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Abstract

�e Voronoi Implicit Interface Method with Applications to Multiphase Fluid Flow and Multiscale

Modelling of Foam Dynamics

by

Robert Ian Saye

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor James A. Sethian, Chair

In this thesis, the Voronoi Implicit Interface Method (VIIM) [1–3] is presented together with several

applications in multiphase curvature �ow, multiphase incompressible �uid �ow, mesh generation

for interconnected surfaces, and multiscale modelling of foam dynamics. �e VIIM tracks the evo-

lution of multiple interacting regions (“phases”) whose motion may be determined by geometry,

complex physics, intricate jump conditions, internal constraints, and boundary conditions. From a

mathematical point of view, the method provides a theoretical framework to evolve interconnected

interfaces with junctions. Discretising this theoretical framework leads to an e�cient Eulerian-based

numerical method that uses a single unsigned distance function, together with a region indicator

function, to represent a multiphase system. �e VIIM works in any number of spatial dimensions,

accurately represents complex geometries involving triple and higher-order junctions, and automat-

ically handles topological changes in the evolving interface, including creation and destruction of

phases. Here, the central ideas behind the method are presented, implementation is discussed, and

convergence tests are performed to illustrate the accuracy of the method. Several applications of

the VIIM are shown, including in constant speed normal driven �ow; multiphase curvature �ow

with constraints; and multiphase incompressible �uid �ow in which density, viscosity, and surface

tension can be de�ned on a per-phase basis and membranes can be permeable.

An e�cient and robust mesh generation algorithm for interconnected surfaces [4] is also pre-

sented. �e algorithm capitalises on a geometric construction used in the VIIM, known as the

“Voronoi interface”, to generate high-quality triangulated meshes that are topologically consistent,

such that mesh elements meet precisely at junctions without gaps, overlaps, or hanging nodes. �e

generated meshes can be used in �nite element methods for solving partial di�erential equations on

a network of evolving interconnected curved surfaces.

Finally, a scale-separated, multiscale model for the dynamics of a soap bubble foam [5] is pre-

sented. �e model leads to a computational framework for studying the interlinked e�ects of

drainage, rupture, and rearrangement in a foam of bubbles, coupling microscale �uid �ow in a

network of thin-�lm membranes (“lamellae”) and junctions (“Plateau borders”) to macroscale gas

dynamics driven by surface tension. Here, thin-�lm equations for �uid �ow inside curved lamellae
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and Plateau borders are derived, �ux boundary conditions which conserve liquidmass are developed,

and local conservation laws for transport of �lm thickness during rearrangement are designed. From

a numerical perspective, several new numerical methods are developed, including Lagrangian-based

schemes for conserving liquid in the membranes during rearrangement, �nite element methods to

solve fourth-order nonlinear partial di�erent equations on curved surfaces, methods to accurately

solve coupled �ux boundary conditions at Plateau borders and quadruple points, and projection

methods to couple gas dynamics to the VIIM. Convergence tests are performed to demonstrate the

accuracy of the numerical methods, and results of the multiscale model are shown for a variety of

problems, including collapsing foam clusters displaying thin-�lm interference e�ects.
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Chapter 1

Introduction

1.1 Multiphase problems
Amyriad of science and engineering phenomena involve multiple interacting regions whose geome-

tries change over time. �e interfaces separating these di�erent regions (or “phases”) o�en meet at

junctions and the physics taking place in the di�erent regions can depend on a variety of factors,

ranging from local geometry of the interface, to global properties transmitted instantaneously across

the domain. A familiar example involves the dynamics of a soap bubble foam, in which gaseous bub-

bles are separated by a network of interconnected thin �lms of liquid, as shown in Figure 1.1(a). �e

physics of a foam are complex, and include gas dynamics, surface tension, and liquid dynamics in

the network of thin-�lm membranes. �e membranes may also be permeable, in which case bubble

Figure 1.1. Examples of multi-region physics. (a) A soap bubble foam made with common washing detergent.
(b) Metallic foam made out of aluminium (reproduced from [6]). (c) Grains in a polycrystalline metal (reproduced
from [7]). (d) Cells in a zebrafish, stained so that the cell membranes are green and nuclei blue (reproduced with
permission from [8]). (e) Minimal surfaces formed by steady-state soap films.
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geometry can change over time as gas di�uses across the membranes, owing to pressure di�erences

caused by surface tension. Highly specialised foams and foam-like materials, made with di�erent gas

and liquid species, as well as solidi�cation processes, have a wide variety of applications in materials

science, engineering, and industry. For example, metallic foams, such as the closed-cell aluminium

foam shown in Figure 1.1(b), are used in crash-absorbent materials and in medical applications to �ll

voids in bones. Understanding the dynamics of foam evolution is a key step in controlling the shape,

structure, and mechanical properties of these foam-like materials. Another example of a multiphase

system is in grain growth. Many metal and ceramic materials exhibit grains, which are regions of

di�erent crystal orientation or alignment, see Figure 1.1(c). Based on chemistry and thermodynam-

ics, grain boundaries move to reduce their interfacial energy, and predicting how these grains form

and evolve is an important part of manufacturing special-purpose materials. Other multi-region

problems include studying the formation of cellular tissues in biology, such as the ectoderm cells in

zebra�sh in Figure 1.1(d) [8]; multi-region shape optimisation problems, which have applications

in chemistry, engineering, and high performance computing; and more mathematically-oriented

problems, such as examining shapes of minimal surfaces, as illustrated in Figure 1.1(e).

1.2 Tracking multiple interfaces
Modelling these multiphase problems requires the ability to track the motion of evolving intercon-

nected interfaces, coupled to the physics taking place in each phase. However, this is not always

straightforward, as there are a number of associated mathematical and computational challenges.

O�en, the physics, chemistry, and mechanics that drive the interface motion are complex, requiring

the solution of �uid mechanics equations with intricate jump conditions at the interface, elasticity

solvers with di�erent properties in each membrane, di�usion and transport e�ects of species both

within and across the region boundaries, etc. It has been a challenge to construct well-posed math-

ematical models that treat the motion of the interface, especially at junctions, in a mathematically

consistent fashion. At the same time, developing accurate and robust numerical methodologies for

the interface motion can be di�cult, due in part to the presence of junctions where interfaces meet

and the vast number of di�erent ways these interfaces can change topology.

1.2.1 Mathematical considerations
Fromamathematical perspective, formulating a consistentmodel is a signi�cant part of the challenge.

In general, the motion of triple points in two dimensions and triple lines in three dimensions (as

well as objects with higher degrees of connectedness) must be speci�ed, either explicitly or implicitly

through requirements on the curves (in two dimensions) and surfaces (in three dimensions) that

connect them. Examples of how such motion may be speci�ed for a purely geometric motion given

by curvature �ow in two dimensions include:

• Employing curvature �ow on each interface, with the additional requirement that triple points

remain �xed in time: in this case, the equilibrium solution is a network of straight lines.
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• Another option might allow triple points to move in order to minimise the total length of the

network of two-dimensional curves connecting the triple points: this motion would satisfy

Young’s law for triple point angles. (In the simplest scenario, Young’s law states that triple

points make 120○ angles.) �is case is of physical relevance, since various physical situations

demonstrate triple point angle conditions, including grain growth and soap bubble foams. In

this situation, generally speaking, quadruple points are unstable: they will quickly destabilise

into two nearby triple points.

• A third option might be to disallow triple points and only allow quadruple points: this could

lead to an equilibrium solution that resembles a quadrilateral mesh.

In comparison to corners that might exist in an otherwise smooth and orientable closed curve or

surface, the junctions in a multiphase interface problem represent a stronger singularity. Corners

in an evolving interface can be handled in a smooth fashion by relying on a well-posed notion of

surface evolution that allows such singularities (such as in level set methods, as discussed in Chapter
2). �e goal of a mathematical formulation of multiphase interface evolution is to smoothly handle

the junctions, especially in the cases which apply to physical systems.

1.2.2 Numerical goals
From a computational perspective, a numerical method for tracking multiple evolving interfaces

should have several features. Numerical methods should have the ability to:

• Represent the complex con�gurations and geometry of the junctions o�en present in multi-

phase systems. As shown in the examples in Figure 1.1, the geometry of multiphase systems is

o�en complex, with a large number of ways that interfaces can meet at junctions.

• Robustly handle complex topological changes. When phases are created, change connectivity

with other phases, or collapse and disappear, intricate topological changes take place in the

interface, and these should be robustly handled, despite the vast number of ways topological

changes can take place.

• Couple to physics in the most general fashion possible. It is important to include a physical

notion of “time” with the �exibility of prescribing di�erent types of possible motion.

• Accurately calculate geometric properties of the interface, such as the normal direction and

components of curvature.

• Be applicable to both two- and three-dimensional settings. Ideally, the fundamental formula-

tion should be independent of the spatial dimension.

Finally, numerical methods should be accurate in both space and time, as well as e�cient.
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1.3 Previous work
A variety of numerical methods have been proposed to track evolving interfaces in multiphase

problems. Somewhat broadly, the major approaches can be divided into the following classes of

methods:

• Front tracking or marker-particle methods. In a front tracking method, the interface is ex-
plicitly represented with a Lagrangian geometry, usually with connected line segments in two

dimensions and triangular meshes in three dimensions. �e positions of the elements making

up the front are updated in time, based on local geometry of the interface and prescribed

velocity �elds. �ese methods have been adapted to multiphase systems by allowing junctions

to share multiple interface elements. For example, a triple point in 2D is connected to three

line segments, while a triple line segment in 3D is connected to three triangles. While concep-

tually simple, a drawback of this method is that whenever topological changes in the interface

occur, some kind of explicit surgery is required to create the surface mesh topology. Surgery

mechanisms are o�en ad-hoc, and are especially di�cult to perform in three dimensions.

One of the most widely used implementations of front tracking is in the Surface Evolver so�-
ware [9]. In Surface Evolver, surfaces are moved in order to minimise a user-de�ned energy

functional, using gradient descent methods, and topological changes in the surface are han-

dled with explicit surgery techniques. While such an approach is predominantly aimed at

�nding steady-state con�gurations and cannot be directly coupled to physics, it has been

used in a wide variety of contexts, e.g. in studying bubble size distribution in foams [10, 11],

grain-growth [12], and multi-cellular tissues in biology [8, 13, 14].

Another well-known method that uses explicit Lagrangian geometry is the Immersed Bound-

ary Method [15], primarily aimed at �uid-structure interaction problems. �is approach has

recently been extended to study two-dimensional dry foam dynamics [16, 17], allowing shear

dynamics to be studied in a full Navier-Stokes setting.

Other front tracking approaches include two-dimensional multiphase curvature �ow where

Young’s law is used as a boundary condition at triple points [18], and in modelling surfactant

�ow in a network of moving curves [19].

• Volume-of-�uid methods. In a volume-of-�uid method, each phase or region is described
by a characteristic function, which has a value of one inside the phase and zero outside [20].

In discrete form, this leads to volume fractions in each grid cell which specify the fraction of

volume occupied by each phase. In the multiphase case, junctions correspond to cells with

more than two phases [21, 22]. To update these volume fractions in time, algorithms are

used to locally reconstruct the interface by using neighbouring volume fraction values. How-

ever, reconstructing the interface at junctions can be di�cult, especially in three dimensions.

Volume-of-�uid methods have exact conservation of mass, but geometry of the interface, such

as the normal vector and curvature, are di�cult to evaluate accurately.
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• Methods using multiple level set functions. Level set methods, introduced by Osher and
Sethian [23], embed the interface as the zero level set of an implicitly de�ned signed distance

function which evolves in time. As a result, they are primarily aimed at two-phase problems

in which the interface separates one region from another. In the multiphase case, multiple

level set functions are used, one for each each phase/region (or some other encoding scheme).

Since the boundary of one phase coincides with the boundary of another phase, these level

set functions must be coupled together correctly in order to avoid creating regions of overlap

or voids. �is is typically done through a “repair” procedure at the end of every time step to

reconcile the level set functions, ensuring consistency.

�e �rst such method using this approach was introduced by Merriman et al. [24]. Later
approaches include using a type of projection method that projects the values of the multiple

level set functions to a speci�c manifold that does not allow vacuums or overlaps [25], and

adapting particle level set methods to many regions, also using a type of projection [26].

However, it is o�en the case that the repair procedure can alter the dynamics of the multiphase

motion. For example, in the works of [24–26], accurate evolution of triple junctions has not

been rigorously demonstrated.

In image segmentation problems, accurate time evolution is not needed, and di�erent encod-

ing schemes have been used. For example, ⌈log
2
n⌉ level set functions can be used to represent

n phases, by using the sign of the level set functions in a base-2 encoding scheme to determine
the phase [27]. �is eliminates void regions/overlaps when the number of phases is exactly a

power of two, however spurious phases can appear otherwise. Another image segmentation

approach uses a single level set function which is piecewise constant, such that each phase has

a di�erent value [28].

• Variationalmethods. Variationalmethods derive their evolution from gradient descent on an
energy functional, such that “time” measures the progress towards the desired minimisation

con�guration, similar to solving a parabolic equation to obtain the solution to an elliptic

problem. �ese methods are o�en implemented in a level set framework for an evolving

interface that moves to decrease the energy functional [29, 30]. Typical energy functionals

take the form

E = ∑
i , j

fi j∣Γi j∣ +∑
i
ei ∣Ωi ∣,

where ∣Γi j∣ denotes the surface area of the interface between phase i and phase j, and ∣Ωi ∣ is
the volume of phase i. Here, fi j is a surface energy density and ei is the bulk energy of phase i.
Gradient descent on this energy functional leads to a normal speed vi j of interface Γi j given by
vi j = fi jκi j + ei − e j, where κi j is the mean curvature of Γi j. In a variational method, multiple

level set functions are again employed, and, instead of repairing gaps or overlaps that may

occur from the decoupled motion of individual phases, a penalty function is employed which

inhibits gaps or overlaps from growing beyond some tolerance [29–31]. �ese variational

methods are limited to geometric motion and are di�cult to couple to time-resolved physics.
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• Phase-�eld models. Reaction-di�usion or phase-�eld models model the interface as a thin
internal boundary/transition layer of small width, the evolution of which is governed by poten-

tial energy functions that have special local minima, see [24, 32]. Since the interface motion

and triple point angle conditions are sensitive to the choice of potential function, these meth-

ods are o�en special purpose. In addition, the interfacial layer must be resolved su�ciently

well for numerical accuracy, which typically requires specialty techniques such as adaptive

mesh re�nement.

• Di�usion-generated methods. Using either a signed distance function for each phase, or
the characteristic function for each phase, di�usion-generated methods evolve a multiphase

interface by alternating between two steps: �rst, a di�usion step, corresponding to convolving

the phase functions with a kernel, and second, a reconstruction step, in which the functions are

rebuilt as signed distance or characteristic functions [24, 33, 34]. �ese methods are typically

limited to mean curvature �ow. In fact, it is possible to prove mathematically that a sequence

of di�usion-followed-by-reconstruction steps converges to multiphase mean curvature �ow

in the limit of the step size going to zero [35, 36]. Numerically, these methods can be made

unconditionally stable by using implicit schemes for the di�usion step, and, as such, can

be used to study long-time behaviour of grain/foam coarsening under curvature �ow. For

example, in-depth statistics for grain coarsening have been performed for over 100,000 phases

in two dimensions [37], and more recently, 130,000 phases in three dimensions [38]. �is

approach has also been generalised to allow almost arbitrary speci�cation of the surface energy

coe�cients [39].

• Other methods and mathematical results. In the case of prescribed interface speeds, such
that each type of interface moves with a constant speed in the normal direction, Taylor [40]

has developed a mathematical approach in two dimensions based on a geometric Huygens’

principle construction. Uniqueness and existence results are derived, however the method

does not lend itself to numerical simulation and there appears to be no natural extension of the

method to three dimensions. Under the same type of motion, an alternative theory has been

developed, called the vanishing surface tension limit [41], which also establishes uniqueness

and existence results.

Other theoretical work includes �nding and classifying all types of two-dimensional self-

similar shrinking, expanding, and stationary curvature �ow in multiphase systems [42]; theo-

retical results for three-dimensional self-similar grain growth [43]; and existence and unique-

ness results for curvature driven motion with the phase-�eld model given by a Allen-Cahn

system [44].

While these previous approaches have been successful in speci�c cases, none meet all of the above

mathematical and numerical goals. For example, front tracking methods which use Lagrangian

geometry, while e�cient, require delicate dimension-dependent programming and ad-hoc surgery

methods during topological change; the use of multiple level set functions o�ers robustness and the

ability to automatically handle topological changes, but these methods have rarely been shown to
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accurately evolve junctions in the correct way; and variational methods, phase-�eld models, and

di�usion-generatedmethods are each limited tomostly geometric types ofmotions,making coupling

to time-resolved physics di�cult.

1.4 New contributions
One of the main contributions of this thesis, developed jointly with Sethian, is a general method for

tracking the interface in multiphase problems, called the Voronoi Implicit Interface Method (VIIM)
[1, 2]. It aims tomeet all of the abovemathematical and numerical goals. In particular, by using a geo-

metric construction based on the Voronoi diagram, and the theory of implicit interface methods, the

VIIM provides a mathematically consistent framework for de�ning the motion of a multiphase inter-

face. Numerically, the VIIM accurately tracks the motion of multi-junction interfaces (in both space

and time), automatically handles complex con�gurations and topological changes in the interface,

accurately calculates geometric quantities, and can be coupled to time-resolved physics. Moreover,

this formulation is independent of the number of spatial dimensions, allowing numerical methods

to be developed for both two-dimensional and three-dimensional problems simultaneously. In this

thesis, the central ideas behind the VIIM are presented, its implementation is discussed, and con-

vergence tests are performed to illustrate its accuracy. Several example applications of the VIIM are

also provided, including constant speed normal driven �ow, advection, and multiphase curvature

�ow with constraints. In addition, new methods are developed for treating surface tension forces

at junctions in multiphase �uid �ow problems, and �uid solvers are developed in which density,

viscosity, and surface tension can be speci�ed on a per-phase basis.

�e second main contribution of this thesis is a new multiscale model for the dynamics of a

soap bubble foam. In this model, the idea of “scale separation” is used to couple macroscale gas

dynamics and rearrangement of bubbles in a foam to �lm rupture and microscale �uid �ow in

the foam’s network of thin-�lm membranes (“lamellae”) and junctions (“Plateau borders”). New

thin-�lm equations for curved lamellae and Plateau borders are derived, and these are coupled

together with �ux boundary conditions which conserve liquid mass. From a numerical perspective,

several new numerical methods are developed to solve these coupled systems of partial di�erential

equations (PDEs), including Lagrangian-based schemes for conservative transport of �uid during

rearrangement, �nite element methods for solving fourth-order nonlinear PDEs on curved surfaces

and junctions, methods to couple discrete solutions of the thin-�lm equations at Plateau borders

and quadruple points, and gas dynamics coupled to the VIIM for bubble rearrangement. Combined

together, the multiscale model leads to a computational framework for studying the interlinked

e�ects of drainage, rupture, and rearrangement in a foam of bubbles.

A third contribution of this work is the development of a new high-quality mesh generation

algorithm for interconnected surfaces. Based on a geometric construction used in the VIIM, the

algorithm can be used to automatically and e�ciently generate high-quality triangulated meshes

which are topologically consistent, guaranteeing that mesh elements at junctions meet precisely with-

out any gaps or overlaps. In this approach, force-based iterative methods are adapted fromDistMesh
[45] and combined with a new locally-adaptive time stepping scheme for increased e�ciency. �is
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algorithmhas been used in the abovemultiscalemodel for foamdynamics, where it has been invoked

tens of thousands of times to generate meshes of evolving interconnected surfaces.

1.5 Outline
�is thesis is organised into three parts. In the �rst part, a review of level set methods is given in

Chapter 2 and serves as a foundation for many of the ideas and numerical technologies used in the

VIIM. �e general VIIM methodology is then presented in Chapter 3, together with a discussion of

its numerical implementation and convergence tests verifying the accuracy of the method. Several

applications of theVIIM in geometric �ow andmultiphase �uid �ow are given inChapter 4. Chapters

3 and 4 have been adapted from the two papers

• R. I. Saye & J. A. Sethian, �e Voronoi Implicit Interface Method for Computing Multiphase

Physics, PNAS, 108(49), 19498–19503 (2011),

• R. I. Saye & J. A. Sethian, Analysis and applications of the Voronoi Implicit Interface Method

Method, J. Comp. Phys, 231(18), 6051–6085 (2012),

and include expanded discussions on the motivation behind the VIIM as well as additional appli-

cations. In the second part, Chapter 5 presents the meshing algorithm for interconnected surfaces,

adapted from [4] which is currently under review. In the last part, the multiscale model of foam

dynamics is derived and discussed in Chapter 6. Numerical methods for the multiscale model and

results are then presented in Chapter 7. Chapter 6 and some of the results of Chapter 7 have been

adapted from the paper

• R. I. Saye & J. A. Sethian, Multiscale Modeling of Membrane Rearrangement, Drainage, and

Rupture in Evolving Foams, Science, 340(6133), 720–724 (2013).

Finally, Chapter 8 concludes with a summary of the VIIM and future directions of research in

multiphase problems.
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Chapter 2

�e Level Set Method

As part of the development of the Voronoi Implicit Interface Method, several ideas from the theory

and practice of level set methods are adopted. Here, we brie�y review the level set method, its

numerical implementation, and some of its mathematical theory. For more details, a general review

of the level set method and associated numerical algorithms can be found in the books [46, 47].

2.1 Introduction
First introduced by Osher & Sethian [23], the level set method provides a robust and accurate

technique for tracking interfaces thatmove under a variety of speed laws. By embedding the interface

as an isosurface of a “level set function”, level set methods recast the problem of moving the interface

into a time-dependent PDE for evolving the level set function. In doing so, the method leads to

many advantages, including the ability to automatically handle topological changes in the interface,

as well as handling singularities in the interface by relying on viscosity solutions of the associated

PDEs. �e method works in any number of spatial dimensions, and can be coupled to speed laws

derived from physics, such as two-phase �uid �ow.

In more detail, let Γ(t) denote the moving interface. Suppose that the interface separates one
region (the “inside”, denoted as Ω+) from another region (the “outside”, denoted as Ω−). We thus

assume that the interface is an orientable n − 1 dimensional closed hypersurface inRn. At time t = 0,
we embed the interface as the zero level set of the function ϕ ∶ Rn ×[0,∞) → R. Usually, this is done
by using the signed distance to the interface, i.e.

ϕ(x , t = 0) = ±d(x , Γ(t = 0)),

where the sign is chosen such that ϕ is positive inside Ω+ and negative inside Ω−. In the level set

method, we require that the evolving interface continues to be the zero level set of ϕ for all time. It
follows that geometric quantities of the interface can be determined through operations acting on

ϕ. For example, the unit normal vector of the interface, pointing from Ω− into Ω+, is n̂ = ∇ϕ/∣∇ϕ∣.
�e requirement that the zero level set of ϕ(⋅, t) coincides with Γ(t) leads to an evolutionary PDE
for ϕ, as follows: suppose Γ is to move in the normal direction with a speed F, and that x = x(t) is



CHAPTER 2. THE LEVEL SET METHOD 10

the position of a particle on the interface. �en d
dt x = Fn̂, while d

dtϕ(x(t), t) = 0, since the particle
is to remain on the zero level set. Applying the chain rule, we thus �nd that

ϕt + F ∣∇ϕ∣ = 0. (2.1)

�is is the master evolution equation for the level set function ϕ, and is sometimes known as the
level set evolution equation. We have thus transformed the problem of determining the motion of
the interface into the problem of solving (2.1), since the evolving interface is implicitly embedded as

the zero level set of ϕ for all time, i.e. Γ(t) = {x ∶ ϕ(x , t) = 0}. �is evolution is quite general in the
sense that the speed law F can take various forms. For example:

• If the interface is to move with constant speed F = 1 in the normal direction, then ϕ satis�es
the �rst order Hamilton-Jacobi equation

ϕt + ∣∇ϕ∣ = 0.

• Alternatively, if the interface is to collapse under mean curvature �ow, so that F = −κ, then ϕ
is the solution of the second-order nonlinear parabolic PDE

ϕt −∇ ⋅ ( ∇ϕ
∣∇ϕ∣

)∣∇ϕ∣ = 0.

Here, we have used the fact that the mean curvature of a level set of ϕ passing through a point
x is given by κ = ∇ ⋅ n̂ evaluated at x.

• Or, more simply, if the interface is advected by a given external velocity �eld u, then ϕ satis�es
the advection equation

ϕt + u ⋅ ∇ϕ = 0.

More generally, the speed F may be any combination of the above types of �ow, or determined
by external factors. For example, in a coupled physics problem, the dynamics of the interface is

determined by solving PDEs in all of the domain, which can depend on the position and geometry

of the interface, jumpboundary conditions across the interface, ormaterial quantities on the interface

itself. A speci�c example is given by a two-phase incompressible �uid �ow problem with surface

tension: the interface between two immiscible �uids is advected by the velocity �eld of the two �uids,

which is governed by the Navier-Stokes equations with a surface tension forcing term that depends

on the position and mean curvature of the interface.

Notwithstanding the generality of the level set method, it is worthwhile to consider a simple

test case, as follows. �is example serves to highlight some of the key mathematical and numerical

properties of the level set method, many of which are capitalised upon in the development of the

VIIM. Consider the two-dimensional problem of expanding two initially separated circles at unit

speed. Eventually, the two circles will intersect and merge together into one. Applying the level set

method to this problem, we de�ne a level set function ϕ at time t = 0, which is the signed distance
to the two-circle interface:

ϕ(x , y, t = 0) =max(r −
√

(x − x1)2 + (y − y1)2, r −
√

(x − x2)2 + (y − y2)2).
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Figure 2.1. From left-to-right, evolution of an interface expanding with unit speed, computed using the level set
method. Illustrated is a contour plot of the evolving level set function ϕ, with the zero level set identified by the
thick black contour; two additional neighbouring level sets are shown as well, and the shaded region indicates Ω+.

Here, (xi , yi) is the centre of circle i with radius r, and the interior of the two circles gives Ω+. To

determine the evolution, we thus solve the evolution PDE given by ϕt − ∣∇ϕ∣ = 0. Figure 2.1 shows
the resulting evolution. As a function of time, a contour plot of ϕ is shown: the thick black curve is
the zero level set of ϕ, and the shading illustrates the set of points where ϕ is positive, i.e. Ω+. Several

features in the ensuing evolution can be observed:

• �e two circles, while separated at time t = 0, merge together into one region, i.e. the interface
changes topology. �is is handled automatically by the level set method: there is no explicit

decision made at any point in time to determine how to merge the two circles. Instead, the

only object being evolved in time is the level set function ϕ, and its evolution is determined
uniquely by the Hamilton-Jacobi equation.

• In the level set method, the evolution of ϕ has no dependence on the fact that the zero level set
is the object of interest – in fact, every level set of ϕ evolves according to the same speed law.
We can see this in Figure 2.1: the zero level set, as well as neighbouring level sets, all expand

with unit speed in the normal direction.

• In particular, and following the last point, we can see that the motion of the neighbouring

level sets of ϕ bracket and follow the motion of the zero level set. �us, if for whatever reason
the location of the zero level set cannot be found, the location of nearby level sets can be used

to approximately reconstruct the position and motion of the zero level set. �is property is

particularly pertinent in developing the VIIM, and will be commented on later.

An additional important property of the level set method is that it is essentially dimension-indepen-

dent: once an n − 1 dimensional hypersurface is embedded in the n-dimensional level set function
ϕ, the evolution equation determines the motion, independent of explicit geometric considerations
such as the representation of a curve as a polygon or a surface as a triangularmesh. �us, independent
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of the spatial dimension of the problem, the level set method automatically handles topological

changes in the interface and is �exible in specifying di�erent types of speed laws.

