × 256) with periodic boundary condi-
tions (Fig. 4). Each phase grows, shrinks, or conserves its area,
with the rate of area change a constant given by the above law.
When phases change neighborship with other phases or collapse,
the topology of the network changes and may alter the number of

Fig. 3. Evolution of anchored Y-junction.

*von Neumann’s 1951 paper (16) discussed the rate of change of area as a function of the
number of sides due to gas diffusion, and because pressure is taken as constant, the
boundaries become circular arcs. Mullins’ 1956 paper (17) studied the issue for metal
grains, in which the movement of boundaries is governed by local conditions, and
produced the same law, without the assumption of circular arcs.
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sides of each phase. Throughout the entire evolution, it follows
that the area of each phase is a piecewise linear function of time.
In Fig. 4 we plot the area of a selected set of nine phases. Our
results show correct match with von Neumann–Mullins’ law
throughout the evolution.

Three-Dimensional Convergence Tests. Under curvature flow with
Neumann boundary conditions, Fig. 5 shows the evolution of a
3D analogue of a T-junction, which has four different triple lines
and a quadruple point. Qualitatively, we see that the surfaces
make 120° angles at triple lines, which is one of Plateau’s laws on
the shapes of soap bubbles in a foam. Using grid refinement to
measure convergence, Table 2 shows that the VIIM converges at
first order, in both space and time.

Efficiency. Formally, the operation count on the method per time
step is OðkN logNÞ, where N is the number of grid cells contain-

ing the interface, and k is the size of the narrow band. The
Voronoi reconstruction takes twice as long as the reinitialization
step in the narrow band level set method, because there are two
Eikonal solves.

Geometric Flows with Constraints
By adding a discontinuous source term to the right-hand side
of the mean curvature flow equation, we can simulate mean
curvature flow with volume conservation. The modified forward
Euler step is

ϕnþ1 − ϕn

Δt
¼ γκnj∇ϕnj þ snj∇ϕnj;

where

snðxÞ ¼ V 0
i − Vn

i

An
i Δt

; where x is in phase i:

Here Vn
i denotes the volume [area in two dimensions (2D)] of

phase i at time step n, V 0
i is the initial volume (area) of phase

i, and An
i is its surface area (perimeter in 2D) at time step n.

In effect, the source term snj∇ϕnj grows or shrinks each phase
equally around its boundary by an amount that corrects for
any mass loss/gain.

Despite each phase potentially growing or shrinking at differ-
ent rates, the VIIM robustly and smoothly handles this disconti-
nuity and conserves volume almost exactly. Fig. 6 demonstrates
the method in 2D and 3D on a set of 100 initially random phases
(using zero Neumann boundary conditions). Mean curvature flow
minimizes the total length (surface area in 3D) of all interfaces,
which, subject to the constraint of area (volume) conservation,
eventually attains an equilibrium (Fig. 6). Various topological
changes occur, and at all times, triple points (lines) have 120°
angles.

Fluid Flow with Permeability
We now use the VIIM to incorporate fluid dynamics into the
dynamics of dry foams. A foam is a collection of gas bubbles
separated by a liquid component and is considered dry when
the liquid makes up less than 10% of the total volume. In the
multiphase evolution of dry foams, the following occurs:

• Fluid mechanics of the gas drives the flexible membranes. The
flow is incompressible, with jumps in pressure across the mem-
brane due to surface tension effects. Membranes meet at 120°
junctions: triple points in 2D and Plateau borders in 3D.