2.2 Mathematical properties
Before turning to numerical methods for the level set method, it is worthwhile to mention the

mathematical theory of the method, particularly in connection with the general problem of surface1

evolution. In one of its most general forms, the level set evolution equation (2.1) can be written as

ϕt + F(x , t,Dϕ,D2ϕ) = 0, (x , t) ∈ Ω × (0, T). (2.2)

Here2 , F ∶ Ω × [0, T) × Rn × Sn → R is a general “speed function” that may depend on position,
time, and the gradient and second derivatives of ϕ (with respect to x). �e function F encodes, in a
very general form, the desired motion of the interface.3 O�en, F arises speci�cally from a geometric
law of motion, as follows: suppose the surface is to move in the normal direction with a given speed

function V = V(x , t, n̂,∇n̂), depending on space x, time t, the normal vector of the surface n̂, and
curvature information embedded in ∇n̂ (such as mean and Gaussian curvature). �en in a level set
formulation, the normal vector is given by n̂ = ∇ϕ/∣∇ϕ∣, and ∇n̂ can be calculated from a certain
transformation acting on D2ϕ (see [48] for details). Given this V , the resulting F used in (2.2) takes
the following form: whenever p ∈ Rn ∖ {0},

F(x , t, p, X) = ∣p∣V(x , t, p
∣p∣ ,

1

∣p∣(I −
ppT

∣p∣2 )X(I − ppT

∣p∣2 )). (2.3)

For example, in the case of mean curvature �ow, V = −κ = −∇ ⋅ n̂ = −tr(∇n̂), which leads to
F = −tr((I − ppT

∣p∣2 )X). Any F arising from a speed V , as given by (2.3), automatically satis�es certain
scaling properties relating to the fact that F is geometric in nature, and it is these properties which
are important in the theory of level set equations as they apply to surface evolution. Speci�cally, for

a general speed function F, we make the following de�nition.

De�nition 1. We say that the function F is strongly geometric if it satis�es two properties:

• F(x , t, λp, λX) = λF(x , t, p, X); and
• F(x , t, p, X + pqT + qpT) = F(x , t, p, X),

for all λ > 0, p ∈ Rn ∖ {0}, X ∈ Sn, and q ∈ Rn.

In order to develop existence and uniqueness results, a rich theory of viscosity solutions of (2.2) has

been developed [48]. To do this, it is generally assumed that F also satis�es an ellipticity property.
1In this section, “surface” means an n − 1 dimensional surface in Rn .
2Sn denotes the space of real symmetric n × n matrices; Dϕ and D2ϕ denotes the gradient and Hessian of ϕ with

respect to x.
3�emathematical theory of the level set method is mainly concerned with speed functions that depend on ϕ and

its derivatives only. When ϕ is coupled to external PDEs, as in coupled physics problems, theoretical results become
more problem-speci�c.
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De�nition 2. We say that F is degenerate elliptic if for each x ∈ Rn, t ∈ [0,∞), p ∈ Rn ∖{0}, we have
that

F(x , t, p, X) ≤ F(x , t, p,Y)

for all X ,Y ∈ Sn with X ≥ Y. Here, X ≥ Y means X − Y is a positive-semide�nite matrix. If F is
degenerate elliptic, then we say that (2.2) is degenerate parabolic.

Roughly speaking, if F is degenerate elliptic, then existence and uniqueness of solutions to (2.2) are
guaranteed; if F is also strongly geometric, then these solutions correspond to evolving surfaces. As
examples, a surfacemoving in the normal directionwith constant speed has F(x , t, p, X) = ∣p∣, which
is strongly geometric and trivially degenerate elliptic. For mean curvature �ow, using the fact that

tr(AB) ≥ 0 if A ≥ 0 and B ≥ 0, and that I − ppT

∣p∣2 ≥ 0, it follows that F(x , t, p, X) = −tr((I − ppT

∣p∣2 )X) is
also degenerate elliptic, and it is easy to show that it is strongly geometric.

�e theory of level set equations shows how, even in the cases that F involves singularities (as it
does, for example, in mean curvature and Gaussian curvature �ow), that the problem of evolving a

surface via the level set equation (2.2) is well-posed. �e general procedure is to (i) de�ne an initial

level set function ϕ0, which is continuous in Ω, such that its zero level set corresponds to the initial
position of the interface Γ; (ii) solve the Cauchy problem (2.2) with initial value ϕ(x , t = 0) = ϕ0;
and then (iii) de�ne the solution to the surface evolution problem as Γ(t) = {x ∈ Ω ∶ ϕ(x , t) = 0}.
Showing that this procedure makes sense requires mathematical proof and is the subject of many

papers. Here, the main results are summarised. Suppose that

• the initial condition ϕ0 is uniformly continuous,

• the function F is strongly geometric, degenerate elliptic, and continuous on Ω̄×[0, T]×(Rn ∖
{0}) × Sn,

then the level set method has the following properties:

(i) A global solution to (2.2) exists and is unique, in the sense of the viscosity solution.

(ii) �e evolution of the surface Γ(t) is independent of the choice of the initial level set function:
if ϕA

0 and ϕB
0 are continuous and their zero level sets coincide, then, while the solution to the

Cauchy problem (2.2) with initial conditions ϕA
0 and ϕB

0 may be di�erent, the evolving surface

is identical: Γ(t) = {x ∈ Ω ∶ ϕA(x , t) = 0} = {x ∈ Ω ∶ ϕB(x , t) = 0}.

(iii) �e motion of each level set is independent of all other level sets and the value of the level set.

In particular, all level sets of the initial condition move under the same speed law.

For precise mathematical statements of these properties, as well as an in-depth study and review of

the theory of surface evolution using level set methods, the reader is referred to [48].
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2.3 Numerical methods
In the mathematical theory of the level set method, we saw that recasting the problem of moving

an interface into the problem of evolving a level set function leads to many advantages, such as

generality and well-posedness of interface evolution. �ese advantages carry over to a numerical

setting. In particular, implementations of the level set method can take advantage of a wealth of

well-established numerical methods for solving the associated Hamilton-Jacobi and parabolic PDEs.

�ese methods rely in part on the links between interface propagation and hyperbolic conservation

laws [49], and build appropriate schemes to perform shock capturing and upwinding.

A numerical implementation of the level set method involves discretising the level set equation

on a background grid/mesh, together with standard methods to evolve in time, such as the forward

Euler method. Although the method can work in a variety of discrete settings, a common approach

is to use a regular Cartesian grid with cell size ∆x ×∆y ×∆z together with �nite di�erence methods.
Here, we state some of the simplest schemes for solving the level set equation. �ese are written

in three dimensions, with a grid point indexed by i jk and time step labelled by superscript4 n;
adaptation to di�erent spatial dimensions is straightforward.

• For the Hamilton-Jacobi equation ϕt + F ∣∇ϕ∣ = 0, where F = F(x , t) does not depend on
derivatives of ϕ, one of the simplest �rst-order schemes is

ϕn+1
i jk = ϕn

i jk − ∆t[max(Fi jk , 0)∇+ +min(Fi jk , 0)∇−],

where

∇± = (max(D∓x
i jk , 0)2 +min(D±x

i jk , 0)2

+max(D∓y
i jk , 0)

2 +min(D±y
i jk , 0)

2

+max(D∓z
i jk , 0)2 +min(D±z

i jk , 0)2)
1/2
,

and D±
i jk is short-hand for the standard forward and backward �nite di�erences, e.g. D

+x
i jk =

(ϕi+1, j,k − ϕi jk)/∆x, etc. For stability, the CFL condition for this scheme requires that Fi jk∆t ≤
min(∆x , ∆y, ∆z) for all grid points i jk.

• A �rst-order upwinding scheme for the advection equation ϕt + u ⋅ ∇ϕ = 0 with u = (u, v ,w)
is

ϕn+1
i jk = ϕn

i jk − ∆t(max(un
i jk , 0)D−x

i jk +min(un
i jk , 0)D+x

i jk)

+max(vni jk , 0)D
−y
i jk +min(v

n
i jk , 0)D

+y
i jk

+max(wn
i jk , 0)D−z

i jk +min(wn
i jk , 0)D+z

i jk).

A CFL condition for this scheme is to require maxi jk ∣ui jk ∣∆t ≤min(∆x , ∆y, ∆z).
4�e superscript n denoting the time step is also used to denote the spatial dimension; distinguishing these should

be clear from context.



CHAPTER 2. THE LEVEL SET METHOD 15

• For the second-order parabolic PDE for mean curvature �ow, ϕt −∇⋅( ∇ϕ
∣∇ϕ∣)∣∇ϕ∣ = 0, no shock

capturing schemes are required. Instead, the mean curvature can be calculated with central

�nite di�erence methods. One possibility for evaluating κ is by using expanded expressions,
such as the two-dimensional formula

κ =
ϕxxϕ2y − 2ϕxϕyϕxy + ϕyyϕ2x

(ϕ2x + ϕ2y)3/2
,

together with approximation of each of the terms using standard �nite di�erences. An alter-

native method, which works in any number of spatial dimensions, is as follows. First, the

unit normal n̂ is evaluated at the centre of each computational grid cell, by evaluating ∇ϕ at
i + 1

2
, j + 1

2
, k + 1

2
using standard central �nite di�erences, and normalising to approximate

n̂i+ 1
2
, j+ 1

2
,k+ 1

2

. Second, calculate ∇ ⋅ n̂ at grid points, using standard central �nite di�erences op-
erating on n̂i± 1

2
, j± 1

2
,k± 1

2

. �is results in a �nite di�erence scheme for evaluating κi jk = ∇ ⋅ ( ∇ϕ
∣∇ϕ∣),

and a forward Euler method yields

ϕn+1
i jk = ϕn

i jk + ∆t κn
i jk ∣∇ϕ∣ni jk

where ∣∇ϕ∣ni jk can be calculated either by averaging the gradients found in the �rst part above,
or by using central �nite di�erences. For this forward Euler implementation, roughly speaking,

the time step should satisfy ∆t < h2/2N for stability, where h is the smallest grid cell size and
N is the number of spatial dimensions.

�ese represent some of the simplest schemes for solving the level set equation. More involved

schemes include: essentially non-oscillatory andweighted essentially non-oscillatory (ENO/WENO)

schemes that yield high spatial accuracy whenever the solution is smooth with reduced numerical

di�usion at shocks; high order total variation diminishing Runge-Kutta (TVD-RK) methods for

increased accuracy in time; and implicit/semi-implicit schemes for increased stability. For more

details of these methods, the reader is referred to [46, 47] and the references therein.

In a straightforward implementation of the level set method, the above level set updates are

computed at every grid point in the domain. A useful technique for improving the e�ciency of

the level set method results from “narrow banding”, �rst introduced in [50]. In this approach, the

computation of the level set updates is con�ned to a narrow band surrounding the zero level set of

ϕ; usually this narrow band has a �xed number of grid cells on either side of the interface (say, 10
grid cells). Depending on interface geometry, the number of grid points inside the narrow band can

be signi�cantly fewer than the total number of grid points in the computational domain, leading to

considerable improvements in e�ciency. However, narrow banding requires a more complicated im-

plementation and needs some type of narrow band data structure. Onemust also be careful to ensure

that numerical artifacts created at the boundary of the narrow band do not arti�cially a�ect the mo-

tion of the interface – avoiding this problem usually entails periodically reinitialising/reconstructing

both the level set function and its narrow band. �is can be done with a reinitialisation method,

which is discussed now.
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2.4 Reinitialisation
Although the mathematical theory of level set methods allows for quite general level set functions, in

practice, it is o�en the case that using signed distance functions gives the best results. �is is a natural

choice, since the signed distance function is well-behaved, in the sense that level sets are equidistant,

and knowing the distance to the interface can be advantageous in some problems. For example, in a

two-phase �uid �ow problem, surface tension can be written as a body force through the use of a

Dirac delta function supported on the interface. In a numerical implementation of surface tension,

the delta function is “smoothed” onto the background grid using the level set function ϕ; ensuring
that the amount of smoothing is consistent across the entire domain requires that ϕ is approximately
a signed distance function.

However, for many types of �ow, it is rarely the case the level set function stays a signed distance

function. One possible solution is to modify the speed function or velocity �eld, so that ϕ remains a
distance function – this can be done through the use of “extension velocities”, which are discussed

in the next section. A second solution is to periodically reinitialise ϕ as a signed distance function.
In a reinitialisation algorithm, the zero level set of ϕ, which is implicitly de�ned by some sort of
interpolation of the values of ϕ at grid points, is located and used to calculate the signed distance to
{ϕ = 0} on the background grid. �e computed signed distance function is then used to replace ϕ.
Several possibilities exist for numerical algorithms to reinitialise a level set function as a signed

distance function. �ese range from iterative procedures that solve an auxiliary PDE which attempts

to freeze the location of the interface, andwhose steady-state solution is a signed distance function, to

highly accurate methods that use high-order polynomial interpolation to locate the interface. Here,

a high-order and successful reinitialisation method developed by Chopp [51] is brie�y described. It

uses a combination of bicubic (in 2D) and tricubic (in 3D) interpolation, a Newton-based procedure

for �nding closest points, and the Fast Marching Method [52]. �e method essentially consists of

two steps: given a su�ciently smooth scalar function ψ ∶ Rn → R,

1. Compute the signed distance to {ψ = 0} in an initial band: For each grid cell, the sign of ψ at
the vertices of the grid cell are examined. If the signs are not all the same, then the grid cell

is identi�ed to contain the zero level set of ψ. In each such grid cell, ψ is interpolated using a
C1 bicubic interpolant (in 2D) or tricubic interpolant (in 3D), designed to interpolate ψ at the
grid points of the reference cell, using a 4 × 4 stencil (in 2D) or 4 × 4 × 4 stencil (in 3D). Next,
at each of the vertices of the reference grid cell, the closest point to the interpolated interface

is found, using a Newton-based iterative method. In more detail, denoting the interpolant

by p(x), if x0 is the reference point (one of the vertices of the reference cell), then at each
iteration, two step directions are calculated with

δ1 = −p(xk)
∇p(xk)
∣∇p(xk)∣2

, and

δ2 = (x0 − xk) − (x0 − xk) ⋅ ∇p(xk)
∇p(xk)
∣∇p(xk)∣2

,
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and are used to update xk+1 = xk + δ1 + δ2. Here, δ1 is a step direction which moves the
iterate towards the zero level set of p, while δ2 is a step direction which moves the iterate in a
tangential direction in order to �nd the closest point on the interface. �e iterations continue

until they converge, measured using some prescribed threshold. For su�cient accuracy, this

typically requires as few as 1–5 iterations. Once converged, the closest point from x0 to the
zero level set of p has been found, from which the distance can easily be calculated. For more
details on this Newton-based method, see [51].

2. Execute the Fast Marching Method. At the end of the �rst step, the signed distance to the
interpolated zero level set of ψ is known in a small initial band of grid points on either side
of the interface. �is is then input into the Fast Marching Method [52], which is a Dijkstra-

like ordered upwind �nite di�erence scheme for e�ciently solving the full Eikonal equation

outside this initial band. A two-dimensional �rst order scheme solves

max(−D+x
i j ϕ,D

−x
i j ϕ, 0)

2 +max(−D+y
i j ϕ,D

−y
i j ϕ, 0)

2 = 1. (2.4)

By capitalising on the �ow of information in the Eikonal equation, the Fast Marching Method

e�ciently solves the upwinded discretisation of the Eikonal equation by marching outwards

from the interface, solving (2.4) at each grid point in order of proximity to the interface. Using

a min-heap data structure to determine the correct ordering, the computational complexity

of the Fast Marching Method is O(N logN), where N is the number of grid points in the
domain. Furthermore, this approach can easily be used to restrict distance calculations to a

narrow band, by stopping themarching once a band radius has been reached. For more details,

including higher-order versions, see [46, 51].

In summary, the Chopp algorithm, in combination with a high-order Fast Marching Method, can

compute a third-order5 accurate signed distance function whenever the interface is smooth, and is

robust and �rst-order in the case that the interface has sharp corners.

2.5 Extension velocities
In a level set method, the speed function F must be de�ned everywhere in the domain, or at least in a
narrow band. However, in some moving interface problems, the speed function may only be known

at the interface itself, in which case it is necessary to de�ne and build a speed function away from

the interface. Such an “extension velocity”, �rst introduced in [53], can be bene�cial in a numerical

implementation of the level set method. For example, in some �uid �ow problems, the velocity of

the �uid away from the interface can be quite di�erent to the velocity at the interface, which may

cause irregularities in the evolving level set function. In this case, extending the �uid velocity o�

5Distances calculated in the initial band are third-order accurate whenever the interface is smooth, and �rst-order

accurate at corners. �e accuracy of the Fast Marching Method determines the global accuracy of the signed distance

function. In particular, if a second order Fast Marching Method is used to calculate the signed distance function in a

narrow band of a �xed number of grid cells on either side of the interface, then the distance is in fact third-order in this

narrow band (whenever the interface is smooth).
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the interface can improve results, such as improved conservation of mass. Extension velocities can

also be used to maintain the signed distance property of the level set function, leading to increased

numerical accuracy.

�e basic idea is as follows: given a grid point x, an extension speed Fext is de�ned at x to be the
value of the speed F(cp(x)) at the closest point cp(x) on the interface. �us, the extension speed
is constant along characteristics of the Eikonal equation – these characteristics are straight lines

emanating from the interface in the normal direction. If ϕ is a signed distance function, it follows
that Fext satis�es the equation

∇Fext ⋅ ∇ϕ = 0. (2.5)

It is possible to show that if Fext satis�es (2.5), and if ϕt + Fext∣∇ϕ∣ = 0, then ∂
∂t ∣∇ϕ∣2 = 0. �us, if ϕ is

initially a signed distance function, then it remains a signed distance function. An e�cient method

of constructing such an extension velocity, �rst developed in [54], is as follows. At each time step:

1. Determine the speed F at the interface via geometry, physics, �uid �ow, etc.

2. Given a level set function ψ whose zero level set is the interface to be extended o�, extend F
by solving (2.5), where ϕ is the signed distance to the zero level set of ψ. �is can be calculated
e�ciently using the same marching approach used in the Fast Marching Method, together

with a closest point algorithm, such as the one used by the Chopp algorithm described in the

previous section. In more detail:

(i) At each grid point in a small initial band surrounding the zero level set of ψ, �nd the
closest point to the zero level set of ψ. For example, we could use the bicubic/tricubic
interpolation and Newton-based iteration scheme described in the previous section.

(ii) Use these closest points to evaluate Fext(x) = F(cp(x)) in the same initial band.
(iii) Lastly, using the FastMarchingMethod idea, march outwards from the initial band, such

that each grid point is visited in order of proximity to the interface. At each grid point,

(2.5) is solved by using the same upwinded �nite di�erence stencil for the gradient which

was found when solving (2.4).

By marching in this fashion, information is e�ciently transported away from the interface to build

the extension. In the original extension method introduced in [54], step 2(iii) above was performed

simultaneously with reinitialising ψ as a signed distance function (even if the resulting signed dis-
tance function is discarded at the end of the procedure). An alternative method is to assume that

ψ is already a signed distance function, in which case it is straightforward to order grid points by
proximity to the interface. Finally, we note that the above procedure calculates an extension speed.

Using the same algorithm, it is straightforward to calculate an extension velocity with the same

properties. In other words, an extension velocity of u = (u1, u2, . . .) can be constructed such that uext
coincides with u on the interface, and solves ∇uext,i ⋅ ∇ϕ = 0 at each time step. It is not hard to show
that under such an extended velocity �eld, if ϕ is initially a signed distance function and solves the
advection equation ϕt + uext ⋅ ∇ϕ = 0, then ϕ remains a signed distance function. For more details
on extension algorithms and their uses, see [46, 54, 55].
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Chapter 3

�e Voronoi Implicit Interface Method

In this chapter, the Voronoi Implicit Interface Method (VIIM) for tracking multiple interconnected

interfaces is presented. Starting with the main ideas of the VIIM, the mathematical de�nition of

the method is described, followed by details on its numerical implementation. Convergence is then

tested with a number of problems, ranging from two-phase problems to check consistency with

the level set method, to multi-junction problems in which Young’s law and von Neumann’s law are

veri�ed. �e main features of the VIIM are then summarised, before several applications are given

in the next chapter.

3.1 Central ideas
In the previous chapter, we reviewed the basic level set method for evolving an interface which

separates two regions. In the level set method, the sign of the level set function determines which

region a point x is in. However, in a multiphase problem, where three or more di�erent regions can
meet at a junction, it is no longer possible to characterise regions based on the sign of a function.

Additional complexities with multiphase problems include:

• Junctions, such as triple points in 2D and triple lines and quadruple points in 3D, represent a

strong singularity in the interface.

• Knowing precisely where these junctions move is not always straightforward. For example, in

a curvature �ow problem, the motion of triple points is intricately coupled to all phases.

• Topological changes in the interface, as phases collapse and change neighbourship with other

phases, are di�cult to characterise explicitly. For example, the number of di�erent ways

topological changes can occur in 3D is vast and di�cult to enumerate; in four and higher-

dimensions, topological changes are near impossible to describe explicitly.

On the other hand, from the level set method, it is clear that

• Evolving a surface which is orientable, i.e. one in which there is a notion of what is “inside”

and “outside” the surface, leads to a well-posed problem.
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• Implicitly representing surfaces as level sets of a higher-dimensional function yields many

advantages, including the ability to automatically handle topological changes, as well as corners

in the interface. Furthermore, by using the level set evolution equation, all level sets move

according to the same speed law. �is leads to the property that the motion of a level set is

bracketed by the motion of the surrounding neighbouring level sets.

�ese observations are key to the development of the Voronoi Implicit Interface Method. �e core

idea in the VIIM is to de�ne the motion of the interface in a multiphase system by using the motion

of nearby hypersurfaces. �ese hypersurfaces are obtained as the set of points that are a small but

�xed distance away from the interface, and form a collection of individual hypersurfaces that exist

solely in one phase. While the physical interface in a multiphase system can have junctions, these

nearby surfaces are remarkably well behaved as the system evolves. By using an unsigned distance
function to the interface, denoted as ϕ, these nearby surfaces can be characterised as the є-level
sets of ϕ, where є > 0 is a small parameter. In the VIIM, these є-level sets move, and the motion of
the interface is reconstructed from the position of these nearby surfaces, using a simple geometric

construction known as the Voronoi interface.

3.2 �e Voronoi interface
Recall that the Voronoi diagram of a set of m nodes in Rn is a decomposition of Rn into m di�erent
cells with the property that all the points in a given cell are closer to one speci�c node than any

other. �e boundary between these cells is therefore the set of points that are equidistant to at least

two nodes, and no closer to any other node. In more generality, instead of nodes, we may have a

collection of non-overlapping regions in Rn. We can still obtain a decomposition of Rn such that all

the points in a particular cell are closer to one particular region than any other; see Figure 3.1 for a

two-dimensional illustration. �e Voronoi interface is de�ned to be the boundary of these cells, and
is denoted by ΓV .

Γ13

Γ12

Γ23

Ω3

Ω1

Ω2

Figure 3.1. (Left) Voronoi diagram of three points in the plane. (Right) The Voronoi interface ΓV = Γ12 ∪ Γ13 ∪ Γ23
corresponding to three given regions Ω1, Ω2, and Ω3.
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3.3 Mathematical formulation
Using the geometric concept of the Voronoi interface and combining the main ideas of the VIIM,

the basic approach is as follows. First, the interface of a multiphase system is embedded as the zero

level set of the unsigned distance function ϕ to the interface. �us

ϕ(x , t = 0) = d(x , Γ(t = 0)).

In addition to specifying the distance, we also specify an indicator function χ that identi�es which
region a point x is in. For example, if x is in “phase one”, then χ(x) = 1. We also embed the speed
function F that moves the interface with an “extension velocity” de�ned on and away from the
interface. As per the main VIIM idea, nearby level sets of the interface are moved for a small amount

of time ∆t. �is is achieved by solving the level set evolution equation

ϕt + F ∣∇ϕ∣ = 0

for a short time ∆t. Under this motion, and depending on F and discretisation e�ects, the zero
level set of ϕ will generally not remain a codimension-one surface. However, for a su�ciently small
time, nearby level sets (with value є > 0, say) will remain codimension-one surfaces. One can
then reconstruct the interface a�er time ∆t as the Voronoi interface of these nearby level sets, and
from this, reconstruct the unsigned distance function and indicator function χ. �e method is
summarised in Algorithm 1.

Algorithm 1�e Voronoi Implicit Interface Method
Given a multiphase system, calculate the initial unsigned distance function ϕ

and indicator function χ.
for time step n = 0, 1, 2, . . . do
De�ne a speed function F, which may depend on interface geometry, physics, etc.
Evolve the є-level sets of ϕ by solving ϕt + F ∣∇ϕ∣ = 0 for one time step ∆t.
Reconstruct ϕ and χ by using the Voronoi interface of the updated є-level sets.

3.3.1 One-dimensional example
To illustrate the method, consider a one-dimensional example, as shown in Figure 3.2. Here, an

interface, which is a single point located at X(t) at time t, moves with speed F(x , t), so that d
dtX(t) =

F(X(t), t). At t = 0, the zero level set of the unsigned distance function ϕ corresponds to the initial
location of the point, and is at an extremum. However, at the nearby level sets with value є, the
distance function is smooth. We can thus update the distance function everywhere away from the

zero level set in a straightforward manner, similar to a level set method. What remains is to obtain a

suitable de�nition of the zero level set at time ∆t, in such amanner that it corresponds to the location
of the interface at this time. We can do so by de�ning the zero level set as the point equidistant from
the two є-level sets. �is corresponds to constructing the Voronoi interface from the є-level sets.
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є

є level set є level set

zero level set corresponding to X(t = 0)

F

ϕ(x , t = 0)

x

є

є level set є level set

zero level set should correspond to interface at ∆t

ϕ(x , t = ∆t)

x

Figure 3.2. Evolution of an unsigned distance function ϕ for an interface in one dimension.

3.3.2 Two-dimensional example
�e same Voronoi reconstruction procedure works in two and higher dimensions, and in the pres-

ence of junctions. To illustrate, a two-dimensional example is shown in Figure 3.3. In Figure 3.3(a),

a three-phase system with a triple junction is shown. �e unsigned distance function is then con-

structed, as illustrated in Figure 3.3(b), which shows a contour plot of ϕ. Nearby surfaces, as deter-
mined by the є-level sets of ϕ, are isolated in Figure 3.3(c). Note that the є-level sets are orientable
and exist solely in one phase. In this two-dimensional example, curvature �ow is used to illustrate

motion – a�er a time ∆t, the є-level set belonging to phase two “rounds out” more than the other
є-level sets, since it initially had a sharper angle. A�er a time ∆t, Figure 3.3(d) illustrates how the
є-level sets have moved. Finally, as per the VIIM idea, the interface is reconstructed from the є-level

χ = 1

χ = 2

χ = 3

interface
ϕ = 0

ϕ > 0

ϕ = є Voronoi interface

(a) Initial system (b) Unsigned distance function

(c) є-level sets (d) After evolution

Figure 3.3. Evolution of a three-phase system for curvature flow in two dimensions.
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sets using the Voronoi interface, as shown in Figure 3.3(d). Note that the Voronoi interface smoothly

reconstructs the junction. Additionally, the triple junction has moved to the right.

3.3.3 Mathematical formulation in multiple dimensions
We can now de�ne the evolution of a multiphase system in any number of dimensions. Let Vє(ϕ)
be the operator that reconstructs the unsigned distance function from the є-level sets of ϕ using the
Voronoi interface. Let E∆t(ϕ) be the evolution operator which evolves a given level set function ϕ
for a time step ∆t. Fix a particular �nal time T > 0 and let n be the number of time steps required to
reach that time, so that ∆t = T/n. For some є > 0, we apply n time steps, each step consisting of an
evolution and a reconstruction. In the limit as n goes to in�nity, this de�nes an є-smoothed solution
ϕє, given by

ϕє(t = T) = lim
∆t→0,n→∞

(Vє ○ E∆t)n(ϕ0), (3.1)

where ϕ0 is the initial condition. Note that this construction de�nes ϕє at intermediate times 0 ≤
t ≤ T as well as the �nal time T . In the VIIM, the є-level sets are used as the nearby surfaces to
determine the interface evolution. We take the limit of these є-smoothed solutions as є → 0 from
above, to obtain a solution given by

ϕє=0+ = lim
є→0+

ϕє . (3.2)

�e formal de�nition of multiphase interface evolution, as de�ned by the VIIM algorithm, is there-

fore taken to be the solution ϕє=0+ given in (3.2).

3.3.4 Additional comments
A few mathematical comments are in order at this point. First, the above formulation describes a

sequence of problems, one for each є > 0, such that in the limit є → 0, one obtains the mathematical
de�nition of multiphase evolution. Second, while this formulation applies to multiphase problems

with high order junctions (e.g. triple points, triple lines, etc.), it is close to the standard level set

method in the case of only two phases.

It is suggested here that the above mathematical formulation leads to a well-posed de�nition

of the solution to multiphase interface evolution. As shown in the results below, it does indeed

provide a solution that is physically relevant. �is formulation may serve as a possible way to analyse

mathematically these �ows, however the mathematical analysis is not straightforward. For example,

in the theory of level set methods, the comparison principle is a fundamental result in proving

various important statements about the well-posedness of surface evolution, such as the statement

that if a level set is contained by another level set at time t = 0, then it remains contained for all time.
For a multiphase problem, this statement does not have an immediate analogue, essentially because

of the extra coupling existing at junctions. Developing mathematical theory to accompany the VIIM

is the subject of current work.
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3.4 Discrete approximations of the є = 0+ limit
�e goal now is to build numerical approximations to the formal de�nition given by the є = 0+
limit in equations (3.1) and (3.2). In this section, di�erent approaches of discretising space and

time to �nd the limit are discussed, as well as the key algorithmic components needed to achieve

this. Although quite general numerical schemes are possible, here we focus on an implementation

that uses rectangular grids, together with standard �nite di�erence approximations to spatial and

temporal derivatives. �us, many of the standard techniques used in level set methods can be

adopted. Other approaches, such as �nite elements, unstructuredmeshes, semi-Lagrangianmethods,

etc., are also possible.

3.4.1 Spatial and temporal discretisations of the formal є = 0+ limit
�e basic numerical approach for the VIIM is as follows. Given a rectangular grid with cell size h,
the unsigned distance function ϕ and indicator function χ are de�ned and evaluated on the grid at
time t = 0. Once the appropriate speed law is de�ned, we follow the natural procedure suggested
by the VIIM: at each time step, the function ϕ is evolved for a small amount of time ∆t, and is
then reconstructed as the unsigned distance function corresponding to the Voronoi interface of

the є-level sets. In particular, we assume that the time step ∆t is suitably linked to h, as is usually
required for stability. A numerical implementation of the VIIM contains an additional parameter є,
corresponding to the choice of which neighbouring level sets to use to rebuild the unsigned distance

function.

Given this discretisation with cell size h and time step ∆t, we write our formal de�nition in more
detail in two steps as

ϕє = lim
n→∞,h→0

(V h
є ○ Eh

∆t)n(ϕ0), (3.3)

followed by the limit

ϕє=0+ = lim
є→0+

ϕє . (3.4)

Here, V h
є is the operator that reconstructs the unsigned distance function on a grid with size h (using

the Voronoi interface of the є-level sets of ϕ), and Eh
∆t is the evolution operator that evolves a given

level set function on the grid for a time step ∆t. �e formal de�nition, given by ϕє=0+ , is the limit

as є → 0+ of the limit as the space and time discretisations ∆t and h go to zero. Here, we discuss
several di�erent ways to approximate this limit ϕє=0+ .

(i) �e formal limit of a limit.

A discretised version of the formal limit given in (3.4) is to �x є > 0, compute a converged (in
space and time) solution corresponding to the є-smoothed solution given in (3.3), and then
examine the limit as є → 0+ to compute ϕє=0+ . More precisely:

• Each choice of є, ∆t, and h gives a solution ϕ∆t,hє .

• For some �xed є, we compute the converged limit ϕє = lim(∆t,h)→0 ϕ∆t,hє .
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• We then compute the limit of ϕє as є → 0+ to obtain ϕє=0+ .

Important aspects of this approach are:

• �e physical region between the є-level sets and the multiphase interface is resolved as
the grid cell size goes to zero.

• If a narrow band is used to reduce the computational complexity, the size of the narrow

band increases as the grid is resolved, since it must cover all of the domain between the

є-level sets and the interface.

In the convergence tests below, this approach is used to verify that ϕє does indeed converge to

a reasonable solution of multiphase interface evolution as є → 0+.

(ii) �e coupled limit: couple є and h, such that є > 2h.
In this approach, є is coupled to h, such that є is a constant multiple of h. �is approach sends
є → 0 simultaneously with ∆t, h → 0, and hence di�ers from the formal “limit of a limit” in
the strict mathematical de�nition. As a result, the same grid resolution between the є-level
sets and the interface is always used. �is is, of course, much less laborious than looking at

the sequence of converged є-smoothed solutions in the approach (i) above. More precisely:

• Each choice of ∆t and h gives a solution ϕ∆t,hє(h). Here, we write є(h) to emphasise that the
choice of h determines the value of є.

• We then study convergence as (∆t, h) → 0 to obtain ϕє=0+ .

Important aspects of this method are:

• Setting є to be a multiple of h means that the number of grid cells between the interface
and the є-level sets remains constant as h → 0.

• Typically, є is chosen to satisfy є > 2h, so that any �nite di�erence stencils used to evolve
the unsigned distance function stay completely in one phase and do not reach across the

interface.

In the tests below, several test cases for this coupling are used to verify that coupling the two

limits in this fashion does, in fact, obtain the same solution as the formal de�nition.

(iii) Exchanging limits: �nd the limit ϕ∆t,hє=0+ , and then construct the grid/time converged limit as
(∆t, h) → 0.
In this approach, the limits in (3.3) and (3.4) are exchanged. More precisely,

• Compute the limit limє→0+ ϕ∆t,hє to �nd ϕ∆t,hє=0+.

• Now, take the limit as (∆t, h) → 0 to produce ϕє=0+ = lim(∆t,h)→0 ϕ∆t,hє=0+.

Important aspects of this version are:
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• �is approach uses the motion of the є-level sets, in the limit є → 0+. �is limit can be
evaluated directly rather than through a limiting process.

• One approach is to use one-sided di�erences to make sure that �nite di�erence stencils

used in the level set update stay completely in one phase and do not reach across the

interface.

• Alternatively, one can build suitable extensions of the unsigned distance function across

the interface. In this fashion, �nite di�erence stencils can reach across the interface

without seeing discontinuities in the unsigned distance function. One of the simplest

methods to perform this extension is to use the signed distance function of each phase.

However, the resulting implementation essentially requires using data structures to rep-

resent multiple level set functions, each with their own narrow band; this requires addi-

tional programming complexity compared to methods (i), (ii) above, which can use a

single unsigned distance function.

In the tests below, it is veri�ed that this approach also obtains the same solution as the formal

de�nition.

3.4.2 Key algorithmic steps
Here we discuss some of the main steps in �nding the above discrete solutions. In each of the ap-

proaches presented, a key component is rebuilding the unsigned distance function from the Voronoi

interface. �is can be split into two steps: �nding the Voronoi interface, and then rebuilding the

unsigned distance function from it.

�eVoronoi interface

Given a function ϕ and an indicator function χ, the �rst step is to characterise the Voronoi interface
ΓV from the є-level sets.

• Geometric construction: Consider the hypersurfaces corresponding to the є-level sets, that is

Γє = {x ∈ Ω ∶ ϕ(x) = є}.

�ese are curves in two dimensions and surfaces in three dimensions. We shall further classify

these є-level sets according to the phase in which they are located, and hence de�ne

Γє,i = {x ∈ Ω ∶ χ(x) = i and ϕ(x) = є}.

�en, we can de�ne the Voronoi interface ΓV as the set of all points x that are equidistant to at
least two di�erent є-level sets belonging to di�erent phases, and no closer to any other є-level
sets. In other words, we de�ne

ΓV = {x ∈ Ω ∶ ∃ i ≠ j such that d(x , Γє,i) = d(x , Γє, j) ≤ d(x , Γє,k) for all k ≠ i , j}. (3.5)
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• Construction via solution of Eikonal equations: A related formulation is to pose a boundary
value Eikonal equation problem, with zero boundary values on the є-level sets. �is can be
done in one of two ways: one can either pose a single Eikonal equation such that

∣∇ψ∣ = 1, ψ(x) = 0 if x ∈ Γє .

where ψ is negative inside Γє (i.e., where ϕ > є), and then �nd the Voronoi interface ΓV as the
maximal ridge of ψ between two di�erent phases. Finding the ridge requires some care. A
simpler alternative is to solve the Eikonal equation for each Γє,i ,

∣∇ϕi ∣ = 1, ϕi(x) = 0 if x ∈ Γє,i ,

choosing a solution such that ϕi is positive inside Γє,i , and then the Voronoi interface is given

by

ΓV = {x ∈ Ω ∶ there exists i ≠ j such that ϕi(x) = ϕ j(x) ≥max
k≠i , j

ϕk(x)}. (3.6)

In either case, the solution of the Eikonal equation(s) need only be computed in a small narrow

band necessary to �nd the Voronoi interface. �e size of this narrow band is directly related

to the choice of є.

Reconstructing the unsigned distance function

A�er �nding the Voronoi interface, the next step is to reconstruct the unsigned distance function.

Here, for every point in the domain, we need to �nd the distance to the Voronoi interface ΓV . �is

is found by again solving an Eikonal equation, namely

∣∇ϕ∣ = 1, ϕ(x) = 0 if x ∈ ΓV .

Finally, we rebuild the indicator function χ which assigns the correct phase to each point by keeping
track on which side of ΓV the point belongs. �is is done by utilising the information used to �nd

the Voronoi interface: when using a single Eikonal solve, this is naturally done through a traceback

procedure; when multiple Eikonal equations are used, as in (3.6), then the new indicator function is

given by χ(x) = argmaxi ϕi(x).

Choice of algorithm

Several possibilities exist for performing the above calculations. For example, the є-level sets could
be extracted explicitly as a polyhedral mesh using standard contouring algorithms, and then used

in distance calculations. �e Voronoi interface is most naturally de�ned in an implicit fashion, as

in (3.5) or (3.6). An explicit method of �nding ΓV is to extract it as a polyhedral mesh using the

algorithm given in §3.8 below, a�er which the distance to ΓV may be calculated as the minimum

distance to the mesh. While such explicit approaches are possible, it is o�en advantageous to use

implicit approaches instead. Implicit methods do not require that є-level sets or ΓV be explicitly
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constructed, can be programmed more easily in 2D, 3D, and higher dimensions, and they o�en lead

to higher order accuracy.

An implicit approach for rebuilding the unsigned distance function is based on solving the

Eikonal equation. �us, the core tool is a robust, fast, and accurate reinitialisation algorithm, which

solves the Eikonal equation on a �xed background grid. In this work, the reinitialisation algorithm

developed by Chopp [51] is extensively used. �is method utilises bicubic (in 2D) and tricubic (in

3D) interpolation to accurately initialise the Fast Marching Method [52]. More details are given in

§2.4 of Chapter 2. �is method is used in two steps for rebuilding the unsigned distance function.

First, the Chopp algorithm is used to calculate the distance to the є-level sets on the grid. From this,
the formulation (3.6) is used to de�ne a second function ψ whose zero level set corresponds to ΓV ,
which is then input into the Chopp algorithm, to calculate the distance to ΓV .

3.4.3 Reconstruction interval
In the mathematical de�nition of the VIIM, the unsigned distance function ϕ and indicator function
χ are reconstructed at the end of each time step. In a numerical setting, it can be advantageous to
reconstruct less frequently, say every ten or so time steps. �ere is a tradeo� between the temporal

errors incurred in delaying reconstruction, compared to spatial errors incurred due to the sharp

corners o�en present in the unsigned distance function of a multiphase system. �e precise recon-

struction interval that gives the best results depends on the exact application and the time step being

used. For example, in a �uid �ow problem in which the surface tension time step constraint required

for stability leads to rather small time steps, it can be worthwhile to reconstruct every 20–30 time

steps. More comments about the reconstruction interval are provided in the convergence tests.

3.5 Adding physics and evaluation of the speed function
Naturally, an appropriate speed function F must be speci�ed as part of the multiphase interface evo-
lution. In geometric types of �ow, the speed can be calculated from position, normal, and curvature

quantities evaluated from derivatives of the distance function ϕ, similar to level set methods. When
coupled to physics, the speed function is determined by solving the relevant equations of motion,

where the location and geometry of the Voronoi interface can provide jump conditions, source terms,

etc. Typically, the solution of these equations requires solving PDEs throughout the entire domain.

When explicit extraction of the interface is required in order to evaluate any of the quantities that

serve as input to these PDEs, a natural meshing algorithm described below can be used. �e �nal

speed function F must be de�ned everywhere (or at least in a narrow band surrounding the in-
terface); depending on the problem at hand, it can be advantageous to use extension velocities, as

described in §2.5 of Chapter 2.



CHAPTER 3. THE VORONOI IMPLICIT INTERFACE METHOD 29

3.6 E�ciency
A natural method to improve the e�ciency of the VIIM is to use the idea of narrow banding; see

Chapter 2. In particular, the unsigned distance function ϕ is only de�ned and updated in an adaptive
narrow band of size k grid cells on either side of the interface. Together with the Eikonal equation
solver that uses the Fast Marching Method, the operation count for the numerical VIIM algorithm

is O(kN logN) per time step, where N is the number of grid cells containing the interface. In
particular, using the narrow banding approach, the computational complexity depends only on the

measure of the interface, and does not directly depend on the number of phases which de�ne that

interface.

3.7 Creation and destruction of phases
�eVIIMprovides a straightforwardway to add or create new phases. Such a new phasemay arise for

several reasons, for example through spontaneous nucleation via a chemical reaction, solidi�cation,

or when parts of a liquid begin to boil. Suppose, at some time t in the evolving calculation, one wants
to create a new phase in the multiphase system. �e boundary of this new phase is then supplied as

a boundary condition when the unsigned distance function is reconstructed; all grid points within

the new phase are then assigned a new value of the indicator function.

An analogous process occurs for the destruction of phases. A common way that this occurs is

due to collapse of the region itself, such as in curvature �ow. �is is naturally handled through the

Voronoi reconstruction: as the region shrinks, its є-level set ceases to exist at some point in time and
then does not contribute to the Voronoi reconstruction. In other applications, a component of the

network of interfaces may disappear spontaneously (such as the popping of a bubble). In this case,

the boundary is removed and the two phases on either side of the removed interface are given the

same value for the indicator function.

3.8 Interface extraction and visualisation
At times, it is important to explicitly extract the interface, for example, to calculate accurate jump

conditions, physics, chemistry, etc. at the interface, or for visualisation to display the evolving

structures. In the two-phase case, there are several standard visualisation algorithms which extract

level sets of implicit functions in two and three dimensions, includingmarching cubes [56], marching

tetrahedra [57–59], and their variants. In the multiphase case, we have a more complex interface

structure.

Here, we can capitalise on the Voronoi interface to design a conceptually simple interface extrac-

tion algorithm. Using the approach of solving Eikonal equations to �nd the Voronoi interface, as

given in Section 3.4.2, suppose we have signed distance functions ϕi , de�ned on a grid and which

determine the distance to Γi ,є. �en, the part of ΓV which gives the interface Γi j between phase i and
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phase j ≠ i is given implicitly by (3.6):

Γi j = {x ∈ Ω ∶ ϕi(x) = ϕ j(x) ≥ ϕk(x) for all k ≠ i , j}. (3.7)

To extract an explicit representation of Γi j, there are three steps:

(a) Determine a continuous piecewise linear interpolation of every ϕi function (known only at

grid points) to determine ϕi at arbitrary points.

(b) Extract the zero level set of ϕi − ϕ j, thereby producing a collection of surface elements {Eℓ ∶
1 ≤ ℓ ≤ n}, where each Eℓ is a straight line segment in 2D or a triangle in 3D. Since the last
condition in (3.7) is not necessarily satis�ed on every surface element, we have that Γi j ⊆ ⋃ℓ Eℓ.

(c) For each element Eℓ, keep the set of points x ∈ Eℓ that satisfy ϕi(x) = ϕ j(x) ≥ ϕk(x) for
all k ≠ i , j. �is is achieved by a series of “chop” operations that takes Eℓ and chops it into
pieces (a set of line segments in 2D or triangles in 3D), using the zero level set of ϕi − ϕk as

the position of the cut, and keeping those pieces on which ϕi ≥ ϕk. Pieces on which ϕi < ϕk
are discarded. �e result is a collection of surface elements whose union is Γi j.

We note several features about the above procedure.

• �e algorithm is exact, in the sense that the interface of the interpolated multiphase system
is extracted exactly. As a result, di�erent interfaces Γi j and Γkl which meet at a higher order

junction do so without overlap or gaps.

• Piecewise linear interpolation is natural for visualisation purposes, since line segments and

triangles are naturally displayed, and chopping such elements with other elements is straight-

forward. Furthermore, piecewise linear interpolation is second order accurate wherever the

function being interpolated is smooth, which is accurate enough for many purposes. In this

work, a marching tetrahedrons based interpolation is used, in which each grid cell is divided

into two triangles (in 2D) or six tetrahedra (in 3D). �is provides a well-de�ned, predictable

piecewise linear interpolant.

• �e algorithm can be made very e�cient by noting that the interpolation of ϕi functions in

step (a) above only needs to be performed in grid cells containing the interface. Lookup tables,

similar to those found in Marching Cubes, yield e�cient extraction of mesh elements and

e�cient chopping operations. �e overall computational complexity isO(N), where N is the
number of cells containing the Voronoi interface, independent of the number of phases, due

to narrow banding.

An example mesh generated by this algorithm is shown in Figure 3.4. Although low in mesh qual-

ity, the meshes are perfectly adequate for visualisation purposes. In fact, such meshes have been

extensively used in calculating accurate surface tension forces in multiphase �uid �ow problems, as

discussed in §4.2 of Chapter 4. Generating high-quality meshes is also possible: Chapter 5 presents

a more advanced high-quality meshing algorithm, based in part on the approach presented here.
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Figure 3.4. A mesh generated using piecewise linear interpolation and the Voronoi interface, for a four-phase
system (white, blue, green, and exterior). The zoomed region highlights a quadruple point, where four triple lines
meet (however only three are visible).

3.9 Parallel implementation using MPI
In much of this work, the VIIM and associated methods have been parallelised using MPI and a

domain decomposition approach. �is is useful for curvature �ow calculations that involve many

time steps, as well as complex three-dimensional �uid �ow simulations. �e domain is a simple

rectangular Cartesian grid that is sub-divided into smaller grids, each assigned to an individual

processor in the MPI implementation. Synchronisation of data on the subdomains is performed

using ghost layers of su�cient size. Many algorithms can be parallelised easily with this approach,

while other algorithms require more care, such as the solution of Eikonal equations.

To parallelise the Eikonal equation solver, we can exploit the fact that we only need data in a

narrow band. �us, each processor can solve the Eikonal equation locally, in an area which is the

size of the subdomain assigned to that processor, plus a number of layers corresponding to the size

of the narrow band. Once the data on this slightly larger grid is initialised with bicubic/tricubic

interpolation, the normal Fast Marching Method can be used. In this fashion, each processor can

solve the Eikonal equation locally and independently of the other processors. �e parallel e�ciency

of thismethod depends on the geometry of the interface and the relative size of the subgrid compared

to the narrow band: if the interface is su�ciently dense, as it o�en is in multiphase simulations, the

method scales very well.

3.10 Convergence tests and veri�cation
So far in this chapter, the main VIIM algorithm has been developed and its numerical implementa-

tion discussed. In this section, several convergence tests of the method are performed in two and
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three dimensions, verifying the accuracy, robustness, and convergence properties under re�nement

of numerical parameters. �ree di�erent ways to test convergence are considered, corresponding to

those outlined in §3.4.1:

(i) Fix є independent of the grid size h and study convergence as h → 0, followed by the limit
є → 0. Another way to say this is that we compute the converged solution to the problem for a
�xed є, i.e. the є-smoothed solution, and then consider the limit of this є-smoothed solution
as є goes to zero. �is directly follows the mathematical de�nition of multiphase evolution,
and produces a converged solution. In the following, this approach is denotes as the “є �xed
regime”.

(ii) Couple є with the grid size h, i.e. set є = αh where α is a �xed constant, and study convergence
as h → 0. �is approach sends є → 0 simultaneously with h → 0, and hence di�ers from
the formal “limit of a limit” in the strict mathematical de�nition. However, this method is

more computationally practical, as the width of a narrow band implementation remains �xed,

independent of the grid size. �e results will show that coupling є to h in this manner also
produces the same, converged solution. �is approach is denoted as the “є coupled regime”.

(iii) Exchange the limits, and �rst compute an inner limit with є → 0+, and then study convergence
as h → 0. In the following, the numerical solution obtained with this approach is labelled as
“є = 0+”.

For some test problems, the solution is known and we can measure the error between the numerical

results and the exact solution. In other cases, the solution is not known and grid convergence will be

used. In both of these scenarios, the “error” measures the di�erence in interface position, de�ned by

the Hausdor� metric dH : given two interfaces Γ1 and Γ2 (each a surface of codimension-one), we let

dH(Γ1, Γ2) =max(sup
x∈Γ1
inf
y∈Γ2

∥x − y∥2, sup
x∈Γ2
inf
y∈Γ1

∥x − y∥2).

Roughly speaking, the Hausdor� distance measures the maximum width of the region between Γ1

and Γ2. In the following convergence tests, convergence is measured in time, as well as in space. To

do this, an averaged L1 norm in time1 is used, together with the Hausdor� metric in space, i.e. if
Γ1(t) and Γ2(t) are interfaces evolving over a time interval t ∈ [0, T], then we de�ne

d(Γ1, Γ2) =
1

T ∫
T

0

dH(Γ1(t), Γ2(t)) dt. (3.8)

To numerically evaluate (3.8) in practice, the interfaces Γi are reconstructed explicitly from the

distance function ϕ as a mesh and the Hausdor� distance between two meshes is computed. �is is
a second order accurate approximation of dH(⋅, ⋅) and is su�cient for the following tests.

1Tests were also performed using the maximum norm in time, e.g. max0≤t≤T dH(⋅, ⋅). Convergence is still obtained
under this norm as well, with the same overall convergence rate. However, between one grid size and the next, the

convergence rate can be spurious, due to the sensitivity of the Hausdor� distance to the location of triple points in a

grid cell. Instead, the L1 norm is used in time, which for the tests performed here, do not weaken any conclusions made
about convergence.
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Figure 3.5. Evolution of a circle expanding with unit speed (T = 1

5
) (left), and the solution at time t = T obtained

on the same grid (h = 1/512), with є fixed (middle) and є coupled to h (right).

In all of the tests, the domain is a unit square in 2D, or unit cube in 3D, and a uniform Cartesian

grid with cell size h is used. Standard �rst or second order �nite di�erence schemes are used for
the evolution (upwinding when necessary), and the time step constraint for forward Euler will be

indicated. Convergence as h → 0 is measured for a variety of є values for the two regimes. We denote
by Γєh = Γєh(t) the time evolution of the interface obtained with a grid size h and parameter є. When
grid convergence is being used, we suppose that the leading order component of the error is Chp for

some constants C and p and measure the di�erence of two solutions on two di�erent grids, in this
case using d(Γєh , Γє2h), to determine the rate of convergence p. Speci�cally, we de�ne dє

h ∶= d(Γєh , Γє2h)
and estimate p ≈ log

2
(dє
2h/dє

h). Finally, if a data point is missing in a convergence plot or table, then
it is because the corresponding grid was too coarse to successfully determine the evolution (e.g. a

phase became so small that its є-level set vanished).

3.10.1 Basic tests in two dimensions
First, we verify that the VIIM produces correct results in the case of straightforward two-phase

problems.

Circle expanding with unit speed

We �rst test the case of a circle expanding with unit speed F = 1, as illustrated in Figure 3.5 (le�).
�e circle’s initial radius is 1

5
and is evolved over a time of T = 1

5
so that its �nal radius is 2

5
. For this

evolution, the time step constraint is ∆t < h; here ∆t = 1

2
h. For an unsigned distance function to a

circle, the Voronoi reconstructed interface using any є-level set is exact. �is implies that for this
test problem, errors in the numerical results of the VIIM will be largely independent of є, and the
results con�rm this. Figure 3.5 shows the numerical results at �nal time t = T obtained on the same
grid size (h = 1/512) for di�erent є values; there are no observable di�erences. Figure 3.6 plots the
error compared with the exact solution, d(Γєh , Γexact), and shows that �rst order accuracy in space
and time is obtained, independent of the choice of є.
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Figure 3.6. Corresponding to the test case in Figure 3.5, the error d(Γєh , Γexact) as a function of grid size h for
the two regimes: є fixed (left), and є coupled to h (right). The slope of both lines is 1.0.

Initially square interface expanding with unit speed

We now consider an initially square interface expanding with unit speed F = 1, as illustrated in
Figure 3.7 (le�) (recall that the viscosity solution of the corresponding Hamilton-Jacobi equation

yields an expanding square with rounded corners). �e square’s initial width is 2
5
and is evolved over

a time of T = 1

5
so that its �nal width is 4

5
. �e time step constraint is ∆t < h; here ∆t = 1

2
h. In

this test case, due to the corners present in the initial interface, the Voronoi reconstructed interface

changes with the choice of є. Figure 3.7 shows the numerical results at �nal time t = T obtained on
the same grid size (h = 1/512) for the two є regimes. In particular, in Figure 3.7 (middle), we see that
when є > 0 is �xed, the є-smoothed solution is not the same as the exact solution, but converges to it
as є → 0. A convergence analysis of the results is presented in Table 3.1 and Figure 3.8. In Figure 3.8
(le�) we see that if є > 0 is �xed, then as h → 0, convergence to the exact solution is not obtained.
Instead, the numerical results are converging to the є-smoothed solution, as shown in Table 3.1. In
the regime where є is proportional to h, approximately �rst order convergence to the solution is
obtained as h → 0.

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

y

x

0.6

0.7

0.8

0.9

0.6 0.7 0.8 0.9

y

x
0.6 0.7 0.8 0.9

x

t = 0

t = 1
4T

t = 1
2T

t = 3
4T

t = T

ε = 0+

ε = 0.02
ε = 0.04
ε = 0.06

ε = 0+

ε = 2h
ε = 4h
ε = 6h

Figure 3.7. Evolution of an initially square interface expanding with unit speed (T = 1

5
) (left), and the solution

at time t = T obtained on the same grid (h = 1/512), with є fixed (middle) and є coupled to h (right).
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Figure 3.8. Corresponding to the test case in Figure 3.7, the error d(Γєh , Γexact) as a function of grid size h for
the two regimes: є fixed (left), and є coupled to h (right). The slope of both lines is 0.8.

є = 0+ є = 0.02 є = 0.04 є = 0.06
h dє

h order dє
h order dє

h order dє
h order

1/64 0.00924 – 0.00727 – 0.00739 – 0.00758 –

1/128 0.00445 1.1 0.00409 0.8 0.00390 0.9 0.00371 1.0

1/256 0.00262 0.8 0.00245 0.7 0.00218 0.8 0.00209 0.8

1/512 0.00174 0.6 0.00121 1.0 0.00108 1.0 0.00101 1.1

Table 3.1. Corresponding to the test case in Figure 3.7, convergence results for the fixed є regime.

Square shrinking with unit speed

Now consider the case of a square shrinking with unit speed, as illustrated in Figure 3.9 (le�). �e

square has an initial width 4

5
and is evolved over a time T = 1

5
. Similar to before, the Voronoi

reconstruction has an error depending on the choice of є. Figure 3.9 shows the numerical results at
�nal time obtained on the same grid size (h = 1/512) for di�erent є values. In particular, in Figure
3.9 (middle), we see that the є-smoothed solution is not the same as the exact solution. However, as
є → 0, the є-smoothed solution converge to the exact solution. A convergence analysis is presented
in Table 3.2 and Figure 3.10, and shows similar convergence properties as in the previous test.
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Figure 3.9. Evolution of a square shrinking with unit speed (T = 1

5
) (left), and the solution at time t = T obtained

on the same grid (h = 1/512), with є fixed (middle) and є coupled to h (right).
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Figure 3.10. Corresponding to the test case in Figure 3.9, the error d(Γєh , Γexact) as a function of grid size h for
the two regimes: є fixed (left), and є coupled to h (right). The slope of both lines is 1.0.

є = 0+ є = 0.02 є = 0.04 є = 0.06
h dє

h order dє
h order dє

h order dє
h order

1/64 0.01655 – 0.01424 – 0.01475 – 0.01252 –

1/128 0.00855 1.0 0.00787 0.9 0.00738 1.0 0.00604 1.1

1/256 0.00415 1.0 0.00329 1.3 0.00296 1.3 0.00254 1.2

1/512 0.00225 0.9 0.00147 1.2 0.00118 1.3 0.00123 1.0

Table 3.2. Corresponding to the test case in Figure 3.9, convergence results for the fixed є regime.