• Membranes may be permeable to gas, which diffuses through
the boundary across phases, leading to diffusive coarsening.
In general, phases with a large number of faces grow whereas

Table 1. Convergence results for the curvature motion in Fig. 3,
anchored boundary conditions

ϵ ¼ 2h ϵ ¼ 4h ϵ ¼ 6h

h dϵ
h Rate dϵ

h Rate dϵ
h Rate

1∕64 0.01092 – 0.01626 – 0.01868 –
1∕128 0.00631 0.8 0.01019 0.7 0.01322 0.5
1∕256 0.00336 0.9 0.00549 0.9 0.00737 0.8
1∕512 0.00174 1.0 0.00283 1.0 0.00383 0.9

Here dϵ
h≔dðΓϵ

h;Γ
ϵ
2hÞmeasures the difference in interface evolution (in space

and time) on two successive grid sizes.
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Fig. 4. (Top) Curvature flow applied to an initial set of 25 randomly posi-
tioned phases. (Bottom) Area as a function of time for a selected set of nine
phases. According to von Neumann–Mullins’ law, the area of a particular
phase should be a piecewise linear function, with a derivative that is an affine
function of the number of sides of the phase. We have, therefore, colored
each part of the trajectories by the number of sides the phase had at that
particular time. The slopes of the trajectories is exactly what is predicted
by von Neumann–Mullins’ law.

Table 2. Convergence results for the flow illustrated in Fig. 5

ϵ ¼ 2h ϵ ¼ 4h ϵ ¼ 6h

h dϵ
h Rate dϵ

h Rate dϵ
h Rate

1∕64 0.02705 – 0.05866 – 0.16831 –
1∕128 0.01396 1.0 0.02469 1.2 0.03578 2.2
1∕256 0.00709 1.0 0.01225 1.0 0.01722 1.1

Fig. 5. Evolution of a 3D analogue of a T-junction, moving under curvature
flow with zero Neumann boundary conditions.
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those with a small number of phases shrink. Once these
phases disappear, the topology of the interconnected network
changes, leading to different growth laws for each phase.

We consider a collection of membranes, moving under the com-
bined effects of surface tension, fluid mechanics, and permeabil-
ity. We assume that membranes are massless and thin, and follow
the model used in ref. 18, in which the gas is modeled as an
incompressible Newtonian fluid, satisfying the Navier–Stokes
equations with density ρ and viscosity μ. Surface tension at the
interface induces a fluid flow in addition to any external forcing
flow, which in turn moves the interface, providing a feedback
mechanism between membrane dynamics and fluid physics. In
more detail, interface surface tension induces a pressure jump
of ½p� ¼ σκ, where σ is the surface tension coefficient and κ is
the mean curvature of the interface. In the absence of permeabil-
ity, the interface is advected by the velocity u of the gas, taken as
continuous across the interface. With permeability, the diffusion
rate of gas per unit length is proportional to the pressure differ-
ence (15). As in ref. 18, this permeability is modeled with a slip
of the interface in the normal direction relative to u, hence
u −Mσκn, where M ≥ 0 is a constant, denoting the amount of
permeability and n is the normal unit of the interface (with the
same orientation as that used to calculate κ). We adopt a conti-
nuum surface tension model, whereby surface tension at the in-
terface becomes a body force through the use of a Dirac delta
function. The governing equations of motion are therefore

ρ½ut þ ðu · ∇Þu� ¼ −∇pþ μΔuþ stþ F;

∇ · u ¼ 0;

ϕt þ u · ∇ϕ ¼ Mσκj∇ϕj;

where F is any additional body forces (such as gravity) and st is
a surface tension body force appropriate to a multiphase system.
For two-phase fluid flow, this term takes the form st ¼
−σκδðϕÞ∇ϕ, where ϕ is a signed level set function. In our case
of multiple phases which meet at triple junctions (and quad points
in 3D), curvature needs to be suitably defined. It is both physically
and mathematically natural to take the same definition applied
to each phase (gas bubble) separately, sum all of these, and
normalize by a factor of two. This formulation is physically con-
sistent, because each bubble is separated from the others by a thin
membrane, and it is mathematically natural because the resulting

formula effectively enforces Young’s law at triple points, i.e.,
triple junctions instantaneously obtain 120° angles. Using this
definition, we have st ¼ − σ

2
∑N

i¼1 κðϕiÞδðϕiÞ∇ϕi, where ϕi is a
signed level set function for phase i and N is the total number
of phases. Although the normal is not well-defined at triple junc-
tions, the curvature times the normal, κðϕiÞ∇ϕi, is well-defined
as a distribution, and is a Dirac delta function with magnitude
related to the angle of the corner.