Curvature �ow on a circle

We next consider curvature �ow applied to a circle with speed F = −κ, as illustrated in Figure
3.11 (le�). �e circle has an initial radius of r0 = 0.375 and is evolved over a time of T = 0.04;
the exact solution has radius at time t given by r(t) =

√
r20 − 2t. �e time step constraint for this

problem (using the fact that ϕ does not deviate from a distance function) is ∆t < 1

4
h2. At each grid

point, standard �nite di�erence stencils are used to approximate the curvature of the level set passing

through that grid point. It follows that the є-level sets inside and outside the circlemovewith di�erent
speeds, and this implies that the Voronoi reconstructed interface moves with a speed depending on

є. (In fact, it can be shown that this dependence on є is of the form Factual = Fexact+O(є2).) Figure 3.11
shows the numerical results at �nal time t = T obtained on the same grid size (h = 1/512) for di�erent
є values. Once again, the limit of є-smoothed solutions as є → 0 yields the correct solution. �is is
made more precise in Figure 3.12 and Table 3.3. In the regime where є is proportional to h, second
order convergence to the solution as h → 0 is obtained. In this case, second order convergence is
obtained since second order �nite di�erence methods are used together with a second order time

step ∆t = O(h2).

3.10.2 Triple points in two dimensions
Next, we consider a single T junction that moves into a Y junction under curvature �ow with F = −κ.
We consider two di�erent boundary conditions: zero Neumann and Dirichlet (“anchored”). In both

cases, ∆t = 1

4
h2 and the interface is evolved over a time of T = 125

512
≈ 0.244 (corresponding to 1000

time steps on the coarsest grid). Figure 3.13 illustrates the evolution for both types of boundary
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Figure 3.11. Evolution of a circle collapsing under curvature flow with speed F = κ (T = 0.04) (left), and the
solution at time t = T obtained on the same grid (h = 1/512), with є fixed (middle) and є coupled to h (right).
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Figure 3.12. Corresponding to the test case in Figure 3.11, the error d(Γєh , Γexact) as a function of grid size h for
the two regimes: є fixed (left), and є coupled to h (right). The slope of both lines is 2.0.

є = 0+ є = 0.02 є = 0.04 є = 0.06
h dє

h order dє
h order dє

h order dє
h order

1/64 0.00123 – 0.00123 – 0.00127 – 0.00132 –

1/128 0.00030 2.0 0.00031 2.0 0.00030 2.1 0.00030 2.1

1/256 0.00008 1.9 0.00008 1.9 0.00009 1.7 0.00010 1.6

1/512 0.00002 2.0 0.00002 1.9 0.00003 1.7 0.00003 1.5

Table 3.3. Corresponding to the test case in Figure 3.11, convergence results for the fixed є regime.
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Figure 3.13. Evolution of curvature flow applied to an interface that is initially a T junction (T = 125

512
), with

anchored boundary conditions (top) and Neumann boundary conditions (bottom).

conditions. We see that the motion de�ned by the VIIM is such that the T junction moves into a

Y junction with 120○ angles. In the case of anchored boundary conditions, the evolution ultimately

converges to an equilibrium with straight lines.

Figure 3.14 shows the numerical results at �nal time t = T obtained on the same grid size
(h = 1/512) for di�erent є values. Once again, for the regime with �xed є, we see that di�erent
є-smoothed solutions are obtained for di�erent �xed є, but there is a well-de�ned limit as є → 0. In
this test, we rely on grid re�nement to measure convergence. Table 3.4 (�xed є regime) and Table
3.5 (є coupled to h regime) contain the results. We see that in all cases, in both є regimes, the VIIM
converges in both space and time at �rst order. Although not shown here, it was also veri�ed that

the є-smoothed solutions converge as є → 0 to the same solution obtained in the є coupled regime.
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Figure 3.14. Corresponding to the test in Figure 3.13, the solution at time t = T obtained on the same grid
(h = 1/512) with different choices of є for the two different є regimes; anchored boundary conditions (left pair) and
Neumann boundary conditions (right pair).
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є = 0+ є = 0.02 є = 0.04 є = 0.06
h dє

h order dє
h order dє

h order dє
h order

A
n
ch
o
re
d 1/64 0.00305 – 0.00269 – 0.00326 – 0.00393 –

1/128 0.00164 0.9 0.00186 0.5 0.00229 0.5 0.00260 0.6

1/256 0.00083 1.0 0.00118 0.7 0.00140 0.7 0.00175 0.6

1/512 0.00044 0.9 0.00062 0.9 0.00076 0.9 0.00090 1.0

N
e
u
m
a
n
n 1/64 0.00335 – 0.00290 – 0.00374 – 0.00448 –

1/128 0.00183 0.9 0.00216 0.4 0.00261 0.5 0.00280 0.7

1/256 0.00090 1.0 0.00129 0.7 0.00112 1.2 0.00182 0.6

1/512 0.00048 0.9 0.00047 1.4 0.00062 0.9 0.00125 0.5

Table 3.4. Corresponding to the test in Figure 3.13, convergence results for the fixed є regime.

є = 0+ є = 2h є = 4h є = 6h
h dє

h order dє
h order dє

h order dє
h order

A
n
ch
o
re
d 1/64 0.00305 – 0.01092 – 0.01626 – 0.01868 –

1/128 0.00164 0.9 0.00631 0.8 0.01019 0.7 0.01322 0.5

1/256 0.00083 1.0 0.00336 0.9 0.00549 0.9 0.00737 0.8

1/512 0.00044 0.9 0.00174 1.0 0.00283 1.0 0.00383 0.9

N
e
u
m
a
n
n 1/64 0.00335 – 0.01799 – 0.03571 – – –

1/128 0.00183 0.9 0.00932 0.9 0.01695 1.1 0.02502 –

1/256 0.00090 1.0 0.00475 1.0 0.00834 1.0 0.01190 1.1

1/512 0.00048 0.9 0.00242 1.0 0.00415 1.0 0.00582 1.0

Table 3.5. Corresponding to the test in Figure 3.13, convergence results for regime in which є is coupled to h.

3.10.3 von Neumann-Mullins’ law
Veri�cation of von Neumann-Mullins’ law in 2D

In the last convergence test of a T junction moving into a Y junction, we saw that the VIIM applied

to curvature �ow on a triple point resulted in that triple point obtaining 120○ angles. �is is known

as Young’s law and naturally arises when viewing curvature �ow as minimising perimeter (or surface

area in 3D). We now study in more depth curvature �ow on a random set of phases involving

a connected network of interfaces with several triple points. Assuming Young’s law holds, von

Neumann [60] and Mullins [61] showed that if the speed of the interface is F = −γκ (where γ is a
constant), then the rate of change of area of any phase is an a�ne function of the number of sides

of the phase. �e law can be derived from the relation dA
dt = ∫Γ F (taking into account the angles at

triple points), and states that

dA
dt

= 2πγ(n
6
− 1). (3.9)

�is is a remarkable result: the law states that the growth rate of a phase depends only on the number

of sides it has, and not directly on the overall size or shape of the phase or the motion of any other

phase. Consequently, as a multiphase system evolves under curvature �ow, it can be expected that

some phases shrink, others expand, and that various topological changes take place. �us, according

to the von Neumann-Mullins’ law, the area of each phase as a function of time is piecewise linear.
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Figure 3.15. Curvature flow applied to an initial set of 25 randomly positioned phases. According to von
Neumann-Mullins’ law, phases with more than six sides grow, those with less than six shrink, and those with six
sides conserve their area. This process leads to “coarsening” of the system.

To investigate this law in the context of the VIIM, Figure 3.15 shows the numerical results of

curvature �ow applied to a multiphase system which initially has 25 randomly positioned phases

(with γ = 1), using periodic boundary conditions (grid size 256 × 256). We see that some phases
expand, while others shrink and disappear. Moreover, there are a number of topological changes

that take place, which are automatically handled by the VIIM. In Figure 3.16, the area as a function

of time is shown for a selected set of nine phases. �e results correctly match von Neumann-Mullins’

law throughout the evolution, even as these intricate topological changes take place.

Using von Neumann-Mullins’ law to check convergence

Using von Neumann-Mullins’ law as information about the exact solution, we can also test the

convergence of the VIIM applied to curvature �ow as a function of grid re�nement.

To test the numerical results of the VIIM against vonNeumann-Mullins’ law, we consider n sided
shapes, for 3 ≤ n ≤ 8, suitably connected to the boundary (see Figure 3.17). �e initial shape is chosen
to be circular with radius 0.3, (except if n = 3, in which case it has a radius 0.35), and is evolved over
a time T = 0.08. �e time step is again chosen to be ∆t = 1

4
h2. As part of the convergence tests, the

role of the reconstruction interval, as discussed in §3.4.3, was tested. Denote by k the reconstruction
interval, e.g. if k = 1 then the Voronoi interface is reconstructed every time step. For the time step
used here, it was found that consistent convergence rates were obtained for approximately k ≥ 8, and
in the following, k = 16 has been used. To measure the error in this multiphase curvature evolution,
we measure the di�erence between the computed value of dA

dt (obtained via the slope of a linear

regression of the shape’s area over 100 equally spaced points in time) compared with that predicted
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Figure 3.16. Area as a function of time for a selected set of nine phases corresponding to the evolution shown
in Figure 3.15. According to von Neumann-Mullins’ law, the area of a particular phase should be a piecewise
linear function, with a derivative that is an affine function of the number of sides of the phase. We have therefore
coloured each part of the trajectories by the number of sides the phase had at that particular time. The slopes of
the trajectories matches with what is predicted by von Neumann-Mullins’ law.

by von Neumann-Mullins’ law. To simplify matters, convergence for the regime in which є is �xed
is skipped; from hereon, only the case when є = αh is coupled to the grid size h, as h → 0, will be
considered. For each n,

• a time sequence illustrating the evolution of the n-sided shape over time is shown in Figure
3.17;

• a plot of the error in dA
dt as a function of h is shown in Figure 3.18; and

• a table with convergence rates obtained with grid re�nement, measuring convergence of the

interface evolution in space and time, is given in Table 3.6.

According to vonNeumann-Mullins’ law (3.9), the shapes decrease in area if n < 6, increase in area if
n > 6, and have constant area if n = 6. �is is demonstrated in the �gures, as well as the fact that the
evolution quickly become self-similar. In most cases well behaved convergence is obtained, whereby

the VIIM converges at �rst order rate in both space and time. �e exception is the case when n = 6
where the error is smaller than the other cases but does not exhibit consistent convergence rates.

�is is most likely due to the fact that the shape is essentially stationary, and so grid alignment errors

dominate.
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Figure 3.17. Evolution of initially circular n-sided shapes under curvature flow with γ = 1 (T = 0.08).
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dt as a function of grid size h for the n-sided shapes of

Figure 3.17.
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є = 0+ є = 2h є = 4h є = 6h
n h dє

h order dє
h order dє

h order dє
h order

3

1/64 0.00254 – 0.01924 – 0.09240 – 0.13283 –

1/128 0.00119 1.1 0.00593 1.7 0.01415 2.7 0.04314 1.6

1/256 0.00061 1.0 0.00267 1.2 0.00507 1.5 0.00807 2.4

1/512 0.00033 0.9 0.00130 1.0 0.00226 1.2 0.00329 1.3

4

1/64 0.00235 – 0.04159 – 0.11469 – 0.12696 –

1/128 0.00104 1.2 0.00622 2.7 0.02101 2.4 0.06301 1.0

1/256 0.00049 1.1 0.00249 1.3 0.00498 2.1 0.00823 2.9

1/512 0.00024 1.0 0.00115 1.1 0.00207 1.3 0.00302 1.4

5

1/64 0.00236 – 0.01007 – 0.11946 – 0.20327 –

1/128 0.00125 0.9 0.00279 1.9 0.00665 4.2 0.01501 3.8

1/256 0.00064 1.0 0.00115 1.3 0.00204 1.7 0.00324 2.2

1/512 0.00043 0.6 0.00064 0.8 0.00092 1.2 0.00131 1.3

6

1/64 0.00233 – 0.00307 – 0.00299 – 0.22553 –

1/128 0.00252 -0.1 0.00169 0.9 0.00280 0.1 0.00370 5.9

1/256 0.00116 1.1 0.00183 -0.1 0.00233 0.3 0.00276 0.4

1/512 0.00082 0.5 0.00096 0.9 0.00121 1.0 0.00189 0.5

7

1/64 0.00302 – 0.01212 – 0.03456 – 0.04348 –

1/128 0.00128 1.2 0.00550 1.1 0.01025 1.8 0.01756 1.3

1/256 0.00117 0.1 0.00285 0.9 0.00493 1.1 0.00708 1.3

1/512 0.00058 1.0 0.00177 0.7 0.00255 1.0 0.00352 1.0

8

1/64 0.00300 – 0.02056 – 0.03031 – 0.04964 –

1/128 0.00149 1.0 0.00851 1.3 0.01793 0.8 0.02987 0.7

1/256 0.00092 0.7 0.00422 1.0 0.00762 1.2 0.01141 1.4

1/512 0.00056 0.7 0.00211 1.0 0.00368 1.1 0.00524 1.1

Table 3.6. Convergence results for the n-sided shape undergoing curvature flow in Figure 3.17.
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Figure 3.19. Evolution of a three-dimensional analogue of a T junction subject to curvature flow (T = 125

1024
,

computed on a 1283 grid).

є = 0+ є = 2h є = 4h є = 6h
h dє

h order dє
h order dє

h order dє
h order

1/64 0.00529 – 0.02705 – 0.05866 – 0.16831 –

1/128 0.00279 0.9 0.01396 1.0 0.02469 1.2 0.03578 2.2

1/256 0.00147 0.9 0.00709 1.0 0.01225 1.0 0.01722 1.1

Table 3.7. Convergence results for the curvature flow illustrated in Figure 3.19.

3.10.4 Triple lines in three dimensions
�eVIIM easily extends to three dimensions and correctly handles the three-dimensional analogues

of triple points. Figure 3.19 shows the evolution of a “three-dimensional T junction”, composed

of four triple lines meeting at a single quadruple point, subject to curvature �ow with Neumann

boundary conditions. �e shape is evolved over a time of T = 125

1024
≈ 0.122 (corresponding to 500

time steps on the coarsest grid). We observe qualitatively that the surfaces make 120○ angles at triple

lines, which is one of Plateau’s laws on the shapes of soap bubbles in a foam. Using grid re�nement

to measure convergence, Table 3.7 shows that the VIIM has �rst order convergence in both space

and time.

3.10.5 �ree-dimensional analogue of von Neumann-Mullins’ law
�e two-dimensional von Neumann-Mullins’ law was recently generalised to three or more dimen-

sions and provides a formula for dV
dt involving a “mean-width” [62], for multiphase mean curvature

�ow. In particular, the growth rate is no longer a function based purely on the topology (as it is in

two dimensions) and can depend on the particular shape of the phase/region. In [62], a formula is

given for calculating dV
dt for a region approximated by a polyhedron, assuming that the polyhedron

makes 120○ angles at triple lines. It is reasonable to consider using this formula as veri�cation in the

same way that we did with the two-dimensional von Neumann-Mullins’ law. However, the resulting

formula for dV
dt is sensitive to the angles that the polyhedron makes at triple lines, which makes

prediction of dV
dt using this method noisy.

Instead, we test the VIIM on a known solution for curvature �ow that has a self-similar evolution,

namely by using a shrinking Reuleaux tetrahedron, which is an analogue of the two-dimensional
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Figure 3.20. Evolution of a Reuleaux tetrahedron shrinking under multiphase curvature flow (T = 0.025, computed
on a 1283 grid).
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Figure 3.21. Plot of the error in the computed value of d
dtV

2/3 for the shrinking Reuleaux tetrahedron in Figure
3.20. The slope of the line is 0.85.

є = 0+ є = 2h є = 4h є = 6h
h dє

h order dє
h order dє

h order dє
h order

1/64 0.00397 – 0.01774 – 0.09394 – 0.16874 –

1/128 0.00193 1.0 0.00838 1.1 0.01788 2.4 0.04128 2.0

1/256 0.00096 1.0 0.00415 1.0 0.00778 1.2 0.01187 1.8

Table 3.8. Convergence results for the curvature flow illustrated in Figure 3.20.

Reuleaux triangle. �is is a tetrahedron with spherical sides that satis�es Young’s law where its edges

meet at planar surfaces. �e shape and its evolution is shown in Figure 3.20. It satis�es d
dtV 2/3 = C

where C ≈ 5.2885 is a constant.2 We compute the error between the exact value for d
dtV 2/3 and that

of the simulation (obtained via the slope of a linear regression of V 2/3 over 50 equally spaced points
in time). �e results are shown in Figure 3.21 and Table 3.8 and shows that the VIIM once again

obtains convergence as h → 0 for every value of є.
2�e volume of a Reuleaux tetrahedron having spherical sides of radius r is V(r) = CV r3 where CV ∶= 8

3
π −

27

4
cos−1 1

3
+
√
2

4
; its surface area is S(r) = CSr2 where CS ∶= 4(2π − 9

2
cos−1 1

3
). Since κ = 2

r , we have that under

self-similar curvature �ow, d
dtV = S 2r . It follows that

d
dtV

2
3 = 2

3
V− 1

3
d
dtV = 4

3
C−1/3V CS =∶ C ≈ 5.28854633.
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3.10.6 Summary of convergence results
�e preceding shows that the Voronoi Implicit Interface Method converges under several di�erent

tests. �e convergence tests were in both time and space, verifying that the method correctly com-

putes complex �ows in a converged manner: �rst order convergence was obtained in almost all

cases. �e method yields the correct evolution in the case of two phase �ow, yields a �ow satisfying

Young’s law, and matches von Neumann-Mullins’ law in two dimensions and can be used to accu-

rately predict growth rates in three-dimensions. In these multiphase systems, using Eulerian based

PDE methods, �rst order accuracy at triple junctions is probably all that can be expected in this

framework. Further comments about the order of accuracy are discussed at the end of this thesis.

3.11 Concluding remarks
In summary, the VIIM provides a mathematically consistent framework for tracking the interface

in multiphase problems. Its main features include:

• Single representation. In its mathematical form, only two functions are used for the entire
multiphase system, the unsigned distance function, and indicator function. Numerical imple-

mentations can use this formulation, or, at the expense of implementing more complicated

data structures, can use a multi-valued level set function for increased numerical accuracy.

• Consistency. By construction, regions of overlap or voids cannot occur. Additionally, the
method is consistent with level set methods in the case of two-phase �ow3.

• Accurate calculation of geometric quantities. Geometric quantities, such as the normal and
curvature of the interface, can be calculated accurately.

• Dimension independent. �e formulation works in any number of spatial dimensions with no
change to the fundamental algorithm.

• Topological changes. Complex con�gurations in the interface, as well as changes in topology,
are automatically handled by the framework.

• Accurate, e�cient, and robust. Convergence tests indicate the method is generally �rst order
accurate in both space and time, while e�ciency is gained through the use of narrow banding.

• Ability to couple to physics. Interfaces can evolve in such a way that time has physical meaning,
and the method can be coupled to complex physics. �is is demonstrated in the following

chapter with several multiphase �uid �ow applications.

3Except for pathological cases such as “interface fattening” in curvature �ow; further comments are provided in

Chapter 8.
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�e core idea of theVIIM is that themotion of surfaces nearby the interface determine themotion

of the interface itself. �us, the motion of the є-level sets in some sense regularises the motion of the
interface, even when the interface contains junctions. In particular, through the use of the Voronoi

interface, the motion of the interface is essentially the average of the motion of neighbouring level

sets. For example, in a curvature �ow problem, triple points naturally move to satisfy certain angle

conditions. As another example, if during one step, on one side of the interface the level sets move

with speed γ1κ under curvature �ow, and on the other side of the interface, they move with speed
γ2κ, then the net result is that the interface moves with speed 12(γ1 + γ2)κ. �is property is exploited
in the next chapter in order to simulate curvature �ow with variable coe�cients of curvature.
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Chapter 4

Applications of the VIIM

In the following, several example applications of the VIIM are presented. �ese include simple

geometric and advection problems, as well as multiphase curvature �ow with constraints in which

curvature coe�cients can be de�ned on a per-phase basis. A multiphase incompressible �uid �ow

solver is also developed, in which density, viscosity, and surface tension can be de�ned on a per-

phase basis. In particular, convergence during topological change is demonstrated by analysing a

“T1 event” driven by surface tension. Several applications of the �uid solver are shown, including

the dynamics of cluster breakup in shear �ow, bubble rising phenomena, and implementing general

domains through the concept of an “exterior phase” in the VIIM.

4.1 Geometric �ows

4.1.1 Constant speed normal driven �ow
We �rst consider an example in which the interface moves in its normal direction with a constant

speed that can change depending on the type of interface. A physical example corresponds to each

phase being assigned a bulk energy density and the entire system evolving to minimise the total

bulk energy. Under gradient descent, the interface between phase i and phase jmoves with a speed
proportional to the di�erence between bulk energy densities in phase i and j. In general, we may
specify the speed Fi j of interface Γi j in the normal direction pointing from phase i into phase j. �us
we must require F ji = −Fi j. �e equation of evolution for ϕ is given by

ϕt + Fext∣∇ϕ∣ = 0,

where Fext is an appropriate extension speed, computed by Fext(x) = Fi j where x is inside phase i,
and j is chosen such that x is closest to Γi j. �is uniquely de�nes j everywhere except on a set of
measure zero, where one may choose any such j. �is ambiguity does not a�ect the results of the
VIIM, due to its underlying regularisation properties.

Figure 4.1 shows the results of two- and three-dimensional simulations of a system with three

phases, composed of two circles (spheres in 3D), denoted by G=Green (le�) and B=Blue (right), and
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t = 0 t = 0.04 t = 0.08 t = 0.12 t = 0.16

Figure 4.1. Results of a constant speed normal driven flow such that Green and Blue grow with unit speed into
White and stop at each other: FGW = FBW = 1, FGB = 0. The initial radii of the circles (spheres) is 0.1 with a
separation of 0.3 between their centres.

an exterior phase (W=White), such that both Blue and Green expand into White with unit speed,

FBW = FGW = 1, but neither Blue nor Green is allowed to advance on the other, FBG = FGB = 0. �e
resulting evolution is simply two circles (spheres) growing in size such that they do not overlap. In

the last frame of the 3D simulation in Figure 4.1, a sector has been cut away to show that the interface

ΓBG is correctly obtained. In this and the next example, the frames are from a simulation computed

on a 256 × 256 (× 256) grid in the unit square (cube), with є = 0+.
Figure 4.2 shows the results of a similar system but with FWG = 1, FBW = 1, FGB = 1. Here White

expands into Green, which in turn expands into Blue, which in turn expands into White. �is type

of �ow generates two spiraling triple points in 2D, and a spiraling circular triple line in 3D, the

positions of which do not change. A large number of turns is obtained, and the thickness of the

spirals is limited by grid resolution. �is example is discussed in [41], in which a mathematical

framework, called the “vanishing surface tension” limit, is derived for studying two-dimensional

multiphase systems whose evolution is governed by constant normal driven �ow. �e results in

Figure 4.2 of the VIIM applied to this problem correspond to adding an arti�cial surface tension

with strength proportional to the grid size h.

4.1.2 Advection by an external velocity �eld
In this example, the interface is advected by an external velocity �eld, such as one that might arise

from rotation or translation. �e equation of evolution is given by a pure advection equation, namely

ϕt + u ⋅ ∇ϕ = 0.

In Figure 4.3, two- and three-dimensional simulations are shown using a constant velocity �eld that

implements rotation. Here, a simple second order ENO upwinding scheme for the advection term

and forward Euler in time was used. �e simulation was computed on a 256 × 256 grid in 2D and a
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t = 0 t = 0.072 t = 0.144 t = 0.216 t = 0.288

Figure 4.2. Results of a constant speed normal driven flow where White expands into Green, which in turn
expands into Blue, which in turn expands into White, all with unit speed (FWG = 1, FBW = 1, FGB = 1). This flow
generates two spiraling triple points in 2D and a spiraling triple line in 3D that do not change position, where the
thickness of the spirals is limited by grid resolution. The initial setup is two non-overlapping circles (spheres) with
radii 0.175 and a separation of 0.2 between their centres. In the 3D case, a quadrant has been cut away to render
the inside structure visible.

2
D

3
D

t = 0 t = π
8

t = π
4

t = 3π
8

t = π
2

Figure 4.3. Advection by an external velocity field that implements counterclockwise rotation such that t = 2π
corresponds to one complete revolution about the indicated origin (axis of rotation pointing up in the case of 3D).
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1923 grid in 3D, applied to an initial set of 17 phases in 2D and 28 phases in 3D, with є = 0+. Under
this �ow, the area (or volume) of each phase should be conserved, and we can perform a simple

convergence test of this property. For a 2D case, let e be the error in conserving the area of each
phase, measured by calculating the maximum deviation in area over the time interval 0 ≤ t ≤ T and
summing this over each phase, i.e.

e =
N

∑
i=1
max
t∈[0,T]

∣Ai(t) − Ai(0)∣, (4.1)

where N is the number of phases and Ai(t) is the area of phase i at time t. For the 2D simulation
shown in Figure 4.3, the error e as a function of grid size is shown in Table 4.1. For this example and
the associated numerical scheme,most of the numerical error in time and space is concentrated at the

junctions. �ese occupy small regions of space and therefore contribute a small amount to the error

in area conservation, and explains why the convergence rate observed in Table 4.1 is predominantly

superlinear.

4.1.3 Mean curvature �ow with constraints
In the previous chapter, Figure 3.15 showed an example in which the VIIMwas applied tomultiphase

curvature �ow. Here, the curvature �ow equation is adapted to allow constraints.

Volume conservation

By adding a discontinuous source term to the right hand side of the mean curvature �ow equation,

the VIIM can simulate mean curvature �ow with volume conservation. �e modi�ed forward Euler

step is

ϕn+1 − ϕn

∆t
= γκn∣∇ϕn∣ + sn∣∇ϕn∣,

where

sn(x) =
V 0i − V n

i

An
i∆t

where i is such that x ∈ Ωi . (4.2)

Here V n
i denotes the volume (area in 2D) of phase i at time step n, V 0i is the initial volume (area) of

phase i, and An
i is its surface area (perimeter in 2D) at time step n. In e�ect, the source term sn∣∇ϕn∣

n error e order

32 0.051121 –

64 0.016945 1.6

128 0.004958 1.8

256 0.001480 1.7

512 0.000535 1.5

1024 0.000316 0.8

Table 4.1. Convergence analysis for area conservation corresponding to the two-dimensional simulation of Figure
4.3. Here, the error e is measured using (4.1) with N = 17 phases and a grid size of n × n.
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t = 0 t = 0.0004 t = 0.001 t = 0.01 t = 0.1

Figure 4.4. Mean curvature flow (γ = 1) with area/volume conservation on a set of 100 randomly created phases
(zero Neumann boundary conditions). By the time t = 0.1, the solution has approximately attained equilibrium.
(Top) Two-dimensional results, computed on a 256 × 256 grid on the domain [0, 1]2 (approximately 13, 000 time
steps, taking about 20 minutes on a quad core laptop). (Bottom) Three-dimensional results, in which a selection
of phases have been coloured solid, computed on a 1283 grid in a unit cube (approximately 3, 300 time steps,
taking about 150 minutes on an eight-core desktop).

grows or shrinks each phase equally around its boundary by an amount that corrects for any mass

loss/gain. �e volumes and surface areas of each phase at time step n are calculated by extracting
the interface as a triangular mesh (polygon in 2D) using the method described in Section 3.8.

Despite each phase potentially growing or shrinking at di�erent rates, the VIIM robustly and

smoothly handles the discontinuity of the source term (4.2) and conserves volume almost exactly. In

Figure 4.4, the method is demonstrated in two and three dimensions on a set of 100 initially random

phases, using zero Neumann boundary conditions. Mean curvature �ow minimises perimeter (sur-

face area in 3D), which, subject to the constraint of area (volume) conservation, eventually attains

an equilibrium. We see this in Figure 4.4, and in particular, one can observe various topological

changes occur and at all times triple junctions have 120○ angles.

Volume targeting

One can easily replace the constantV 0i in the source term in (4.2) with any constant. In particular, we
can evolve a multiphase system under mean curvature �ow to an equilibrium that has all phases with

the same volume. Figure 4.5 shows the resulting evolution for the same set of phases used in Figure

4.4. In the two-dimensional case, the system ultimately attains a shape similar to a honeycomb. �e

best arrangement of tiles (in two dimensions) having the same area andminimal perimeter is known

to be a honeycomb, but in the three-dimensional case the situation is less well-known.
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t = 0 t = 0.0004 t = 0.001 t = 0.01 t = 0.1

Figure 4.5. Mean curvature flow (γ = 1) with area/volume targeting, so that every phase ultimately has the same
area/volume (zero Neumann boundary conditions). By the time t = 0.1, the solution has approximately attained
equilibrium. (Top) Two-dimensional results, computed on a 256 × 256 grid on the domain [0, 1]2. (Bottom)
Three-dimensional results in which a selection of phases have been coloured solid.

Di�erent surface energy densities

One interpretation of curvature �ow is that it corresponds to gradient descent on an energy func-

tional measuring the surface energy of each interface. If all interfaces have the same surface energy

density, then there is a global coe�cient of curvature γ and the 120○ angle Young’s law holds. One can
generalise this to the case where each interface Γi j has di�erent surface energy densities, i.e. di�erent

coe�cients of curvature. In this situation, a generalised Young’s law states that the angles θ i of a

triple point satisfy

sin θ i

γ jk
=
sin θ j

γik
= sin θk

γi j
, (4.3)

where θ i is the angle in phase i and γ jk is the coe�cient of curvature of Γjk. Coe�cients can be

speci�ed on a per-phase basis (rather than a per-interface basis), so that phase i has coe�cient
γi . For mean curvature �ow, this naturally leads to interface Γi j having an e�ective coe�cient of

curvature of γi j = 1

2
(γi + γ j). Allowing di�erent phases to have di�erent coe�cients of curvature

can easily be implemented in the VIIM. �e modi�ed mean curvature �ow equation is

ϕt = γκ∣∇ϕ∣, where γ(x) = γi and i = χ(x),

that is, the coe�cient of curvature used in any �nite di�erence updates is determined based on

which phase occupies the grid point in question. �e discontinuity in γ(x) across the interface is
easily handled by the VIIM, owing to the motion of the є-level sets that exist solely in one phase.
In Figure 4.6, the method is demonstrated by choosing a set of 100 random phases, with half being

assigned a curvature coe�cient of γi = 0.1 (white phases) and the other half a coe�cient of γi = 1
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t = 0 t = 0.0004 t = 0.001 t = 0.01 t = 0.1

Figure 4.6. Mean curvature flow with area targeting, so that all phases ultimately have the same area, with
variable coefficients of curvature: blue phases have γ = 1, while white phases have γ = 0.1. By the time t = 0.1, the
solution has approximately attained equilibrium. Simulation computed on a 256× 256 grid in the unit square, with
zero Neumann boundary conditions.

(blue phases), moving under curvature �ow with area targeting. According to Young’s law (4.3), if

three white phases or three blue phases meet at a triple point, then they do so at 120○ angles. If two

white phases and one blue phase meet at a triple point, the blue phase makes an angle of 170○, while

the two white phases make 95○ angles. If two blue phases and one white phase meet, the angles

are 155.5○ and 49○. �is is observed in Figure 4.6, in which the blue phases surrounded by white

phases are approximately circular. By using a suitably modi�ed von Neumann-Mullins’ law, it was

con�rmed that the VIIM correctly converges to a solution satisfying the generalised Young’s law

(4.3).

4.2 Fluid �ow with permeability
Aside from geometric examples, the VIIM can also be applied tomultiphase evolution determined by

complex physics, and this is demonstrated here by coupling themethod tomultiphase incompressible

�uid �ow. As motivation, consider simulating the dynamics of a dry foam. A foam is a system of

gas bubbles separated by a liquid component, and is considered “dry” when the fraction of volume

occupied by the liquid is less than 10% [63]. In this case, the liquid forms a connected network

of thin �lms separating the gas bubbles. �ese interfaces are �exible, exhibit surface tension, and

meet at junctions (triple points in 2D and Plateau borders in 3D) with 120○ angles. �e membranes

may also be permeable to the gas, so that gas can di�use from one bubble to its neighbour, and this

leads to “di�usive coarsening”: bubbles with a large number of faces grow in size at the expense of

bubbles with a small number of faces which shrink. As a foam evolves due to coarsening or any other

dynamics, bubbles can change neighbourship with other bubbles, leading to complex topological

changes, especially in three dimensions.

One can model the dynamics of a dry foam by considering the �uid mechanics of the gas phase

coupled with membrane surface tension and permeability. For simplicity, here we consider the case

where the membranes can be idealised as massless and in�nitely thin, ignoring e�ects of liquid

�ow inside these membranes.1 �is system was studied by Kim et al. [16, 17], using an immersed
1A multiscale model that considers both macroscale gas dynamics and microscale liquid dynamics is developed in
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boundary method. In that work, �uid mechanics of the gas were coupled to the evolution of the

interface, allowing large shear forces to be applied to foams far from equilibrium. Two-dimensional

motion was considered, and topological changes were not allowed.

In the following, we develop a multiphase �uid �ow solver that works in both two and three

dimensions and automatically handles topological changes. Suppose there are N phases, labelled
i = 1, . . . ,N . Each phase satis�es the incompressible Navier-Stokes equations with density ρi and

viscosity µi . Consider now an interface Γi j between phase i and phase j, having surface tension σi j.

�e interface provides a force of surface tension that induces a pressure jump across the interface of

[p] = σi jκ where κ is the mean curvature of the interface (measured with an orientation consistent
with de�ning the pressure jump [p]). When there is no permeability, the interface is advected by the
velocity u of the �uid, assumed to be continuous across the interface. When there is permeability,
the rate of di�usion of gas/�uid is proportional to the pressure di�erence [63]. Here, the approach

used in [16] is adopted, whereby permeability is modelled as a slip of the interface in the normal

direction relative to u. �e velocity of the interface in this case is thus u −Mσi jκn, whereM ≥ 0 is a
physical parameter denoting the amount of permeability, and n is the unit normal of the interface
(with the same orientation as that used to calculate κ).
In practice, any discontinuities in density and viscosity of the �uid across the interface must be

regularised. A standard approach used in two-phase �uid �ow problems (see the review [64]), is

to smooth the density and viscosity across the interface, through the use of a smoothed Heaviside

function. In the multiphase case, we de�ne

ρ(x) = ∑
N
i=1 ρiHς(ϕi)
∑N

i=1Hς(ϕi)
, µ(x) = ∑

N
i=1 µiHς(ϕi)
∑N

i=1Hς(ϕi)
, (4.4)

where ϕi is a signed distance function to the boundary of phase i (positive inside phase i) and Hς is

a commonly used smoothed Heaviside function given by

Hς(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if x ≤ −ς,
1

2
(1 + x

ς +
1

π sin
πx
ς ) if ∣x∣ ≤ ς,

1 if x ≥ ς.
(4.5)

Here, ς measures the width of the smoothing transition (and is usually denoted by є, but to avoid
confusion with the є used in the VIIM, is denoted di�erently here). In the following simulations,
the amount of smoothing was set to be ς = 2h. Note that in (4.4), the sum of Heaviside functions
has been used to normalise the quantities. �is only matters at junctions, e.g. triple points, and is

required to ensure mini ρi ≤ ρ(x) ≤maxi ρi and mini µi ≤ µ(x) ≤maxi µi .

Surface tension in the multiphase system is modelled as a body force through the use of a Dirac

delta function [64–66]. In a two-phase �uid �ow problem, this force takes the form st = −σκδ(ϕ)∇ϕ
where ϕ is a signed level set function for the interface. In the multiphase case, we have multiple
phases whichmeet at triple junctions (and quad points in 3D), where “curvature” needs to be suitably

de�ned. It is both physically and mathematically natural to take the same de�nition applied to each

Chapter 6.
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phase separately, sum all of these, and normalise by a factor of two. �is is physically consistent,

since in the case of a dry foam, each bubble is separated from the others by a thinmembrane, and it is

mathematically natural because the resulting formula e�ectively enforces Young’s law at triple points.

To account for di�erent interfaces having di�erent surface tensions, we suppose that each phase

has an e�ective “surface tension” σi such that σi j = 1

2
(σi + σ j). �is is similar to the case of variable

surface energy densities considered in Section 4.1.3. Using this formulation for surface tension for a

multiphase system, we therefore de�ne

st = − 1
2

N

∑
i=1

σiκ(ϕi)δ(ϕi)∇ϕi , (4.6)

where ϕi is a signed level set function for phase i. Note that this gives the correct surface tension of
σi j = 1

2
(σ1 + σ2) on the interface between phase i and j. We also note that the normal vector ∇ϕi is

not well-de�ned at corners, e.g. at a triple junction, but the “curvature times the normal”, κ(ϕi)∇ϕi ,

is well-de�ned as a distribution, and is a Dirac delta function with magnitude related to the angle of

the corner.

Of course, in practice we must smooth the surface tension term onto the grid. One possible

approach is to use (4.6) directly but with smoothed Dirac delta functions, i.e.

stς = −
1

2

N

∑
i=1

σiκ(ϕi)δς(ϕi)∇ϕi ,

where δς is a smoothed one-dimensional delta function, e.g. the derivative of the smoothedHeaviside

function in (4.5),

δς(x) = {
1

2ς(1 + cos
πx
ς ) if ∣x∣ < ς,

0 otherwise.
(4.7)

However, this method can su�er from excessive noise at triple junctions, due to the singularity in

the curvature and gradient calculations that are essentially decoupled. Better results are obtained

by instead mollifying the surface tension to smooth it, i.e. de�ning stς ∶= st ∗ δn
ς where δn

ς is an n-
dimensional molli�er. �is method exhibits less noise because the calculation of interface curvature

and normal are coupled together in a consistent fashion, using an explicitly reconstructed interface,

as follows. We have

stς(x) = (st ∗ δn
ς )(x)

= ∫
Ω

st(y)δn
ς (x − y) dy

= − 1
2

N

∑
i=1
∫
Ω

δ(ϕi)(y)(σiκ(ϕi)∇ϕi)(y)δn
ς (x − y) dy

= − 1
2

N

∑
i=1
∫
Γi

σi(κn)(y) δn
ς (x − y) dS(y). (4.8)

We see that the n-dimensional convolution becomes a surface integral of κnweighted by themolli�er.
�e formula further simpli�es if we use a piecewise linear reconstruction of the interface Γ = ⋃i Γi ,
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i.e. a polygon in 2D or polyhedron in 3D using the procedure in Section 3.8, since then κn is itself a
sum of delta functions with support on the vertices of the polygon or edges of the polyhedron. �e

�nal resulting formula obtained with this approach is similar to that obtained in immersed boundary

methods and better treats the singularity in surface tension calculations at triple junctions. In the

following, the n-dimensional molli�er δn
ς (x) = ∏n

i=1 δς(xi) has been used, where δς is given in (4.7)

and x = (x1, . . . , xn), and was found to give accurate pressure calculations.
�e equations ofmotion for the entiremultiphase system are therefore the incompressible Navier-

Stokes equations with variable density, viscosity, and surface tension in the form of a body force, and

are given by

ρ(ut + (u ⋅ ∇)u) = −∇p +∇ ⋅ (µ(∇u +∇uT)) + stς(ϕ) + F,
∇ ⋅ u = 0,

ϕt + u ⋅ ∇ϕ = Mσκ∣∇ϕ∣,

where ρ, µ are given by (4.4), stς is given by (4.8), and F is any additional body forces (such as
gravity). To solve the Navier-Stokes equations numerically, a �rst order in time, second order in

space, variable density approximate projection method [67] is used, based on Chorin’s projection

method [68]. Brie�y, the scheme is as follows: suppose un and ϕn are known at time step n, then
compute

ϕn+1 = ϕn − ∆t(u ⋅ ∇ϕ)n + ∆tMσ(κ∣∇ϕ∣)n

using a second order ENO upwinding scheme for the advection term, standard central di�erences

for the curvature term, and reconstructing ϕ when necessary as an unsigned distance function using
the Voronoi interface. Using the Voronoi interface of ϕ, a mesh is extracted and used to evaluate the
surface tension force, to produce an intermediate velocity �eld u∗ satisfying

u∗ − un

∆t
+ (u ⋅ ∇u)n = 1

ρ(ϕn+1)
(∇ ⋅ (µ(ϕn+1)(∇u +∇uT)n+1/2) + stς(ϕn+1) + Fn).

Here, a second order upwinding ENO scheme for the advection term is used, and Crank-Nicholson

is used for the di�usion term, leading to an implicit equation for u∗. Note that there is a mixture of
explicit and semi-implicit terms, and that the density/viscosity and forcing terms are evaluated at

di�erent points in time. Combined, these choices lead to a simple time-stepping method which is

�rst order and relatively stable. �e scheme calculates an intermediate velocity �eld u∗ which is not
necessarily divergence-free. In the projection step, we �nd the velocity at time step n + 1 by solving

un+1 − u∗

∆t
= − ∇pn

ρ(ϕn+1)

where the pressure p is computed such that∇⋅un+1 = 0. �is leads to the variable coe�cient Poisson
equation

∇ ⋅ ( 1

ρ(ϕn+1)
∇pn) = 1

∆t
∇ ⋅ u∗.
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�is in turn can be solved by using a variable coe�cient Poisson solver, based on a �nite element

method, together with Neumann boundary conditions. For more details, see the schemes developed

in [67]. In this work, the implicit equation for u∗ has been solved using a simple Conjugate Gradient
scheme, while the projection method was implemented with a variable coe�cient multigrid solver.

�e entire multiphase �uid �ow solver has also been parallelised with MPI.

4.2.1 Testing convergence during topological change
In a multiphase �uid �ow calculation, accurately simulating topological changes represents a sig-

ni�cant challenge. Here, convergence tests are performed to examine the ability of the VIIM and

the Navier-Stokes solver to accurately calculate the evolution of a “T1” topological change in a two-

dimensional foam. A T1 change (see [63]) is one in which two triple points come together and

temporarily form a quadruple point, which then splits apart into two di�erent triple points. During

this process, an interface between two phases is destroyed and a new interface between the other

two phases is created.

As a speci�c example, consider the situation shown in Figure 4.7, whereby two long and thin

phases split apart from each other. �e domain is [0, 1
2
] × [0, 1] and periodic boundary conditions

are used, so that the velocity �eld is periodic on all four sides of the domain, and the interface

is periodic on the bottom and top boundaries. In Figure 4.7, the �ow of liquid is indicated by

drawing representative streamlines, together with a density plot of the stream function ψ (satisfying
−∆ψ = −∂yu + ∂xv). During the evolution, the two long and thin phases (labelled Ω1 and Ω2) begin
to retract so that their triple points merge. At time t ≈ 0.038, two quadruple points instantaneously
exist before splitting, so that phases Ω1 and Ω2 are no longer in contact, while Ω3 and Ω4 are now in

Ω1

Ω2

Ω2

Ω3 Ω4

t = 0 t = 0.008 t = 0.038 t = 0.042 t = 0.1

Figure 4.7. Evolution of a four-phase fluid system which has two T1 topological changes. Streamlines are shown,
and the colours indicate the magnitude of the stream function ψ. At t = 0, a schematic is illustrated of the initial
condition having periodic boundary conditions on the bottom and top (and the velocity field is periodic on all four
sides). Due to local effects of surface tension, the triple points start to retract (t = 0.008), temporarily form two
quadruple points (t ≈ 0.038), which then split apart (t = 0.042), by which point Ω1 and Ω2 have detached from
one another.
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Time of T1 event Evolution

h T1(h) T1(2h) − T1(h) order dh order

1/64 0.050781 – – – –

1/128 0.044470 0.006311 – 0.008390 –

1/256 0.040723 0.003748 0.8 0.007231 0.2

1/512 0.038704 0.002018 0.9 0.005036 0.5

1/1024 0.037512 0.001192 0.8 0.002720 0.9

Table 4.2. Convergence results for the evolution in Figure 4.7. Here, T1(h) is the time of the T1 event on grid
with cell size h, and supposing that to leading order, T1(h) = t0 + Chp, the order column calculates p by using
ratios of T1(2h) − T1(h). In addition, dh = d(Γh , Γ2h) measures the difference in interface evolution, in space and
time, over the time interval 0 ≤ t ≤ 0.1.

contact. �e system is near steady-state by the time t = 0.1. In this example, phases Ω1 and Ω2 have
σi = 10, while phases Ω3 and Ω4 have σi = 1. �ese values of σi were chosen to make a T1 change

favourable for the geometry considered here. In particular, the �nal state has much less surface

energy than the initial con�guration. To complete the speci�cation of the physical parameters, the

density and viscosity of all four phases have been set to ρ = 1 and µ = 0.1.
With a grid size of n

2
× n (so that h = 1/n), a convergence analysis is performed on the computed

time of the T1 event, and grid convergence for the evolution of the interface is measured. Let T1(h)
denote the time of the topological change computed on a grid with cell size h. �is time is calculated
by detecting the �rst instance of when an interface between phase Ω3 and phase Ω4 is born. Since the

time step ∆t is coupled to h, we may suppose that T1(h) = t0 +O(hp) and measure the convergence
rate p, where t0 is the precise time of the T1 event. In addition, let dh ∶= d(Γh , Γ2h) denote the
di�erence in interface evolution for grid sizes h and 2h, measured using the L1 norm in time and
the Hausdor� metric in space; see (3.8). �is is the same method we used in §3.10 to measure

convergence of the interface location in both space and time. Table 4.2 contains the results of these

convergencemeasurements for the numerical method, computed on grid sizes of 32×64 to 512×1024.
We see that the time of the T1 event is predicted with near �rst order accuracy, and that the VIIM

successfully converges in both space and time, accurately predicting the evolution of multiphase

�uid dynamics through a topological change.

4.2.2 Application to dry foams
To demonstrate the application of the VIIM to dry foams, we consider a foam that is being agitated

by a strong external force, such that the foam is �rst spun counterclockwise, settles momentarily,

and then is spun clockwise for the same amount of time. Results are shown in both two and three

dimensions, for cases with and without permeability.

Two-dimensional results

�e simulation parameters are as follows. �e domain is a unit square [0, 1]2 with periodic boundary
conditions, and all phases have the same density and viscosity, with ρ = 1, σ = 1, µ = 0.005. �ese
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parameters do not necessarily correspond to a speci�c physical problem, but are chosen so that

e�ects of inertia, viscosity, and surface tension are of similar importance. To implement the agitator,

an external force F in the Navier-Stokes momentum equations is used, given by

F(x , y, t) = 15(sin πx sin 2πy,− sin 2πx sin πy) sin πt, 0 ≤ x , y ≤ 1,

which corresponds to a spinning force, in the counterclockwise direction about the centre point

x = y = 1

2
for 0 ≤ t ≤ 1, and clockwise about the centre point for 1 ≤ t ≤ 2. �e factor of 15 in F

has been chosen to give a relatively strong shearing/spinning force that dominates the stabilisation

e�ects of surface tension.

A case with no permeability, i.e. M = 0, is shown in Figure 4.8. Starting with 25 random phases,
the Navier-Stokes equations are evolved with the agitator forcing on a 256×256 grid, using the є = 0+
method in the VIIM. �e �gure illustrates the results with plots of phase evolution, streamlines

and stream function, and pressure �elds, over �ve di�erent points in time, t ≈ 0, 0.5, 1, 1.5 and 2,
corresponding to extremums in the agitator forcing. We see that there is signi�cant shearing, causing

considerable rearrangement of the phases and several topological changes. �e stream function plots

show how the �ow is strongly a�ected by the agitator forcing, but is also localised in nature to due to

e�ects of surface tension. �e pressure plots show how capillary waves are generated as the system

evolves.

Next, a case with permeability is considered, withM = 0.04. �is leads to signi�cant coarsening
over the time interval 0 ≤ t ≤ 2. Starting with the same con�guration2 as in the previous example,
Figure 4.9 illustrates the results. �e simulation was performed on a 1024 × 1024 grid with periodic
boundary conditions and є = 2h in theVIIM.Despite strong shearing and complicated �uid-interface
interaction, the �uid �ow is incompressible and so von Neumann-Mullins’ law describing the rate

of change of area of each phase should nevertheless hold, and gives

dA
dt

= 2πMσ(n
6
− 1),

where n is the number of sides of a particular phase (or one of its connected components if it has
more than one component). �e area as a function of time for some of the phases in this simulation

are plotted in Figure 4.10. Similar to the plot obtained in the convergence tests (i.e. Figure 3.16), we

see that the area of each phase is a piecewise linear function of time, with slope a function of the

number of sides only, in excellent agreement with von Neumann-Mullins’ law, even in the presence

of complicated �uid �ow.

�ree-dimensional results

We now consider a three-dimensional analogue of the agitator. �e domain is a unit cube [0, 1]3 and
the external force is essentially the same but with no forcing in the z–direction, i.e.

F(x , y, z, t) = 15(sin πx sin 2πy,− sin 2πx sin πy, 0) sin πt, 0 ≤ x , y, z ≤ 1,
2�e factor in the external force F has been decreased to 10 in this example.
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Figure 4.8. Results of a fluid flow simulation with an external agitator force, without permeability.
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Figure 4.9. Results of a fluid flow simulation with an external agitator force and permeability.
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Figure 4.10. Area as a function of time for some of the phases in the simulation of Figure 4.9. Each line
corresponds to a different phase, and the colour and style is determined by the number of sides that phase had at
that particular instant.

which corresponds to a spinning force about a line with coordinates x = y = 1

2
. Other parameters

are le� unaltered, i.e. ρ = 1, σ = 1, µ = 0.005 and periodic boundary conditions are used.
Two cases are considered: without permeability (M = 0) and with permeability (M = 0.05). We

start with 125 randomphases and evolve theNavier-Stokes equations with the agitator forcing; Figure

4.11 illustrates the results over �ve di�erent points in time, t ≈ 0, 0.5, 1, 1.5 and 2. �e simulation was
performed on a 128× 128× 128 grid with periodic boundary conditions and є = 0+. We have coloured
solid 13 representative phases in order to visualise the bulk �ow of the agitation. �e velocity �eld is

illustrated by freezing the velocity �eld and drawing streamlines seeded from a random set of points,

for each time frame. �e streamlines are coloured according to the azimuthal component of the

velocity �eld, relative to the centre line of the agitation, computed by u ⋅ θ̂ where

θ̂ =
(−y + 1

2
, x − 1

2
, 0)

[(−y + 1

2
)2 + (x − 1

2
)2] 12

(4.9)

is the azimuthal tangent vector corresponding to a cylindrical coordinate system with centre line

x = y = 1

2
. �us, the colour of the streamlines give an indication of the direction the �ow is

spinning about the centre line, where green means counterclockwise (looking down from the tip

of the indicated arrow), and blue means clockwise. When the forcing is at its maximum, i.e. when

t = 0.5 and t = 1.5, the �uid �ow is predominantly in the direction of forcing. At intermediate times,
e�ects of surface tension aremore apparent and the �ow is more localised in nature. �is is especially

noticeable in the case of no permeability, in which the stabilisation e�ects of surface tension act more

quickly to decrease the momentum gained from the agitator forcing. As in the two-dimensional

case, there is signi�cant rearrangement of phases, with several topological changes.
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Figure 4.11. Results of a fluid flow simulation with an external agitator force in three dimensions, with and
without and permeability. Streamlines are coloured by the azimuthal component of the velocity field, computed
by u ⋅ θ̂, where θ̂ is defined in (4.9).
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4.2.3 Phase-dependent �uid properties
In the next application, the VIIM is coupled to multiphase �uid �ow with variable density and

viscosity. �is is demonstrated with a foam that has one phase more dense and more viscous than

the other phases. In addition, this phase initially has several components dispersed throughout the

foam. Under the action of gravity, the heavier phase sinks and the surrounding less dense phases

rise. �is process depends on the competing e�ects of surface tension at triple junctions and gravity:

regions of denser liquid need to be su�ciently large in size for the force of gravity to dominate the

stabilisation e�ects of surface tension. As the system evolves, and the components of the heavier

phase sink, they merge together, forming a pool of liquid at the bottom. In these examples, the e�ect

of di�erent interfaces having di�erent surface tensions is also demonstrated, giving rise to triple

junctions with di�erent angle con�gurations.

�e parameters of the simulation are as follows. �e domain Ω is the unit square (unit cube in

3D), and slip boundary conditions on the velocity �eld are employed, given by

u ⋅ n = 0, ∂u
∂n

⋅ τ = 0, on ∂Ω,

where n is the normal to the boundary and τ is any tangent vector to the boundary. Identifying the
heavy phase with the labelH, the density, viscosity, and surface tension for each phase i is set as

(ρi , µi , σi) = { (1, 0.005, 0.1) if i = H,
(0.1, 0.00005, 0.01) otherwise.

�e system therefore has density ratios of ten and viscosity ratios of 100, in such a way that there is a

Reynolds number ratio of ten (using the same velocity and length scales independent of the phase).

Due to the di�erent surface tensions, there are also di�erent triple junction angles. According to the

generalised Young’s law (4.3), the angles (θ i , θ j, θk)made by phases i , j, k at a triple point are

(θ i , θ j, θk) = { (120○, 120○, 120○) if none of i , j, k equalH,
(170○, 95○, 95○) if i = H and j, k ≠ H. (4.10)

Permeability is set to zero, M = 0, and the external force F in the Navier-Stokes equations is given
by gravity, F = ρgĝ, where g = 5 and ĝ is a unit vector pointing down. Once again, while these
choices of parameters may not necessarily correspond to a particular physical situation, they have

been chosen to illustrate the various e�ects of variable density, viscosity, and surface tension.

A 90○ contact angle model has been implemented, whereby the interface meets the boundary

of the domain at 90○ angles. Since the unsigned distance function ϕ in the VIIM is advected only
by u, and u satis�es slip boundary conditions, it is inappropriate to specify boundary conditions
on ϕ. Instead, the contact angle model is implemented through the surface tension force in the
Navier-Stokes equations: the force drives the velocity �eld which in turn restores 90○ angles in the

interface. �is is implemented in the same way that would occur if the contact point was considered

to be an imaginary triple point that was allowed to move only tangentially along the boundary.

Finally, some remarks about connected components and merging and breaking: just as in the

standard level set method, the VIIM easily and automatically handles merging and breaking, which
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means the number of connected components of any particular phase can change over time, depend-

ing on the dynamics driving the evolution of the interface. In the following simulation, we make

the analogy that the heavier phaseH is a liquid embedded in a foam of gas bubbles, and then these
connected components are used in two distinct ways:

• �e heavy phaseH will initially have several connected components of various di�erent sizes.
Due to the external force of gravity and the higher density of phaseH, these components will
tend to sink to the bottom and merge together, forming a pool of liquid at the bottom of the

domain. �us, we rely on the VIIM to handle the merging of the di�erent components of

phaseH into fewer connected components. All these components have the same identi�er in
the indicator function χ.

• On the other hand, the less dense phases are thought of as making a “gaseous foam”, in which

merging of di�erent bubbles of gas is not allowed. �us, here we choose to not allow any of
the less dense phases to have more than one connected component. �is means that, as the

simulation evolves, if one of these phases splits into two components, then each component is

separately given a new unique identi�er, thereby preventing re-merging at a later point in time.

As a result, at the end of the simulation we o�en have more than the initial number of phases.

�is choice is a simple model of the complex multiscale phenomena of foam production,

whereby microscale dynamics of thin-�lm membranes, surfactant �ow, and surface tension

determine the macroscopic creation and evolution of foams.

Two-dimensional results

Webegin with a two-dimensional simulation of the above variable density �uid �ow problem. Figure

4.12 illustrates the results, starting with the con�guration shown at time t = 0, and is computed on a
256 × 256 grid with slip boundary conditions, with є = 0+. Here, the heavier phase, initially having
nine separate components of circular shape, is coloured orange. �e other phases, of which there

are initially approximately 35, are coloured shades of blue and green. Figure 4.12 shows snapshots of

the simulation at di�erent times of note, showing plots of phase evolution, streamlines and stream

function, and pressure �elds.

We note several features of the results. Most of the components of the heavy phaseH (shown in
orange) sink to the bottom. In particular, the component initially attached to the top, �rst falls down,

leaving behind it a trailing tail. It then detaches from the top boundary, forming a jet that quickly

retracts (as seen at t = 1.32). On the other hand, the two smallest components of the heavy phase do
not sink, and remain embedded in the foam at time t = 1.81. Here, the local forces of surface tension,
particularly at the triple points, dominate the force of gravity and prevent them from falling. �is is

similar to an air bubble at the surface of water: depending on its diameter, the bubble can range from

being almost fully submersed and spherical in shape to entirely on the surface with a hemispherical

shape.