A careful analysis and detailed computation of the equations
of motion were first performed in ref. 18, in which an explicit
2D Lagrangian-based front tracking method together with an
immersed boundary method was used to couple gas fluid me-
chanics to membrane dynamics under the effects of large shear
forces, showing a variety of phenomena, including the balance
between evolution toward structures satisfying Young’s law and
the evolving fluid mechanics. Here, the VIIM allows topological
changes in an implicit fashion, and can track 3D flow. Numerical
details will be presented elsewhere. Briefly, we use a fixed
Cartesian mesh and a second-order projection method, using
upwinding for the advection term and Crank–Nicholson for the
diffusion term, with the interface surface tension term mollified
to the background grid.

Two-Dimensional Flow With and Without Permeability. Consider a
foam being agitated by a strong external forcing which first spins
counterclockwise, then settles, and then reverses. We take a unit

Fig. 6. Mean curvature flow (γ ¼ 1) with area (volume) conservation on a set
of 100 initially random phases (zero Neumann boundary conditions). By the
time t ¼ 0.1, the solution has approximately attained equilibrium. (Top) Two
dimensions, simulation computed on a 256 × 256 grid on the domain ½0;1�2.
(Bottom) Three dimensions, computed on a 1283 grid in a unit cube (subset of
phases shown).

A Phases B Streamlines C Pressure

Fig. 7. Results of a fluid flow simulation with an external agitator force
and no permeability. Computed on a 256 × 256 grid with periodic boundary
conditions.
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square ½0;1�2 with periodic boundary conditions, with ρ ¼ 1,
σ ¼ 1, and μ ¼ 0.005, chosen so that effects of inertia, viscosity,
and surface tension are of similar importance. The agitator is an
external force F in the Navier–Stokes momentum equations:
Fðx;y;tÞ ¼ 15ðsin πx sin 2πy; − sin 2πx sin πyÞ sin πt, corresponding
to a force which first spins in the counterclockwise direction and
then reverses. The factor of 15 in F was chosen to give a relatively
strong shearing/spinning force that dominates the stabilization
effects of surface tension. Starting with 25 random phases, we
evolve the Navier–Stokes equations with the agitator forcing.
First, consider M ¼ 0, i.e., no permeability (Fig. 7). Flow under-
goes significant shearing, causing considerable rearrangement of
the phases and topological change. Stream function plots com-
puted from the velocity field u show flow strongly affected by
agitator forcing, but localized in nature due to effects of surface
tension.

Fig. 8 shows the effect of permeability (M ¼ 0.05). Diffusion
of gas across the membranes cause phases to collapse, others to
grow, all of which occurs through large shearing forces.

Three-Dimensional Flow With and Without Permeability. We repeat
the above in 3D, further demonstrating the capabilities of VIIM.
The domain is a unit cube ½0;1�3 and the external force is the same
but with no forcing in the z-direction. We start with 125 random
phases and evolve the Navier–Stokes equations with the agitator
forcing. Once again, the flow undergoes significant shearing,
causing considerable rearrangement of the phases and many
topological changes. In the case of no permeability (Fig. 9, Top),
all phases conserve their volume, whereas in the case of perme-
ability (Fig. 9, Bottom), diffusion causes some phases to collapse

and others to grow under the large shear. In 3D, the rate of
volume change matches with a recently found generalization of
von Neumann’s law (19, 20).

Conclusion
The Voronoi Implicit Interface Method is a robust, accurate, and
efficient numerical method to track a large number of evolving in-
terfaces moving under coupled complex interactions of geometry,
physics, constraints, and internal boundary conditions. The accu-
racy of the method has been demonstrated under both conver-
gence studies and verification of von Neumann–Mullins’ law, and
applications have been presented for fluid flow in the presence of
permeability and large shearing forces.
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Fig. 9. Three-dimensional multiphase agitator motion, without permeabil-
ity (Top) and with permeability (Bottom).

Fig. 8. Two-dimensional multiphase agitator motion with permeability.
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