By the time the component of H initially at the top merges with the other components at the
bottom, it has gained a large amount of momentum. �is causes some less dense phases to break

o� from the bulk and be submerged (see, e.g., time t = 0.92). �ese two bubbles, still submerged
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Figure 4.12. Results of a fluid flow simulation with gravity, in which the orange coloured phase is more viscous
and more dense than the other phases.
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t = 0 t = 0.36 t = 0.72

t = 1.08 t = 1.44 t = 1.8

Figure 4.13. Results of a fluid flow simulation in three dimensions with gravity, in which the orange coloured
phase is more viscous and more dense than the other phases. The bulk foam is rendered mostly transparent except
for the last frame, where it is rendered opaque to make the structure more prominent.

at t = 1.32, eventually rise due to buoyancy, and burst at the surface ofH, at t = 1.81. On the other
hand, near the bottom right corner, some less dense phases break o� and remain attached to the

bottom of the square. Here, the local e�ects of surface tension implementing a 90○ contact angle

model dominates the force of buoyancy, and the bubbles remain attached to the bottom.

From the streamlines, we can observe that the �ow inside the heavier phase is more viscous,

since the streamlines there are more regular. One can also see that the pressure has larger gradients

inside the heavier phase, consistent with the liquid having a higher density there. Finally, we note

that the angles in the triple points are consistent with those predicted by Young’s law (4.10): the

heavier phase is nearly locally �at at triple points, while the less dense phases meet the heavier phase

at nearly 90○ angles, and have 120○ angles elsewhere in the foam.

�ree-dimensional results

Figure 4.13 illustrates the results for an analogous, three-dimensional simulation, computed on a

1283 grid with slip boundary conditions, using є = 0+. �e simulation starts with 15 components of
H, and there are approximately 100 of the less dense phases. For all but the last snapshot in Figure
4.13, the heavier phaseH is coloured solid orange, while the other phases have been rendered mostly
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transparent, together with the triple line junctions as a network of curves. In the last snapshot, at

time t = 1.8, the bulk foam has been rendered opaque, to make the structure of the foam more
obvious.

Various phenomena similar to the 2D case is observed. �e large component of H initially
attached to the top falls down under the action of gravity, leaving behind it a tail that eventually

detaches. �e tail splits into three components, much like a mean curvature �ow on a dumbbell

splits into two components. �e bottom two components continue travelling to the pool of liquid at

the bottom, while the top component remains attached to the ceiling of the domain, and stays there

due to the local e�ects of the 90○ contact angle boundary condition dominating gravity. Meanwhile,

one other component (seen on the back le�-facing wall) stays attached to the wall, unable to fully

sink, and this is again due to local e�ects of surface tension dominating e�ects of buoyancy. Finally,

we note that the heavier phase is locally �at at triple lines, while triple lines elsewhere in the foam

have 120○ angles, consistent with the 3D analogy of the generalised Young’s law.

4.2.4 Additional �uid �ow applications
In the last set of example applications of the multiphase �uid �ow framework, some preliminary

results for two �uid �ow problems are presented, in cluster breakup in shear �ow, and in foam

generation.

Cluster breakup

In this example, a cluster of cells is subjected to shear �ow in an enclosed square channel. Since

surface tension acting at junctions provides a type of “adhesion” between cells, a cluster made out

of cells with lower surface tension is more likely to break apart compared to one with high surface

tension. �is is demonstrated in Figure 4.14: a cluster of cells is suspended in a �uid of the same

density in a rectangular channel (square channel in three dimensions), and an external force pointing

to the right is applied, similar to the pressure gradient that arises in Poiseuille �ow. Over time, this

force builds and eventually balances with viscous e�ects together with no-slip boundary conditions,

leading to a shear �ow such that the �uid velocity at the centre of the channel is highest. �e resulting

shearing eventually breaks apart the cluster. In Figure 4.14 a moving reference frame is used that

follows the bulk of the cluster. �e le� and right pair shows two- and three-dimensional results, and

in each pair, the le� uses a lower value of surface tension compared to the right. We can observe that

breakup occurs more quickly in the case with lower surface tension.

Foam generation

In the VIIM, it is straightforward to create phases during a simulation, as discussed in §3.7 of Chapter

3. �is is demonstrated here with a foam generation problem, whereby gas bubbles are introduced at

the bottom of a container �lled with liquid, as shown in Figure 4.15. In particular, small gas bubbles

with diameter of about a few grid cells are instantaneously created at a random location at the bottom

of the chamber. �ese bubbles are then arti�cially grown to slowly increase their volume, as they rise
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Figure 4.14. Cluster breakup in shear flow; time progresses from top to bottom. Left pair: two-dimensional
example where the blue colour indicates the speed of the fluid velocity. Right pair: three-dimensional results. In
each pair, the left column has a lower value of surface tension than the right column.

Figure 4.15. Generation of gas bubbles which rise to the surface; time progresses from left-to-right.
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to the surface due to buoyancy e�ects, foaming a foam at the top. While this is not representative

of the complex chemistry and physics taking place in, say, boiling or nucleation of gas bubbles in

carbonated liquid, this example is included here to demonstrate the ability of the VIIM to handle

creation of phases.

4.3 Implementing general domains using an exterior phase
By freezing є-level sets in the VIIM, it is possible to create an “exterior phase” which does not move
and can be used to represent domains with a general shape. �is is demonstrated here with two

applications in an annulus-shaped domain (Figures 4.16 and 4.18) and in a torus (Figure 4.17). To

implement this, a phase representing the exterior of the annulus/torus is created and frozen in

time. �us, the є-level set of the exterior phase essentially becomes a boundary condition in the
Voronoi interface reconstruction. In Figure 4.16, this idea is used to compute curvature �ow with

area targeting so that every phase �nishes with the same area. Note that 90○ boundary conditions

naturally arise at the boundary of the annulus. In Figure 4.17 an analogous �ow is shown in three

dimensions for mean curvature �ow with volume targeting so that every phase �nishes with the

same volume. Figure 4.18 shows a �uid �ow problem, whereby the inner ring boundary of the

annulus rotates clockwise, and the outer ring rotates counterclockwise. �ese boundary conditions

are supplied to the Navier-Stokes solver by �xing the velocity �eld at each grid point exterior to the

annulus at the end of each projection step in the projection method. In the �gure, we can see how

the resulting shearing e�ects causes the multiphase system to mix.
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Figure 4.16. Curvature flow with area targeting in an annulus.

t = 0 t = 0.0017 t = 0.0056 t = 0.031

Figure 4.17. Mean curvature flow with volume targeting in a torus.

t = 0 t = 1

2
π t = π t = 3

2
π t = 2π

Figure 4.18. Shear flow with inner ring rotating clockwise, outer ring rotating counterclockwise; phases are
coloured according to their initial position.
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Chapter 5

Mesh Generation for Interconnected Surfaces

In this chapter, a high-quality mesh generation algorithm for a network of interconnected surfaces

is presented. �e development of the algorithm was motivated by the multiscale model for foam dy-

namics presented in the following two chapters: in that model, certain PDEs are solved numerically,

using the �nite element method, on a network of curved thin-�lm membranes which evolve under

gas dynamics driven by surface tension. A mesh generation algorithm was therefore needed to auto-

matically generate high-quality meshes for a set of interconnected surfaces. �e algorithm should be

able to reliably handle a wide variety of topologically complex situations, and mesh elements should

meet consistently at junctions, so that there are no gaps, overlaps or other artifacts. Furthermore,

in order to implement coupled boundary conditions at these junctions, it is advantageous for the

mesh to have the property that if two mesh elements meet at a junction, then they do so by sharing

a common edge, so that there are no hanging vertices. As shown here, all of these goals can be met

by capitalising on mathematical aspects of the Voronoi interface.

�e mesh generation algorithm has essentially two stages: in the �rst stage, a topologically

consistent mesh is created that has no gaps, overlaps, or other artifacts at junctions. �is step

involves no heuristic or complex decisions about surface topology; instead properties of the Voronoi

interface are used to guarantee consistency. �e resulting mesh is suitable for many purposes, such

as visualisation, but consists of many low-quality elements, so in the second stage of the algorithm,

a short sequence of force-based smoothing, projection, and edge �ipping iterations is applied. Here,

the ideas of the DistMesh [45] algorithm are extended to the case of multiple surfaces –mesh vertices

are moved according to forces, based on the current topology of the mesh, which together with edge

�ipping, improve mesh quality. By using a new adaptive time stepping strategy, convergence to a

high-quality mesh can be obtained within as few as 10-20 iterations, taking less than a second on a

typical desktop computer for a mesh with 10,000 elements.

Since the concept of the Voronoi interface makes generating a topologically consistent mesh

straightforward, it may be advantageous to convert other representations (such as voxel-based data

or point clouds) into this form. For example, CT imaging and MRI produce voxel data wherein

each voxel identi�es di�erent regions or types of tissue, and the boundary between the di�erent

regions de�nes the surfaces. It is straightforward to convert this into a Voronoi interface by using,

for example, smoothed indicator functions for the di�erent regions. Another possibility is using
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three-dimensional scattered point clouds, and this is demonstrated in the results.

�e outline of the chapter is as follows. First, some previous work on meshing multiple surfaces

is reviewed and compared with the approach presented here. In the next section, the idea of the

Voronoi interface is recalled and discussed in the context of mesh generation, and then the main

meshing algorithm is presented. Lastly, results and mesh quality analyses are shown using a variety

of applications arising from multiphase curvature �ow, geometrically-de�ned objects, and surface

reconstruction from point clouds.

5.1 Previous work
Much of the previous work on meshing interconnected surfaces has focused on multi-material data

sets, wherein each voxel is assigned a di�erent label identifying di�erent regions or materials. A

variety of algorithms have been developed, which, somewhat broadly, are based on:

• Lookup tables: Here, a marching cubes [56] or marching tetrahedra [57–59]-style algorithm is
extended to handle the case of multi-material data sets, leading to lookup tables that take into

account material labels. In general, the lookup tables rapidly increase in size with the material

count, and produce a mesh that has many bad quality elements (e.g. slivers). In some cases,

see e.g. [69–71], they are created through a series of heuristic decisions that decide a plausible

topology, making it unclear if the resulting meshes are guaranteed to be free of artifacts. In

another approach, in [72] a subdivision algorithm is used together with trilinear interpolation

that leads to a mesh guaranteed to be topologically consistent, however the subdivision comes

at the price of generating very large lookup tables or a large number of tiny mesh elements.

In [73], a lookup table is used in the case of three materials, and in the general case, triangle

removal algorithms are used, allowing meshes with boundaries and holes to be created.

• Delaunay re�nement: �ese methods are an extension of typical Delaunay re�nement-based
algorithms to the case of multiple surfaces [74–76]. A mesh is iteratively created by adding

vertices and updating mesh topology until a quality criteria is reached that terminates the

algorithm. �ey generally involve many subtle pre-processing steps, including the need to

identify and extract the triple junctions as a network of curves. �e created meshes are topo-

logically consistent, having no gaps or overlaps, and in addition, mesh elements that meet

at junctions do so by sharing a common edge. Parallel implementations of these algorithms

can be di�cult, however the approach has the advantage of allowing quality criteria to be

de�ned on per-surface basis, allowing di�erent materials to have di�erent mesh resolutions,

and volume tetrahedra meshes (consistent with the interface topology) are o�en produced at

no extra cost.

• Particles: A di�erent approach involves �rst placing particles (or spheres) on the set of sur-
faces, optimising the distribution of the particles, and then creating mesh topology through a

constrained Delaunay triangulation/tetrahedrisation. A very early method using this idea was

the bubble mesh [77]: spheres of an adaptive size are “packed” onto explicitly parameterised
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curves, surfaces, and volumes, in that order. In a relaxation step, the spheres are then dynam-

ically moved according to force-based laws to optimise their distribution, before invoking a

constrained Delaunay algorithm to obtain the mesh topology. More recently, in [78] an algo-

rithm is proposed in which the particles, once seeded on the implicitly de�ned surfaces, are

dynamically moved to optimise an energy functional that measures surface features, allowing

particles to concentrate near regions of high curvature. �e resulting meshes are of very high

quality, but this comes at the price of a computationally expensive optimisation process; some

of the meshes presented in the latter work took several hours to generate.

• Other approaches: In [79], a straightforward subdivision strategy is used that subdivides the
unit cube into su�ciently many smaller sub-cubes, and assigns di�erent materials to each sub-

cube. An interface between di�erent materials is then extracted directly from the subdivided

cube, creating a topologically consistent mesh, but which has a staircase shape that then

needs to be smoothed, a�ecting the accuracy of the surface representation. More recently, in

[80], an octree-based approach that uses a dual contouring method is presented, also based

on a subdivision algorithm that instead uses trilinear interpolation to resolve topological

ambiguities. Another octree-based algorithm is developed in [81], allowing both triangular

and quadrilateral surfaces meshes (as well as hexahedral volumemeshes) to be created of good

quality. A di�erent approach is presented in [82], wherein surfaces are meshed away from the

junctions, leaving behind void regions which are then meshed using the previously-created

surface meshes as constraints.

Finally, when the surfaces are represented via other means, di�erent approaches are available.

For example, in [83], point clouds of surfaces are transformed into implicit functions via

partitions of unity, before executing a marching tetrahedra variant to extract a mesh. Lastly,

in the volume-of-�uid method for tracking interfaces in multiphase �uid �ow, the volume

fraction of every �uid in each grid cell is tracked, and in order to evolve the �uids, the interface

must be reconstructed from the volume fractions, see e.g. [84].

In comparison, for the mesh generation algorithm presented here, an initial mesh is constructed

using a simplemarching tetrahedra-style algorithm that does not require special material-dependent

lookup tables. Instead, the Voronoi interface, together with properties of piecewise linear interpola-

tion, guarantee topological consistency of the mesh (provided the surfaces are su�ciently resolved).

In this fashion, heuristic or complex decisions about surface topology are avoided. In the second

stage, vertices of the mesh are dynamically moved to improve mesh quality, in-part based on the

ideas presented in the DistMesh algorithm [45]. Here, a specially designed “clamping” function
is used to automatically prevent triangle inversion, while allowing low quality elements to quickly

change shape into good quality elements.

5.2 �e Voronoi interface
Recall the de�nition of the Voronoi interface given in §3.2: given a set of non-overlapping regions

Ωi , the Voronoi interface is the set of points that are equidistant to two regions and no closer to
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any other region. For the purposes of mesh generation, it is advantageous to use multiple level set

functions ϕi in order to de�ne the Voronoi interface, as was done in §3.4.2. Speci�cally, suppose that

ϕi ∶ Rn → R is the signed distance function for region Ωi , such that ϕi is positive inside Ωi . �en

the Voronoi interface ΓV inside a domain Ω is given by

ΓV = {x ∈ Ω ∶ ∃ i ≠ j such that ϕi(x) = ϕ j(x) ≥max
k≠i , j

ϕk(x)}. (5.1)

In particular, ΓV can be separated into a union of individual surfaces separating pairs of di�erent

regions, such that ΓV = ⋃i≠ j Γi j, where

Γi j = {x ∈ Ω ∶ ϕi(x) = ϕ j(x) ≥max
k≠i , j

ϕk(x)}. (5.2)

Although distances were used as motivation, note however that (5.1) and (5.2) can be used to de�ne

an interface, even when the ϕi functions are not necessarily signed distance functions. All that is

required is that the functions ϕi are continuous, and that the individual sets Γi j are codimension-one

surfaces. �erefore, it is useful to make a generalisation: for any set of functions ϕi ∶ Rn → R, the
Voronoi interface of the functions ϕi is de�ned to be ΓV given by (5.1).

De�ning the interface in this manner, i.e. implicitly rather than explicitly, provides many virtues.

In relation to the meshing problem, as shown below, this particular implicit representation makes it

straightforward to extract a topologically consistent mesh with no artifacts at junctions. Assuming

continuity of the functions ϕi , an equivalent characterisation of the interface is that a point x is inside
phase/material i if and only if ϕi(x) >max j≠i ϕ j(x). �is characterisationwas used in some previous
works on meshing multiple surfaces (wherein the functions were smoothed characteristic/indicator

functions); here, (5.1) is used directly.

In practice, there are many possible methods for de�ning the functions ϕi . �e meshing algo-

rithm does not depend heavily on the particular method of determining ϕi ; in the following, all that

is assumed is that the ϕi functions are de�ned on a background grid (such as a regular Cartesian

grid). �is naturally occurs in the context of the VIIM, where reinitialisation methods are used to

calculate signed distance functions to є-level sets. In other cases, the functions could be derived
from a single label/indicator function χ ∶ R3 → N that divides the domain into di�erent regions.
For example, one could de�ne ϕi as a (possibly smoothed) per-phase indicator function such that

ϕi(x) = 1 inside region i and ϕi(x) = 0 outside. However, it is important to note that in the meshing
algorithm it is not necessary to de�ne every ϕi function everywhere in the entire domain: it is only

necessary to know the values of ϕi in a small narrow band surrounding the boundary of phase i.
�is can dramatically improve e�ciency, and is a common technique used, for example, in narrow

band level set methods [50].

5.3 Mesh generation
Given N functions ϕi de�ned on some three-dimensional grid, the goal is to extract an explicit

representation of the Voronoi interface, de�ned by (5.1), as a high-quality triangulated mesh. �is is
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accomplished by �rst creating an initial mesh, which although will generally be of low quality, it will

nevertheless be topologically consistent in the sense that triangles meet at junctions without overlap

or gaps. In the second stage of the algorithm, the mesh is iteratively improved using a sequence of

force-based smoothing, projection, and edge �ipping steps. �emethod is summarised inAlgorithm

2, and, in the next set of sections, the implementation of the individual steps is described.

Algorithm 2 General algorithm for mesh generation
Create initial mesh.

repeat
Apply forces and project vertices.

Edge �ip triangles.

until desired mesh quality is achieved.

5.3.1 Creating the initial mesh
To create an initial mesh of the network of interfaces, the Voronoi interface of the multiphase system

is extracted using a marching tetrahedra-style algorithm that involves creation and “chopping” of

mesh elements. �e approach is based on the procedure described in §3.8 of Chapter 3. For a

particular surface Γi j, de�ned by (5.2), the mathematical procedure consists of three steps:

(i) First, establish a continuous piecewise linear interpolation of every ϕi function, to determine

ϕi at arbitrary points. For example, if the background grid is a regular Cartesian grid, then each

cell can be divided into six tetrahedra, as shown in Figure 5.1 (le�), and in each tetrahedron one

can use the obvious linear interpolant of ϕi . �is is precisely the interpolant that is implicitly

used by the marching tetrahedra algorithm. Alternatively, if the background grid is already a

tetrahedral mesh, one can directly use the canonical linear interpolant of ϕi .

(ii) Next, extract the zero level set of ϕi − ϕ j as a collection of planar polygon surface elements

{Eℓ}ni=1.1 Since the last condition in (5.2) is not necessarily satis�ed on every surface element,
it follows that Γi j ⊆ ⋃ℓ Eℓ.

(iii) For each element Eℓ, keep the set of points x ∈ Eℓ that satisfy ϕi(x) = ϕ j(x) ≥ ϕk(x) for all
k ≠ i , j. �is is achieved by a series of “chop” operations that takes Eℓ and chops it using the
zero level set of ϕi − ϕk as the position of the cut, and keeping the piece on which ϕi ≥ ϕk . �e

piece on which ϕi < ϕk is thrown away. Such chopping is made possible by the fact that every

level set function ϕi is piecewise linear, hence particular level sets as well as intersections of

level sets are always linear. In particular, it can be shown that throughout the chopping process,

the element is always a convex planar polygon. A�er chopping is complete, the polygon Eℓ is
then converted into a collection of triangles.

1Note that ϕ i − ϕ j is a continuous piecewise linear function de�ned on Ω, and so its zero level set must necessarily

be piecewise planar. In particular, because ϕ i − ϕ j is linear on each tetrahedron, it follows that its zero level set in each

tetrahedron, if it exists, is either a triangle or a planar quadrilateral.
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Figure 5.1. (Left) Dividing a cube into six tetrahedra. (Right) A body centred cubic lattice tessellates space into
identical tetrahedra; each tetrahedra has two vertices at the centroid of neighbouring cells, and the other two
vertices on an edge of a cell. In the figure, the blue tetrahedron ABCD is one of four sharing a face; the other
three are ABCF, ABDE, ABEF.

�e result of the above procedure is a collection of triangles whose union is Γi j. Note that the

algorithm is exact, in the sense that the Voronoi interface of the interpolated multiphase system is
extracted exactly. As a result, di�erent interfaces Γi j and Γkl which meet at higher order junctions

do so without any overlap or gaps. In particular, it follows that triangles which meet at junctions do

so by sharing edges and vertices along those junctions.

In the work presented here, the functions ϕi are de�ned on a regular Cartesian grid. If each grid

cell is divided into six tetrahedra, see Figure 5.1 (le�), as per a common variant of the marching

tetrahedra algorithm, it is almost always the case that the resulting triangulation is extremely poor:

many triangles are almost degenerate (small in diameter or slivers), and there is o�en many more

triangles than necessary to capture the features of the interface, as demonstrated in Figure 5.2 (le�).

To improve this, two complementary ideas are used:

• Instead of dividing each grid cell into six tetrahedra, a “body centred cubic lattice” [59] is used,

as shown in Figure 5.1 (right). �e lattice tessellates space into equal shaped tetrahedra which

are more symmetric and more evenly distributed. As noted in [59], the resulting triangulation

of the interface has far fewer triangles, while maintaining the same feature resolution.

• In addition, a vertex snapping procedure is used to eliminate sliver triangles. For a single scalar

function ϕ de�ned on the background grid’s vertices, assuming the zero level set is sought,
vertex snapping slightly perturbs ϕ by setting the value of ϕ to be zero at any vertices where it
is approximately zero:

ϕ̃(x) = { 0 if ∣ϕ(x)∣ < є,
ϕ(x) otherwise.

�is e�ectively snaps mesh vertices that are approximately near background grid points to

be precisely on those grid points, without introducing any holes or artifacts in the mesh. In

practice, even for considerable reduction of sliver elements, the threshold є can be very small.
Here, the mesh created by this algorithm is used as the input to an iterative smoothing and

projection procedure (see next section), and therefore does not need to be entirely accurate.

As a result, large tolerances can be used, resulting in a signi�cant reduction of unnecessary

triangles in the mesh, while maintaining the same feature resolution. When the scalar func-
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tions are approximate distance functions, it was found that setting є ≈ 0.2h, where h is the
Cartesian grid cell size gave good results.

For the multiphase system, vertices can be snapped by perturbing the level set function values

in a pairwise fashion:

for each background mesh point x do
De�ne ϕ̃i(x) ∶= ϕi(x) for all i.
for i = 1, . . . ,N do

for j = i + 1, . . . ,N do
if ∣ϕ̃i(x) − ϕ̃ j(x)∣ < є then

ϕ̃ j(x) ← ϕ̃i(x)

Snapping in a pairwise fashion like this ensures that previous alterations do not get overridden

by later alterations, which in turnmeans the topology of themultiphase interface is not a�ected

(provided it was already su�ciently resolved).

Combining these ideas, we are lead to Algorithm 3 for creating an approximation of the Voronoi

interface. On line 3, of course it is only necessary to loop over the pairs of phases de�ned in the

particular tetrahedron being considered. On lines 4 and 5, a lookup table, similar to those used in a

standard marching tetrahedra algorithm, can be used to determine how to extract the polygon (as

either a triangle or quadrilateral). On line 7, a simple method to evaluate ψ at arbitrary locations
is to use pre-computed Lagrange basis functions, while on line 8, it is a simple exercise to design

an algorithm to cut a convex planar polygon by the zero level set of a linear function de�ned on its

vertices. Polygons are then dissected into triangles and added to the overall collection of triangles.

�ese steps are straightforward if one is not concerned about duplicating vertices, i.e. triangles are

represented as 3-tuples of vectors inR3. Clearly, this is not optimal, since representing a triangle with
a 3-tuple of vertex indices is more e�cient. So, on line 11, the collection of vertices are uniqui�ed, by

identifying vertices as equal if they are within a small amount of machine precision round o� error.2

Alternatively, one may uniquify vertices simultaneously with building the collection of triangles.

�e result of the mesh creation algorithm on an example multiphase system is shown in Figure

5.2. Here, a �ve-phase system is de�ned by setting {ϕi}4i=1 to be signed distance functions for four
di�erently positioned spheres, i.e. ϕi(x) = ri − ∥x − xi∥, and then de�ning

ϕ5 =min(−ϕ1,−ϕ2,−ϕ3,−ϕ4)

to be the exterior phase. �is system has a total of �ve phases, ten individual surfaces Γi j separating

pairs of phases, ten distinct triple line junctions, and �ve quadruple point junctions. (Only some

of these surfaces/junctions are visible in the �gures; see also Figure 5.5 for a partial cutaway view.)

2With mild assumptions on the functions ϕ i , it is possible to show that the vertex snapping procedure guarantees

that if two vertices on a surface are within a distance є from each other, such that є ≪ h (where h is the tetrahedron
length), then they are in fact the same vertex. In this work, a tolerance of є = 10−14 was used (corresponding to double
precision and unit-length domains). Extensive tests analysing separation distance of vertices found that this tolerance

correctly uniqui�ed vertices in all cases.



CHAPTER 5. MESH GENERATION FOR INTERCONNECTED SURFACES 80

Algorithm 3 Creating the initial Voronoi interface mesh
1: Snap vertex values.

2: for each tetrahedron T do
3: for each subset {i , j} ⊆ {1, . . . ,N} do
4: Extract the zero level set of ϕi − ϕ j inside T using linear interpolation.
5: De�ne P to be the resulting convex planar polygon;

(if it does not exist, continue to next {i , j} subset).
6: for each k ≠ i , j do
7: Evaluate ψ ∶= ϕi − ϕk at each vertex of P.
8: Cut the polygon at the zero level set of ψ and keep the part on which ψ ≥ 0.
9: if P is now empty, continue to next {i , j} subset.
10: Divide P into triangles and add to the collection Γi j.
11: If necessary, uniquify vertices.

Figure 5.2 (le�) shows the mesh obtained by using the standard decomposition of each Cartesian

grid cell into six tetrahedra, without vertex snapping. In comparison, Figure 5.2 (right) shows the

result using the body centred cubic lattice, with vertex snapping. We can see that there is a signi�cant

reduction in sliver triangles, as well as the overall triangle count.

5.3.2 Smoothing and projection
Once an initial mesh of the Voronoi interface of the multiphase system is created, a high-quality

mesh can be obtained by using force-based smoothing, projection, and edge �ipping. Since this

Figure 5.2. A multiphase mesh of a five-phase system of four spheres, using the polygon chopping method
(Algorithm 3). Four pairwise surfaces and three quadruple point junctions are visible. (Left) Using the standard
decomposition of dividing a grid cell into six tetrahedra, without vertex snapping. (Right) Using the body centred
cubic lattice, with vertex snapping.
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process predominantly involves calculations involving vertices and their edges, it is advantageous to

use a vertex-and-edges data structure. Hence, let xi ∈ R3, i = 1, . . . , n, denote the mesh vertices and
Ei ⊂ N denote the set of neighbours of vertex i, so that (xi , x j) is an edge for each j ∈ Ei . From the
creation of the initial mesh, we also known which surfaces each vertex is situated on. For each vertex

xi , let χi ⊂ N denote the set of phases for which xi is on the boundary. �us, if χi has two, three, or

four elements, then xi is on a surface, a triple junction, or a quadruple point, respectively. At times,
it is also necessary to determine the set of triangles connected to a particular vertex; denote this set

as Ti . Determining Ti can be done on-the-�y by manipulating the edge data structure.
To iteratively improve the triangulated mesh, the ideas underlying the DistMesh algorithm [45]

are extended and adapted to the case of interconnected surfaces. In the DistMesh approach, force-

based smoothing, together with mesh topology updates and projection of vertices onto constraining

surfaces, enables fast convergence to a high quality mesh. In particular, the vertices of the mesh are

moved according to “forces” exerted on them by the edges in the mesh; in the original DistMesh

algorithm, the edges are analogous to springs that resist compression when shorter than a certain

rest-length, but do not otherwise resist expansion. It was observed that this repulsive force combines

exceptionally well with edge �ipping (or regular Delaunay triangulation) to quickly generate meshes

with very good connectivity properties. Conventional Laplacian smoothing [85] may also be viewed

as force-based, in which case the mesh edges are attractive rather than repulsive. In the general case,

each edge (i , j) exerts a force fi j = − f ji on vertex i. �e goal is to �nd an equilibrium such that at
each vertex, the net force is zero. Solving such a nonlinear system is a relatively di�cult task, so

instead the vertices are moved iteratively, using a simple forward Euler analogy:

xn+1
i = xn

i + ∆t∑
j∈Ei

fi j.

Here, ∆t is an arti�cial time step that controls the progress of the mesh towards the �nal desired
state. Note however that if ∆t is too large, mesh elements can invert, and this can cause the iterative
process to become wildly unstable. On the other hand, if ∆t is too small, then e�ciency can be
sacri�ced since too little progress may be made. A solution to this problem is presented later, using

a method that essentially locally computes the time step according to a basic stability condition that

prevents inversion of triangles, and leads to rapid convergence.

Force functions

In [45], the force function represented edges as springs that resist compression when shorter than

a certain rest-length, and do not resist expansion when longer. Despite being a simple approach, it

was shown that such a force quickly leads to a mesh with uniformly high quality elements. For an

edge (x , y), the force exerted on x is de�ned by

fD(x , y, ℓ0) =
x − y
∣x − y∣

max(ℓ0 − ∣x − y∣, 0),

where ℓ0 is a rest-length that is related to the desired average edge length of the �nal mesh. In fact,
it is possible to allow ℓ0 to vary spatially, allowing the mesh to automatically re�ne where necessary.
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However, in this work, a mesh which has uniform triangle sizes throughout is sought, and so ℓ0 will
be spatially uniform. As noted in [45], it is important for vertices of the mesh to spread out across

the whole geometry, which means that the rest-length ℓ0 should be slightly larger than the actual
desired edge length in the mesh. �is is achieved with a simple scaling: at the beginning of each

iteration, the average edge length (measured in a L2 norm) is computed and scaled by a factor3 of
1.2 to de�ne

ℓ0 ∶= 1.2(
∑n

i=1∑ j∈Ei ∥xi − x j∥2

∑n
i=1 ∣Ei ∣

)
1

2

. (5.3)

�is repulsive force ties in well with edge �ipping and quickly leads to high quality elements.

However, when edge �ipping is not possible, as is the case on triple junctions, the repulsive force

can lead to situations in which vertices attempt to exit their constraining surfaces, causing mesh

elements to invert. Instead, it was observed that Laplacian smoothing works very well on, and near,

junctions. In this case, an attractive force fL is used, where

fL(x , y) = 1

2
(y − x).

Correctly normalised by the number of edges, the attractive force is equivalent to a half-step of

Laplacian smoothing, which acts to move vertices to the average location of its neighbours. �is

force is used for all junction vertices, as well as surface vertices which have at least one neighbour

on a junction.

Projection

A side-e�ect of the force-based smoothing is that over time, mesh vertices can deviate from the

surfaces on which they are meant to be constrained, i.e. the mesh vertices can easily stray from

the Voronoi interface. To �x this, one can project the vertices back onto the surfaces on which they
belong, by moving them in a direction orthogonal to the constraining surface. Such a scheme was

used in [45, 86] for vertices constrained to live on codimension-one surfaces, and a di�erent scheme

was used in [78] for triple junctions. Note that this procedure also �xes the small aberrations caused

by the vertex snapping used in creating the initial mesh.4 For a single function, a vertex x close to
the zero level set of ϕ is (approximately) projected onto the zero level set with the update

x ← x − ϕ(x)∇ϕ(x)
∣∇ϕ(x)∣2

.

�e update can be viewed as moving x to its closest point on the zero level set of the linear approx-
imation of ϕ at x, given by ϕ(x + δ) ≈ ϕ(x) + δ ⋅ ∇ϕ(x). In the case of a vertex belonging to a
triple junction, or a higher order constraint set, one would like to project x to the corresponding

3�e scaling factor of 1.2 was determined empirically, and is the same as that used in [45]. It forces mesh vertices to

spread apart across the whole surface and leads to a smoothing behaviour that performs consistently well.
4In the projection step, the original, unperturbed functions ϕ i are used, i.e. they have not been altered by the vertex

snapping procedure used in creating the initial mesh.
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multi-junction interface. To do this, the method for a single level set function can be generalised to

multiple level set functions by considering pairwise combinations: for a vertex x belonging to the
boundary of phases χ ⊆ {1 . . . ,N}, de�ne

p(x , χ) = − 1

∣χ∣ − 1∑i∈χ
∑
j∈χ
j>i

(ϕi(x) − ϕ j(x))(∇ϕi(x) − ∇ϕ j(x))
∣∇ϕi(x) − ∇ϕ j(x)∣2

. (5.4)

In essence, the function accumulates the shi�s arising from projection onto individual surfaces Γi j,

such that one iteration is given by x ← x + p(x , χ). Note that (5.4) reduces to the case of a single
surface when ∣χ∣ = 2, and also that p(x , χ) = 0 whenever x is already on the multi-junction interface
(i.e. ϕi(x) = ϕ j(x) for all i , j ∈ χ). �e normalisation factor in (5.4) is designed to give e�cient
convergence without causing oscillations (i.e. by ensuring the steps are not too large). Finally, it

should be noted that if the denominators in (5.4) are close to zero and cause issues, then it is likely

that the functions ϕi are poorly de�ned; in this case, one could reinitialise the functions as signed

distance functions using the Voronoi interface.

Note that the gradient of the functions ϕi (as well as the function values themselves) must be

somehow calculated or approximated. If they are given by closed-form mathematical expressions,

then one could calculate the gradients using these expressions. Alternatively, if the functions are

de�ned on a background Cartesian grid, then one could use, for example, standard second order

�nite di�erences to calculate their gradients at grid points, followed by trilinear interpolation to

evaluate the gradients and function values anywhere within the domain. �is latter method was

adopted in much of the work presented here.

Adaptive time stepping

�e net result of the force-based smoothing and projection leads to displacements of mesh vertices

in the form

xi ← xi + δi .

Here, δi is a displacement vector that is the sum of the forces, together with the projection. If this

displacement is too large, mesh elements can invert, causing the smoothing process to become

unstable. To solve this, a simple clamping algorithm can be used, wherein δi is made su�ciently

small in such a way that no triangle inverts. �e algorithm is designed to allow vertex xi to move “as
far as it can” in the direction δi , so that a small edge or triangle can quickly expand if the forces want

it to. �e clamping is performed for each vertex independently of all other vertices, and e�ectively

establishes an easy-to-implement time stepping that is locally adaptive. Speci�cally, for a particular

vertex i, each of the triangles connected to i are used to clamp the necessary amount, to form the
replacement

δi ← δi ×min(1,min
t∈Ti

1

2
clamp(δi , xi , t)). (5.5)

Here, clamp is a function that returns the maximum amount by which xi can be moved in the
direction δi without inverting the triangle t, independently of how the other vertices of the triangle
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Figure 5.3. Lines passing through the midpoints of a triangle (with vertices v0 , v1 , v2) divide the plane into the
shaded region (having four separate components) and non-shaded region (having three separate components),
such that the line opposite vertex v i has normal n i . In the clamping procedure, each of the vertices v i is allowed
to move anywhere inside its own particular component of the non-shaded region.

move. �e function is implemented as follows. Consider Figure 5.3, which shows a triangle having

vertices v0, v1, v2. �e indicated lines are constructed by connecting midpoints of the three edges.
�e lines divide the plane into three disjoint regions that are separated by the shaded region indicated

in Figure 5.3. If it can be guaranteed that the vertices v0, v1, v2 move only in their respective regions,
without crossing the shaded region, then the triangle will not invert. In full three-dimensional space,

these constraint regions are convex, bounded by the planes with the indicated normal vectors, which

in turn are parallel to the plane of the triangle.

Consider then a particular vertex, v0, say, with a corresponding desired displacement vector δ.
One computes the minimum s > 0 (if it exists) such that v0 + sδ is on the boundary of its constraint
region. For a particular plane with normal n containing the point a, it follows that (x+ sδ−a) ⋅n = 0,
giving s = (a − x) ⋅ n/δ ⋅ n. By doing this for each appropriate plane, this leads to Algorithm 4
to compute the clamp function for a particular vertex v0 of a speci�ed triangle, with the speci�ed
displacement δ.

Algorithm 4 Calculating clamp(δ, v0, t) where t is the triangle with vertices v0, v1, v2
Compute the three normal directions

n0 = v2 − v0 − (v2−v0)⋅(v2−v1)
∥v2−v1∥2 (v2 − v1),

n1 = v0 − v1 − (v0−v1)⋅(v0−v2)
∥v0−v2∥2 (v0 − v2),

n2 = v1 − v2 − (v1−v2)⋅(v1−v0)
∥v1−v0∥2 (v1 − v0).

return s calculated by

s =min(
n0 ⋅ ( 12(v0 + v1) − v0)
max(n0 ⋅ δ, 0+)

,
n1 ⋅ ( 12(v0 + v1) − v0)
max(n1 ⋅ δ, 0+)

,
n2 ⋅ ( 12(v2 + v0) − v0)
max(n2 ⋅ δ, 0+)

),

where it is understood that if one of the max statements evaluates to 0+, then the corresponding

fraction is +∞.
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Note that in (5.5), the clamping is reduced by a factor of two, thereby preventing triangle inversion

entirely. With this approach, triangles may become nearly degenerate only a�er an accumulation

of displacements over several iterations. In this scenario, the clamping factor and local “time step”

would reduce to zero, and convergence would halt. However, this event never occurs in practice,

precisely because edge �ipping changes the topology of the mesh so that any nearly degenerate

triangles are removed.

Combining smoothing and projection

Putting all of the above together, Algorithm 5 performs one iteration of force-based smoothing and

projection, with the adaptive time stepping. On line 3, in the second item of the case statement, only

the neighbours which belong to the same type of surface (via the conditional χi ⊆ χ j) are considered.

�is ensures that the force law involves only edges belonging to the same type of surface (or triple

junction). On line 5, the force computed from the edges is enforced to be tangential to the surface, by

removing the component of the vector orthogonal to the surface. (Here, nχ i is a normal vector to the

surface χi = { j, k}, i.e. is proportional to ∇ϕ j −∇ϕk, and can be calculated with �nite di�erences.)

Without this, it was observed that the non-tangential components of the force can start to compete

with projection, causing oscillation. Hence, the force-based smoothing is restricted to tangential

forces.

Algorithm 5 A single smooth and projection step
1: Calculate the rest length ℓ0 using (5.3).
2: for i = 1, . . . , n do
3: Calculate the force on vertex i due to its neighbours Ei :

δi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if vertex i is a high-order junction (∣χi ∣ > 3),

( ∑
j∈E j

χ i⊆χ j

1)
−1
∑
j∈E j

χ i⊆χ j

fL(xi , x j) else if vertex i is on a triple junction (∣χi ∣ = 3),
or has a neighbour on a triple junction,

1

∣E j∣
∑
j∈E j

fD(xi , x j) otherwise.

4: if vertex i is on a surface (∣χi ∣ = 2) then
5: Remove the component of δi orthogonal to the surface: δi ← δi − (δi ⋅ nχ i)nχ i .

6: Add to δi the projection displacement: δi ← δi + p(xi , χi) using (5.4).
7: Clamp δi to prevent inversion using (5.5) and Algorithm 4.

8: for i = 1, . . . , n do
9: xi ← xi + δi
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Figure 5.4. Edge flipping exchanges an edge shared by two triangles T1 and T2 (left) with the edge formed by
opposing vertices, giving two new triangles T3 and T4 (right).

5.3.3 Edge �ipping
In the edge �ipping step, every pair of triangles sharing a common edge is considered. If �ipping the

shared edge (see Figure 5.4) improves the quality (de�ned below) of the pair of triangles, then this is

done and the connectivity of the mesh is updated, before visiting other edges. In the plane, and with

a quality measure that is based on the standard Delaunay in-circle condition, this iterative procedure

is a well-known method that converges to a Delaunay triangulation [87]. A simple measurement of

triangle quality that is suitable for triangles in R3 is to de�ne

q = q(v0, v1, v2) = 4
√
3

triangle area

sum of squared edge lengths

= 2
√
3

∥(v1 − v0) × (v2 − v0)∥
∥v1 − v0∥2 + ∥v2 − v1∥2 + ∥v0 − v2∥2

,

where vi are the vertices of the triangle. Here, q is normalised so that 0 ≤ q ≤ 1: an equilateral
triangle has q = 1 and a degenerate triangle has q = 0. (�ere are also many other types of measures
of element quality, see the review [88].) Even though the triangles generally lie on a curved surface,

the edge �ipping algorithm is essentially equivalent to the logic used in the plane; the algorithm is

summarised in Algorithm 6. Note that on line 2 of Algorithm 6, the potential �ip is required to only

involve triangles belonging to the same surface. �is ensures that edges on mesh junctions do not

change connectivity. In addition, line 7 checks to see if the triangle pair is already of good quality; if

they are, then any possible edge �ipping is essentially inconsequential, since any increases in quality

would be minor. �is simple check leads to markedly better e�ciency in the algorithm.

5.3.4 Parallelisation
Combining the above steps, i.e. Algorithm 2, yields the basic algorithm to generate a triangular mesh

of the Voronoi interface. In some applications, the Voronoi interface is determined by the evolution

of complex physics on high resolution three-dimensional grids. For example, in the multiscale

model of foam dynamics presented in the following chapters, computations were o�en performed

on hundreds of processors. In particular, the computational domain was divided into subdomains,

which were then assigned to individual processors in an MPI implementation. In such cases, the

functions which de�ne the Voronoi interface are split across several subdomains, and it follows that

the mesh generation algorithm must also be parallelised to maintain some level of computational

e�ciency. �is can be done with a fewmodi�cations to the individual steps of the algorithm, mainly
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Algorithm 6One iteration of edge �ipping
1: for each edge (i , j) in the mesh do
2: if the edge is shared by two triangles that belong to the same surface then
3: Let vi , v j, vk and vi , vℓ , v j be the vertices of the two triangles (see Figure 5.4).

4: else
5: continue to next edge.
6: Compute q1 = q(vi , v j, vk) and q2 = q(vi , vℓ , v j).
7: if min(q1, q2) ≥ 0.9 then
8: continue to next edge (since the triangles are already of good quality).
9: Compute q3 = q(vi , vℓ , vk) and q4 = q(vℓ , v j, vk).
10: if min(q3, q4) ≤min(q1, q2) then
11: continue to next edge (since edge �ipping will not improve quality).
12: Let n3 and n4 be proportional to the normal of the two new triangles:

n3 = (vℓ − vi) × (vk − vi),
n4 = (vk − v j) × (vℓ − v j).

13: if n3 ⋅ n4 ≤ 0 then
14: continue to next edge (since edge �ipping will invert the triangles).
15: Proceed with edge �ip: remove edge (i , j) and add edge (k, ℓ) by altering Ei , E j, Ek , and Eℓ.

in relation to synchronisation of mesh connectivity information across processor boundaries, as

follows.

In the �rst step, an initial mesh approximating the Voronoi interface is found. �is step is

essentially unchanged: each processor can create a set of triangles from the functions de�ned on

its subdomain. It is only necessary to ensure elements are not duplicated across boundaries shared

between subdomains. In a synchronisation step, the processors then communicate and assign unique

identi�ers to the mesh vertices found in the �rst step.

At this stage, only mesh smoothing and edge �ipping remain, with many possible methods of

parallelisation. In this work, the implementation has been simpli�ed by keeping the same domain

decomposition and processor layout. In other words, each vertex of the mesh is assigned owner-

ship to a particular processor, according to the same subdomain decomposition. With this simple

approach, the smoothing and edge �ipping can be parallelised by

(i) re-assigning ownership of vertices whenever they move across subdomain boundaries; and

(ii) maintaining a “ghost layer” of mesh connectivity information, to allow each processor to

perform edge-based calculations. �at is, each processor maintains a data structure for the

vertices it owns, plus any neighbours of those vertices.

Together, these allow each processor to perform one step of force-based smoothing and projection,

a�er which a synchronisation step is needed to update information near the subdomain boundaries.
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�e only subtle di�culty with this approach is the need to edge �ip across subdomain boundaries.

�is can be achieved by using two ghost layers, i.e. each processor knows the connectivity and

position of each neighbouring vertex of each neighbouring vertex of each vertex the processor owns.

Processors then mutually agree before the edge �ipping step, as to exactly which processor performs

the edge �ipping on triangles spanning a subdomain boundary. By taking this in turns, one can

ensure that every pair of triangles in the overall mesh will be subject to edge �ipping.

Note however that this simple domain decomposition approach may not necessarily scale with

the number of processors. It is entirely possible that the Voronoi interface exists in some parts of

the domain, and not in others, so that some processors are assigned no mesh vertices, while other

processors are assigned many. It follows that the scaling of this approach depends highly on the

geometry of the interface. �erefore, di�erent parallelisation methods may be necessary if scaling is

crucial to performance; in the case of the foam application, this simple approach was su�cient to

make the computational cost of mesh generation only a small fraction of the overall cost.

5.4 Results
Consider the example shown in Figure 5.2 of four intersecting spheres. Using the same initial

mesh (i.e. Figure 5.2 (right)), Figure 5.5 shows successive iterations of smoothing and edge �ipping.

One can see that a�er just one or two steps, many of the poorly shaped triangles have signi�cantly

improved in quality. A�er ten steps, much of the mesh has been “cleaned up”. At this point, the

majority of changes in the mesh a�er more smoothing steps is in edge connectivity alone, rather

than in improving element quality. Convergence to an equilibrium is essentially attained a�er 50

iterations. �ese observations can be made more quantitative by examining various measures of

mesh quality and geometry as a function of iteration count, as shown in Figure 5.6. Here, histograms

as a function of iteration count are shown, for triangle inradius, circumradius, edge length, quality,

angles, and vertex degree. �e plots show that poor quality elements are quickly replaced, and that

the distribution of inradii, circumradii, edge lengths, and triangle quality converge favourably so

that the vast majority of elements have approximately the same geometry. �e exception is in the

distribution of triangle angles, which has higher variance. In addition, one can see that a�er 20–30

iterations, the measures of mesh geometry have approximately reached an equilibrium. Essentially

identical behaviour was seen in every other problem the mesh generator was tested on.

In the next example, the Voronoi Implicit Interface Method has been used to evolve seven ran-

domly created phases under the action of multiphase curvature �ow using periodic boundary con-

ditions. Figure 5.7 shows the result of the meshing algorithm applied to the multiphase system at

a particular instant in time. One can see that the meshing algorithm is able to handle complicated

geometry, especially so in this case, due to the proximity of some junctions to other junctions, as

shown in the magni�ed portion of Figure 5.7.

�is particular example of a multiphase interface is used to demonstrate the e�ciency of the

algorithm. A parallelised implementation of the algorithm was used, on a mainstream desktop com-

puter using eight cores (by dividing the cube into 2×2×2 subdomains). Creating the initial mesh (as
described in §5.3.1) took 10ms of time. Vertices of the initial mesh were then given unique identi�ers
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Initial mesh A�er one step A�er two steps

A�er ten steps Iteration 50

Figure 5.5. Using the same initial mesh as in Figure 5.2 (bottom), the mesh is shown after one, two, ten, and
50 steps of smoothing and edge flipping. The bottom-right two frames correspond to the same mesh, except in
one the middle sphere has been cut away in order to reveal the interior mesh.

across all eight processors, and this synchronisation step took 0.25s, though the implementation of

this step could be made faster. For the example shown in Figure 5.7, there were 16,592 triangles in

total, and 50 iterations of smoothing were used, taking about 1.5s in total. �us, each iteration took

approximately 30ms time, and it was observed that the individual components contributed: 35% for

force-based smoothing and projection; 20% for edge �ipping; and 40% for synchronisation among

processors. In general, the cost of the mesh generation algorithm has two components: in the �rst

stage of creating the initial mesh, the cost is linear in the number of tetrahedra visited; in the second

stage, each smoothing iteration has a cost linear in the number of mesh vertices.

To conclude this chapter on mesh generation, three more applications are shown.

Figure 5.8 shows a case that involves de�ning objects as intersections or unions of others, in a

fashion that capitalises on the implicit representation of an interface. A sphere is divided into two

halves, with the dividing surface de�ned implicitly via the zero level set of

f (x , y, z) = cos x sin y + cos y sin z + cos z sin x . (5.6)
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Figure 5.6. Measures of mesh quality and geometry as a function of the number of iterations, corresponding to
the example shown in Figure 5.5. After a specific number of iterations, the corresponding vertical slice in each
graph is a histogram indicating the percentage of features with the associated measurement: indicates less
than 0.1%, indicates 0.1%, 1%, 10%, 20%, and indicates at least 50%.

�e three functions are de�ned as

ϕ0(x , y, z) =
√
x2 + y2 + z2 − r + ∣ f (x , y, z)∣3,

ϕ1(x , y, z) = f (x , y, z)3,
ϕ2(x , y, z) = − f (x , y, z)3,

where r = 3π/2 is the radius of the sphere in this example. As shown in Figure 5.8, the algorithm is
able to smoothly divide the sphere into two halves, correctly reproducing sharp features.

In the next application, the Voronoi interface is used to reconstruct surfaces from volumetric

point cloud data, i.e. a set of scattered points in 3D, such that the points are labelled according to

which region they occupy. Point cloud data may arise in various applications, such as in experiments

that use tracer particles to study �uid �ow patterns, Lagrangian-based multiphase �uid �ow simu-

lations, or imaging devices that probe the interior of an object. In this particular example, a cloud

of randomly generated points has been created, as shown in Figure 5.9 (le�). Individual particles

have been assigned to one of four regions: red, green, blue, or grey. Let yi , i = 1, . . . ,m, denote
the position of the particles and let χi denote what region they are in. For each region, de�ne the
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Figure 5.7. An instant in time of a multiphase system undergoing curvature flow with volume conservation. The
jagged boundary is due only to the periodic boundary conditions.

Figure 5.8. Dividing a sphere into two parts, with the dividing surface given implicitly by the zero level set of
(5.6). The left figure shows the sphere as a whole, and the right two figures show the individual halves.
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Figure 5.9. (Left) A cloud of scattered points in 3D. Points belong to one of four different regions: red, green,
blue, and grey. (Right) The reconstructed surface obtained from the Voronoi interface of the functions defined in
(5.7) and the mesh generation algorithm.

function ϕi which measures the minimum distance to the cloud of region i, i.e.

ϕi(x) ∶= min
1≤ j≤m

χ j=i

∥x − x j∥. (5.7)

With this de�nition, it follows that the Voronoi interface of the functions ϕred, ϕgreen, etc. separates
one region from another by a surface going through the middle of the space between them. By

computing ϕi on a background Cartesian grid, the mesh generation algorithm can be used to auto-

matically reconstruct these surfaces. For a background grid of size 32 × 32 × 32, Figure 5.9 shows
the reconstructed surfaces, showing nontrivial geometry at the junctions. �is type of surface recon-

struction from volumetric point cloud data could be especially useful when there is a large number

of points since very e�cient algorithms can be used to evaluate the functions ϕi .

Finally, in Figure 5.10, an example is taken from the multiscale model of foam dynamics that

is presented in the next two chapters. In this application, it is necessary to rely on a robust mesh

generation algorithm to automatically create meshes that are used in a �nite element method. In

a typical bubble simulation, tens of thousands of meshes are generated automatically. Figure 5.10

shows a speci�c example in which capillary waves have given rise to circular ripples in themembrane

surfaces, seen near the top of the cluster.
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Figure 5.10. A mesh of a cluster of soap bubbles, taken from a simulation of the multiscale dynamics of soap
bubble foams (see Figure 7.16 in Chapter 7). The circular ripples seen near the top are capillary waves caused by
the bubbles moving under effects of surface tension. In this example, 20 iterations of force-based smoothing was
used to generate the mesh.
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Chapter 6

Multiscale Modelling of Foam Dynamics

Foams represent a familiar physical system in which multiple interconnected surfaces evolve over

time. Liquid foams, characterised by �uid-�lled membranes separating gaseous regions, include

soap detergents, substances to separate out hydrophobic molecules, and even the head on a beer.

Solid foams, formed by solidifying liquid foams, include lightweight materials such as plastic foams

and crash-absorbent metallic foams. Understanding the dynamics of foam evolution is a key step in

controlling the structure and properties of foam-like materials. However, deriving computational

models to quantitatively predict foam evolution is challenging, since the underlying physics takes

place over vastly di�erent time and space scales.

We saw in Chapter 4 an application of the VIIM in modelling dry foam dynamics with perme-

ability. While useful, this model did not include important microscale e�ects which are crucial in

determining how foams collapse due to membrane rupture. In an attempt to include the microscale

physics, one approach might be to develop computational methods that fully resolve the extreme

scales of the �lms, which are typically only tens or hundreds of nanometres thick. However, this

would require such a �ne resolution that there is no practical hope of following a calculation long

enough to observe the macroscale behaviour, even with advanced techniques such as adaptive mesh

re�nement. �us, a multiscale model which “separates scales” must be developed, in such a way

that the smallest scales are not fully intertwined with the largest scales. In this chapter, we use this

idea to design a multiscale model for the dynamics of a foam. Together with the numerical methods

developed in the following chapter, this leads to a computational methodology that can be used to

quantitatively study collapsing foams.

6.1 Multiscale physics in foams
Consider a foam made up of common soap bubbles. A single bubble consists of a thin membrane

containing soapy �uid, known as the lamella, which separates the inside gas from the outside. In a

cluster of such bubbles, such as the one in Figure 6.1(a), multiple lamellae meet at junctions known

as Plateau borders, forming a network of interconnected thin-�lmmembranes. �e dynamics of this

foam cluster are intricate [63, 89], and depend on complex interactions betweenmicroscale �uid �ow
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Lamellae

Plateau borders

A B C D

E F G

Figure 6.1. Physics of foam drainage. (a) A foam of soap bubbles made with common washing detergent. (b)
Drainage and thin-film interference – a keyring suspended in soap solution makes a film, which then drains due
to gravity. The subsequent variations in film thickness create interference patterns when lit with white light.
This image was captured with a consumer digital camera. (c,d) Rupture of a lamella; reproduced from [90] by
permission from Macmillan Publishers Ltd, Nature, copyright 2010. (e,f,g) Rearrangement – a lamella (centre
of (E)) bursts, leading to macroscopic rearrangement of a foam. The frames are from a movie captured using a
CCD black and white camera.

inside the lamellae and Plateau borders, as well as macroscale motion of the gas inside the bubbles.

To illustrate, consider a foam whose macroscopic con�guration appears to be in equilibrium, such

as the foam in Figure 6.1(a). While seemingly stable, liquid inside the �lms drains over time, due to

e�ects of gravity and surfactant. Additionally, due to the reduced pressure of the liquid inside the

Plateau borders, liquid is “sucked” from the lamellae into the Plateau borders through a process called

marginal regeneration. When one of the membranes becomes too thin, it ruptures and its liquid

contents is redistributed, destroying the macroscopic equilibrium of the remaining membranes.

Driven by macroscale gas dynamics and surface tension, these other membranes, as well as their

�lm thicknesses, further change as they bend, stretch, and settle into a new equilibrium satisfying

Plateau’s laws.

�ese processes take place over six orders of magnitude in space and time. Bubbles can range

from millimetres to centimetres in size, while typical �lm thickness in the lamellae range from tens

of nanometres to micrometres, and a typical cross-sectional width of a Plateau border is tens to hun-

dreds of micrometres. Liquid inside the thin �lms drains over seconds to tens of seconds, leading to

variations in �lm thicknesses; these can be observed from thin-�lm interference e�ects, as for exam-

ple shown in Figure 6.1(b). When a membrane ruptures, it bursts and the �lm retracts at hundreds

of centimetres per second [90], as shown in Figure 6.1(c,d). Finally, macroscopic rearrangement of

bubble topology through surface and �uid forces occurs over less than a second, as demonstrated

in Figure 6.1(e,f,g). �ese disparate time scales suggest that it may be possible to separate foam

rearrangement from liquid drainage, and this is the key idea used in the multiscale model below.
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6.2 Previous work
One of the earliest and well-known studies of foams was by Plateau in the 19th century [91]. His

descriptions of the geometry of a stable foam are now known as Plateau’s laws: these state, among

other properties, that lamellae meeting at Plateau borders make 120○ angles, and that lamellae have

constant mean curvature. Another well-known result is due to von Neumann and Mullins, who

independently derived equations describing the growth rate of cells in a two-dimensional foam.

A substantial amount of work relating to foams and foam dynamics now exists in the literature.

Typically, these works focus on only one aspect of foam physics, with methods of study ranging

frommathematical analyses, to numerical and experimental studies. Soap bubbles, as well as simple

multi-membrane structures, provide one of the best known examples of minimal surfaces having

constantmean curvature. Minimal surfaces have received a great deal ofmathematical attention, and

computational methods that �nd minimal surfaces, and thus steady-state shapes of foams, include

the methods of Chopp [92] and Polthier [93]. Signi�cant contributions have also been made by

the Surface Evolver so�ware [9], which can be used to compute minimal energy states of complex

con�gurations. Mathematical theory for small-scale capillary-generated oscillations of soap bubbles

have been developed [94], and these have been compared to experiment using high-speed cameras

[95]. �ree-dimensional versions of von Neumann-Mullins’ law have recently been discovered [62],

while statistical variants [96] can be used to study three-dimensional foam coarsening. Rearrange-

ment in two-dimensional foams have been studied in many works, including [97] that considers

in more detail one of the main types of topological change in a 2D foam, and in works such as

[98–100] which gather experimental statistics about the frequency and distribution of rupture events

taking place in 2D and 3D foams. Computational tools aimed at speci�c aspects of macroscopic

rearrangement include numerical studies of foam studies based on two-dimensional hydrodynamics

[16, 17]. Meanwhile, liquid drainage in stationary, isolated, and planar lamellae have received a great

deal of attention, and o�en lead to lubrication style thin-�lm equations. For a review of thin-�lm

equations, see [101, 102]; thin-�lm equations have also been derived onmoving curved surfaces [103].

�ere have also been studies of liquid drainage in stationary Plateau borders [104–106]. Finally, the

physical processes governing liquid suction between lamellae and Plateau borders has also been

studied with asymptotic methods [107–109].

6.3 Multiscale modelling using scale separation
We now develop a multiscale model using the idea of scale separation. �is model includes the most

fundamentally important physical phenomena occurring in foam dynamics. It is important to note

however that there are additional forces, scales, and regimes, beyond those included below, which

can play an important role in foam dynamics, although they could be added to this framework.

For example, di�usive coarsening, which results from gas exchange between bubbles separated by

permeable membranes, is important over very long time scales (minutes to hours) [63]; although the

macroscale Navier-Stokes �uid solver easily allows such permeability e�ects (as was shown in §4.2 of

Chapter 4), the thin-�lm equations derived below assume a static equilibrium, and thus coarsening
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e�ects are not included. Evaporation of liquid from the lamellae, which can be important for excep-

tionally stable foams and also occurs over a very long time scale, is not included here. Additionally,

Marangoni forces at the liquid-gas interface, which act to equilibriate surfactant concentration, are

assumed to occur quickly enough to produce a uniformly constant surface tension. In addition,

the liquid-gas interface is assumed to satisfy a no-slip boundary condition. While this is a reason-

able approximation to make for some types of surfactant solution, in other cases, mobile boundary

conditions, as well as other e�ects of surface rheology, can be important. It is also assumed that

that the gas and liquid �ow can be taken as incompressible, which is a reasonable approximation to

make under the time and space scales under consideration. Finally, dry foams, i.e. foams with liquid

occupying less than approximately 10% of the total volume [63], are the focus of this model, though

the methodology below has extensions to wet foam modelling as well. Further remarks about how

the model can be generalised to include additional physics are provided later.

To derive a multiscale model for foam dynamics taking into account rearrangement as well as

�lm drainage, the idea of “scale separation” is employed. In this approach, di�erent models and

equations at di�erent scales are derived to compute physics using di�erent resolutions, in such a way

that essential information is communicated across the scales.

Here, the dynamics of a foamare separated into a cycle of three distinct stages that couple di�erent

scales across space and time. �ese stages are: (i) a rearrangement phase, in which a foam out of

macroscopic balance undergoes rearrangement due to surface tension and gas dynamics, leading

to an equilibrium; (ii) a liquid drainage phase, in which the foam is essentially in macroscopic

equilibrium, and the microscopic �ow of liquid is modelled until a lamella becomes too thin; and

then (iii) a rupture phase, in which a lamella ruptures, sending the foam out of macroscopic balance,

a�er which step (i) is invoked and the process repeated. Together, the dynamics of each phase a�ects

the next, leading to a multiscale model which captures the key e�ects of foam rearrangement, liquid

drainage, and rupture.

To summarise, in addition to modelling the gas dynamics and determining the motion of the

network of thin �lm membranes, we also determine �lm thicknesses of each lamellae and Plateau

border. �ese �lm thicknesses are allowed to vary in space and time, and are a�ected by gravity and

pressure gradients inside the �lms, as well as membrane stretching and compression when the �lms

move.

6.3.1 Rearrangement phase
In the rearrangement phase, the foam structure is out of macroscopic equilibrium. Surface tension

at the liquid-gas interface in�uences the gas dynamics, which in turn evolve the network of lamellae

and Plateau borders, rearranging the system of bubbles. Liquid contained in the thin �lms and

Plateau borders is conserved and transported during this readjustment. Since macroscopic �uid

mechanics dominate the dynamics, the membranes are idealised as massless and vanishingly thin,

so that their inertial e�ects are assumed negligible. Mathematically, this leads to the incompressible

Navier-Stokes equations for the gas phase, with continuity of the velocity �eld across the liquid-gas

interface Γ, and an e�ective surface tension of 2σ (i.e. twice the coe�cient of a single liquid-gas
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η

λ

Figure 6.2. Cross-section of a Plateau border connecting to three lamellae. Here, η denotes the half-thickness of
a lamella, and λ denotes the cross-sectional area of a Plateau border.

interface). �e interface is thus advected by the velocity �eld u of the gas, satisfying

ρg(ut + u ⋅ ∇u) = −∇p + µg∆u − 2σκnδ(Γ),

∇ ⋅ u = 0,

where µg is the viscosity of the gas and ρg is its density. Here, the surface tension force, existing only at

the interface Γ, has beenwritten as a body force through the use of aDirac delta functionwith support

concentrated at the interface [65]. As shown in §4.2 of Chapter 4, the resulting dynamics naturally

enforce 120○ angle conditions at Plateau borders obeyed by dry foams and allow the interface to

change topology.

During rearrangement, the liquid in the lamellae and Plateau borders is transported by the

motion of the interface in such a way that the amount of liquid is locally conserved. We exploit

the thinness of the lamellae and Plateau borders by describing their “thickness” with a single scalar

function, allowed to vary in space and time, by using certain symmetry assumptions which are

described further in §6.5 below. For the lamella, its half-thickness is de�ned as η, and for the Plateau
border, we de�ne λ as the cross-sectional area at any particular location in space; see Figure 6.2. For
liquid contained in the lamellae, conservative transport is modelled by requiring that

d
dt ∫S(t)

η = 0 (6.1)

where S(t) is any surface patch on Γ(t) passively advected by the velocity �eld u. In particular,
(6.1) states that as a surface patch stretches and deforms over time, the amount of liquid inside the

patch is conserved.1 Furthermore, (6.1) allows surface currents at the interface to move the liquid

tangentially. Liquid in the Plateau borders is conserved with an analogous conservation law: if L(t)
is a line segment on a Plateau border which is passively advected by u, then

d
dt ∫L(t)

λ = 0. (6.2)

1Using the same symmetry assumptions that are used to de�ne η and λ, as described in detail in §6.5, it follows
that the mass of liquid in a lamella surface patch is proportional to ∫S η, and the mass of liquid in a Plateau border line
segment is proportional to ∫L λ.
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�us, in the rearrangement phase, the main equations of motion are the incompressible Navier-

Stokes equations with surface tension, together with the local conservation laws (6.1) and (6.2). �ese

are solved until the network of interfaces is in equilibrium – numerical methods for solving these

equations, as well as detecting equilibrium, are described in the next chapter.

6.3.2 Drainage phase
During the liquid drainage phase, the foam is essentially in macroscopic equilibrium, which means

that the dynamics of the gas phasemay be taken as negligible. In addition, due tomacroscopic e�ects

of surface tension, it follows that the surface area of the lamellae has been locally minimised, hence

individual lamellae have constant mean curvature. We thus require a model for liquid drainage in

the (�xed) network of lamellae and Plateau borders. By capitalising on the inherent scales involved,

and following the philosophy of “thin-�lm approximations” [101, 102] which describe the evolving

membrane thickness in a single lamella, thin-�lm approximations are derived for drainage in the

curved lamellae, as well as the Plateau borders, together with interrelated boundary conditions which

couple the regions together.

�e general idea in deriving these thin-�lm equations is to rewrite the equations of motion,

which in this case are the incompressible Navier-Stokes equations for liquid �ow inside the lamellae

and Plateau borders, in a non-dimensionalised form, taking into account the scales of the geometry.

In an asymptotic limit in which the �lms are considered to bemuch thinner than their extent, leading

order �ow equations are extracted from the non-dimensionalised equations. �e method leads to

PDEs that determine how the thickness of the �lms change as a function of time, depending on

surface curvature, surface tension, and gravity. Details on the derivation of these equations are given

in §6.5.

For a lamella of constant mean curvature, the thin-�lm equation is

ηt +
1

3µ
∇s ⋅ (ση3∇s((k21 + k22)η + ∆sη) + ρgs η3) = 0, (6.3)

where µ is the viscosity of the liquid, ρ is its density, and gs is the component of gravity tangential
to the surface. Here, ∇s is the surface gradient, ∇s⋅ is the surface divergence and ∆s is the surface

Laplacian on the curved surface of the lamella, while k1 and k2 are its principal curvatures. �is
is a fourth order PDE and needs two boundary conditions on the boundary of the lamella. One

condition is chosen to be that of zero Neumann: ∂η/∂ν = 0, where ν is tangent to the lamella and
orthogonal to its boundary. �e other is provided by a �ux boundary condition [107, 108] that

implements suction of liquid into the Plateau borders at its boundary. �is is speci�ed shortly.

A similar PDE is derived (see §6.5.2) for the Plateau border: in this case, the cross-sectional area

λ of the Plateau border satis�es the equation

λt +
C∆
µ

∂
∂ℓ

(− 1
2
(
√
3 − π

2
)1/2σλ1/2∂ℓλ + λ2ρgτ) = S , (6.4)

where C∆ is a constant associated with the cross-sectional shape of the Plateau border, gτ is the

tangential component of gravity, and S is a source term representing the incoming �ux of liquid
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from the three lamellae connected to the Plateau border. �is equation requires boundary conditions

where Plateau borders meet at quadruple junctions, and these are provided by conservation of liquid

mass and quasi-static pressure balance. In particular, under quasi-static Stokes �ow in the network of

Plateau borders, it follows that the pressure of the liquid is continuous at quadruple junctions, which

together with the Young-Laplace equation, implies that the Plateau borders meeting at a quadruple

junction have the same local thickness. �us, if λi , i = 1, . . . , 4 denotes the four Plateau border
thickness functions meeting at a quadruple point, then

{
λ1 = λ2 = λ3 = λ4, and

∑4i=1 12(
√
3 − π

2
) 12 σλ

1

2

i ∂ℓλi − λ2i ρgτ i = 0.
(6.5)

For each quadruple point, this is a nonlinear system of �ve equations in �ve unknowns (the common

value of λ and the four �uxes).
To determine the �ux boundary condition coupling the �ow in the lamellae to the �ow in the

Plateau borders, a local Stokes �ow argument is used to derive an equation for the �ux given the

local thicknesses of adjoining lamellae and Plateau borders. �e derivation is given in §6.5.3, and

states that the �ux Q is of the form

Q(η, λ) = 1

2
(
√
3 − π

2
) 34 ση5/2

µλ3/4
.

�is is used as a �ux boundary condition in (6.3), as follows: if x is a point on the boundary of a
lamella, with unit outwards pointing normal ν tangent to the lamella’s surface, and if λ denotes the
thickness of the Plateau border at the boundary of the lamella at the point x, then

1

3µ
(ση3∇s((k21 + k22)η + ∆sη) + ρgs η3) ⋅ ν = 1

2
Q(η, λ). (6.6)

�is speci�es an out�ow of liquid along the boundary of the lamella, which coincides with the source

term of incoming liquid for the Plateau border. �us, the source term in S in (6.4) is given by

S =
3

∑
i=1

Q(ηi , λ), (6.7)

where ηi denotes the value of the lamellae thickness functions at a point x on the Plateau border, for
the three lamellae connected to the Plateau border.

In summary, the drainage phase gives rise to a system of PDEs to solve for the thickness functions

for each lamella and each Plateau border. Each lamella solves the thin-�lm equation in (6.3), together

with a Neumann boundary condition and the �ux boundary condition in (6.6), while each Plateau

border solves the thin-�lm equation (6.4), with a source term given by (6.7), and coupled boundary

conditions at each quadruple point given by (6.5). �is system of PDEs is solved until such time that

a lamella reaches a critically-thin threshold, in which case the rupture phase is executed.
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6.3.3 Rupture phase
�erupture phase occurswhen a lamella becomes critically thin due to drainage. A small tear appears,

and the hole in this curved two-dimensional sheet rapidly expands as surface tension causes the

membrane to retract; an example was shown in Figure 6.1(c,d). For the bubble sizes considered here,

liquid in the membrane retreats to the Plateau borders [90], and this occurs over a time scale that

is just a small fraction of the total time it takes for bubbles to rearrange. While this rupture could

itself be treated as an evolving interface, here we simplify and assume that rupture, once initiated

through a prescribed threshold, is instantaneous, and that liquid in a ruptured lamella is uniformly

distributed to the neighbouring Plateau borders. �is thresholding is a simple approximation of

otherwise complex rupture dynamics in thin liquid �lms, which include among other e�ects, van

der Waals forces and short-range surfactant destabilisation e�ects. Further comments are provided

in the next chapter.

A�er rupturing the �lm, the foam, nowout of equilibrium, undergoes rearrangement by invoking

the rearrangement phase, thus completing the cycle in the multiscale model.

6.4 Summary
In summary, a multiscale model of the interplay between gas, liquid, and interface forces has been

developed for a dry foam. �e essential idea behind themodel is the use of scale separation to separate
the fundamental time scales, simultaneously with separating space scales. In the rearrangement

phase, macroscale dynamics are modelled over a short time scale, which subsequently transports

�lm thicknesses in the network of membranes. In the drainage phase, which uses these updated �lm

thicknesses, liquid drainage inside the network ofmembranes ismodelled over a long time scale, until

a membrane ruptures. �ese two phases are coupled via the rupture phase, which also transports

liquid mass. In principle, additional microscopic and macroscopic forces could be incorporated into

this model, such as disjoining pressures, van derWaals forces, di�usive coarsening, etc. Generalising

the model and future work are discussed in the conclusions of the next chapter, a�er numerical

methods and results for the above multiscale model are presented.

6.5 Derivation of the thin-�lm equations

6.5.1 Derivation of the lamella thin-�lm equation
In the following, a brief derivation of the lamella thin-�lm equation is given. As in other thin-�lm

equations, the derivation is based on applying a lubrication limit to obtain leading order equations of

motion from the underlying Navier-Stokes equations governing the �ow of liquid inside the lamella.

�is �ow is bounded above and below by two free surfaces that correspond to the gas-liquid interface,

and the derivation leads to an evolution equation for thickness between the two free surfaces. For

more detailed considerations, including di�erent types of thin-�lm equations on �at manifolds, see

the reviews [101, 102], and for curved substrates, see [103, 110, 111].
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Figure 6.3. The surface Γ is parameterised with coordinates x1 , x2 following the orthogonal lines of curvature
on Γ. Together with y this forms a three dimensional curvilinear coordinate system with axes e1 , e2, and e3. The
upper and lower free surfaces are related to the thickness function via y = ±η.

�e �ow of liquid in a lamella is attached to a macroscopic surface, which is a codimension-

one smooth surface denoted by Γ. A typical simpli�cation made in free surface thin-�lm �ows,

especially over long time scales, is to assume the �lm thickness is symmetric about this surface [101,

112, 113]. During the drainage phase, the dynamics of the gas phase are assumed to play a negligible

role, i.e. there are no currents in the gas that cause signi�cant drag on the liquid in the lamella.

Together with the no-slip assumption, this implies that an “immobile interface” boundary condition

is appropriate, wherein the tangential components of the velocity �eld at the two free surfaces are

zero. An additional assumption is that Γ has constant mean curvature; ideally, this is the case when

the rearrangement phase terminates and the bubbles are in equilibrium, so that surface area has been

locally minimised. Numerically, an approximation to this state is made; however, our experiments

indicate that small grid-dependent deviations from constant mean curvature have negligible e�ect

on the �ow.

Coordinate system and notation

In order to derive the thin-�lm equation, a coordinate system must be used.2 A convenient curvi-

linear coordinate system parameterises Γ by (x1, x2) ↦ X(x1, x2) ∈ Γ, such that the curves x1 =
constant and x2 = constant follow the orthogonal lines of curvature on Γ [110]; see Figure 6.3. (In the
following, curvilinear coordinate expressions for various di�erentials are frequently used, e.g. the

surface gradient operator and surface Laplacian, as detailed in [114].) In this coordinate system, the

curvature tensor is diagonal and the diagonal components are the principal curvatures of Γ, denoted

by k1 and k2. Let e1 and e2 be the unit orthogonal vectors tangent to the curves of constant x2 and
x1, respectively. �ey are related to the metric coe�cients mi via ∂X/∂xi = miei , and the arc length
element ds satis�es ds2 = (m1 dx1)2+(m2 dx2)2. Given this coordinate system on Γ, it is extended o�
the surface into full three-dimensional space in the normal direction e3 ∶= e1×e2. �is 3D coordinate
system is given by (x1, x2, y) ↦ X(x1, x2) + y e3(x1, x2). Such a coordinate system is well-de�ned
provided that y and the curvatures k1, k2 allow a one-to-one map. �e metric coe�cients h1, h2, h3

2Importantly, however, the �nal evolution equations will be a coordinate-free expression involving surface diver-

gence and gradient operators.
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in these coordinates are

hi = mi(1 − ki y), h3 = 1.
Notice that themetric changes in the normal direction, according to howmuch curvature the surface

exhibits.

Let η = η(x1, x2, t) be the half-thickness of the �lm. �en the upper (+) and lower (−) free
surfaces are given by y = ±η(x1, x2, t) and the liquid occupies the region ∣y∣ ≤ η(x1, x2, t). At the
upper free surface, the unnormalised tangent vectors are

ti =
∂
∂xi

(X(x1, x2) + η(x1, x2, t)e3(x1, x2))

= miei + (∂x i η)e3 + η ∂x ie3
= hiei + (∂x i η)e3 at y = η.

�e normal vector of the upper free surface is thus proportional3 to

n∝ t1 × t2 = (−h2∂x1η,−h1∂x2η, h1h2) at y = η.

Expressions for the normal and tangent vectors at the lower free surface are the same except for

some minus signs.

Kinematic condition

�ekinematic condition states that �uid particles on the free surface remain on the surface, and leads

to an equation relating ηt to the velocity (u1, u2, v) of the �uid evaluated at the free surface. To derive
the formula, let x(t) = (x1(t), x2(t), y(t)) be the position of a particle on the upper free surface. Its
instantaneous velocity is (u1, u2, v) which implies ẋ = (u1/h1, u2/h2, v). Since η(x1, x2, t) − y = 0,
di�erentiating with respect to t, one obtains

ηt = v − u1
h1
∂x1η −

u2
h2
∂x2η at y = η. (6.8)

A similar equation holds for the lower free surface.

Conservation of mass

Combined with the kinematic condition, conservation of mass yields a conservation law for the

thickness function η. For an arbitrary divergence-free velocity �eld (u1, u2, v), the conservation law
is

2(1 + k1k2η2)ηt +∇s ⋅Q = 0, (6.9)

where∇s⋅ is the surface divergence operator, andQ = Q(x1, x2) is an e�ective total �ux that integrates
the tangential components of the velocity �eld in the normal direction, and is given by

Q = ∫
η

−η
u1(1 − k2y)e1 + u2(1 − k1y)e2 dy. (6.10)

3A three-tuple ( f1 , f2 , f3) indicates the vector f1e1 + f2e2 + f3e3.
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To derive (6.9), consider a small test volume bounded by the instantaneous free surfaces and coordi-

nate surfaces x1, x1 + dx1, x2, x2 + dx2, as depicted in Figure 6.3. �e rate at which �uid leaves this
volume (expressed to �rst order of in�nitesimal quantities dx1 and dx2) is the sum of four terms:
�rst

∫
η(x1+dx1 ,x2)

−η(x1+dx1 ,x2)
(u1h2dx2)∣x1+dx1dy − ∫

η(x1 ,x2)

−η(x1 ,x2)
(u1h2dx2)∣x1dy

for the surfaces x1 and x1 + dx1; second

∫
η(x1 ,x2+dx2)

−η(x1 ,x2+dx2)
(u2h1dx1)∣x2+dx2dy − ∫

η(x1 ,x2)

−η(x1 ,x2)
(u2h1dx1)∣x2dy

for the surfaces x2 and x2 + dx2. �e remaining two terms are for the upper and lower free surface,
requiring the calculation of ∫y=±η u ⋅ n dS. Since n = (t1 × t2)/∣t1 × t2∣ and dS = ∣t1 × t2∣dx1dx2, by
utilising the kinematic condition (6.8), it follows that

∫
y=η

u ⋅ n dS = (u1, u2, v) ⋅ (−h2∂x1η,−h1∂x2η, h1h2) dx1dx2 = h1h2ηt dx1dx2 at y = η.

A similar equation holds for the lower free surface. Incompressibility of the �ow �eld requires that

the net �ux of �uid out of this volume is zero. Adding up the four contributions, equating to zero,

and then dividing by dx1dx2 gives

(h1h2∣y=η + h1h2∣y=−η)ηt = −
1

dx1
[∫

η(x1+dx1 ,x2)

−η(x1+dx1 ,x2)
(u1h2)∣x1+dx1dy − ∫

η(x1 ,x2)

−η(x1 ,x2)
(u1h2)∣x1dy]

− 1

dx2
[∫

η(x1 ,x2+dx2)

−η(x1 ,x2+dx2)
(u2h1)∣x2+dx2dy − ∫

η(x1 ,x2)

−η(x1 ,x2)
(u2h1)∣x2dy]

→ − ∂
∂x1

[∫
η

−η
u1h2 dy] −

∂
∂x2

[∫
η

−η
u2h1 dy] ,

where on the last line the limit dx1, dx2 → 0 has been taken. Now note that for a vector-valued
function f = ( f1, f2) de�ned on the surface Γ, the surface divergence of f is given by the expression
∇s ⋅ f = 1

m1m2
[∂x1(m2 f1) + ∂x2(m1 f2)]. Hence, upon de�ning the total �ux Q as in (6.10), one �nds

that

2(1 + k1k2η2)ηt = [(1 − k1η)(1 − k2η) + (1 + k1η)(1 + k2η)]ηt

= 1

m1m2
(h1h2∣y=η + h1h2∣y=−η)ηt = −∇s ⋅Q.

Scaling and non-dimensionalisation

In order to construct a leading order asymptotic solution of the governing Navier-Stokes equations

in the lamella, appropriate scales must be speci�ed. �ese, in turn, are used to non-dimensionalise

the equations. In the following, typical scaling arguments are used (see [101, 102] for a general review

of such methods). Let L be a tangential reference scale. �is is the same as the typical radius of
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curvature of the surface Γ; it is also the scale on which �lm thickness varies. LetH denote the typical
�lm thickness. �e so-called “lubrication limit” for which є ∶= H/L ≪ 1 is considered, where one
seeks leading order solutions of the Navier-Stokes equations as є → 0.

�e coordinate system is non-dimensionalised by using the scaled coordinates Y ∶= y/H and
Xi ∶= xi/L = єxi/H. A velocity scale of U0 is chosen for the tangential direction, so that the non-
dimensionalised velocity components in the tangential direction are Ui ∶= ui/U0. �e natural

time scale is L/U0 = H/(єU0), which gives T ∶= єU0t/H. Meanwhile, the incompressibility con-
straint ∇ ⋅ u = 0 implies that the normal component of the velocity �eld is scaled according to
V ∶= v/(єU0), and the natural scaling for pressure is P ∶= єHp/(µU0). �e principal curvatures of
the surface Γ are scaled relative to 1/L giving Ki ∶= Hki/є. Finally, the �lm thickness function η is
non-dimensionalised with ζ ∶= η/H.

Leading order �ow equations

By using the curvilinear coordinate expressions for the gradient, Laplacian, etc. in the (x1, x2, y)
coordinate system (see [114]), one can write the Navier-Stokes momentum equations

ρ(ut + u ⋅ ∇u) = −∇p + µ∆u + ρgĝ (6.11)

in the new scaled variables. �e result is a complicated expression involving di�erent powers of є,
but keeping only the lowest order terms, one obtains4 for the i = 1, 2 component of (6.11)

O(єRe) = − 1
hi
∂X iP +

1

hi′

∂
∂Y

hi′

hi

∂(hiUi)
∂Y

+G ĝi +O(є),

while the i = 3 component leads to

O(є2Re) = −∂YP + єG ĝ3 +O(є2).

Here, Re = ρU0H/µ is the Reynolds number relative to the length scale H, G = ρgH2/(µU0) is a
unit order gravity number, and ĝ = (ĝ1, ĝ2, ĝ3) is a unit vector pointing in the direction of gravity. In
the lubrication limit, it is typically assumed that the Reynolds number isO(1) as є → 0. In addition,
it is assumed that G = O(1), so that the �ow is not strongly dominated by gravitational e�ects. �e
asymptotic approximation for the leading order �ow comes from assuming that higher order terms

are negligible, and so only the leading order terms are kept. In this limit, the above set of equations

reduces to

{ ∂YYUi = 1

m i
∂X iP −G ĝi , i = 1, 2,
∂YP = 0.

In the original unscaled and dimensional quantities, they are

{ µ∂yyui = 1

m i
∂x i p − ρg ĝi , i = 1, 2,
∂yp = 0.

(6.12)

4A primed index denotes the dual tangential component, i.e. if i ∈ {1, 2} then i′ = 3 − i.



CHAPTER 6. MULTISCALE MODELLING OF FOAM DYNAMICS 106

Boundary conditions

�e no-slip boundary conditions requires that

u1 = u2 = 0 at y = ±η.

Surface tension on the upper and lower free surface provides the remaining boundary condition,

via the Young-Laplace equation describing the pressure jump across the free surfaces, i.e. [p] = σκ,
where [⋅] denotes the jump in value, σ is the surface tension, and κ is the mean curvature of the
interface.5 Since the formula to calculate the mean curvature of the free surface is a complicated

nonlinear expression, one can instead approximate it through an asymptotic expansion in є. To
do so, one approach is to observe that the (upper) free surface is the zero level set of the function

f (x1, x2, y) = y − η(x1, x2), and so κ = ∇ ⋅ (∇ f /∣∇ f ∣). Using the curvilinear coordinate expressions
for vector di�erentials and the appropriate scales, a tedious calculation shows that

K = −K1 − K2 + є(K21 + K22)ζ + є∆sζ +O(є2)

where (K ,K1,K2) = L(κ, k1, k2) are non-dimensionalised curvature quantities and ζ is the scaled
�lm-thickness. Keeping the leading order terms, and in the original variables,

κ = −k1 − k2 + (k21 + k22)η + ∆sη.

Recall that the lamella is assumed to have constant mean curvature, so that k1 + k2 is constant. It
follows from the Young-Laplace equation that this term can be e�ectively absorbed into the back-

ground reference pressure. Hence, a�er correctly accounting for orientation, the pressure at the free

surface satis�es the relation

p = −σ((k21 + k22)η + ∆sη) at y = η. (6.13)

Solution

�e solution of the leading order �ow equations with the given boundary conditions is straight-

forward. From (6.12), the pressure p is constant in the normal direction, with value determined
by (6.13). Meanwhile, the tangential velocity attains a parabolic pro�le, and with no-slip boundary

conditions, has the solution6

(u1, u2) =
1

2µ
(∇sp − ρgĝs)(y2 − η2).

5Strictly speaking, the Young-Laplace equation only applies to static interfaces between two �uids. In full generality,

one may consider the general stress balance equation for a free capillary surface, which requires that n ⋅T ⋅n = σκ where
T = −pI + µ(∇u +∇uT) is the stress tensor for an incompressible Newtonian �uid. By writing this equation in scaled,
non-dimensionalised quantities, one can construct an asymptotic approximation of stress balance for the free surface

on the lamella. �e leading order approximation of the resulting expression as є → 0 is appropriate, and this reduces to
the Young-Laplace equation.

6Here, a subtle assumption has beenmade that the gravitational term has negligible variation in the normal direction.

�is is mainly required by the condition that the thin �lm remains symmetric about the surface Γ.
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Figure 6.4. (Left) Cross-section of a Plateau border – a “rounded triangle” in which each side is an arc of a
circle with radius r. (Right) In the model, a Plateau border may have variable thickness along its extent, however
the cross-sectional area Ω(ℓ) is always a rounded triangle as shown on the left.

Here, curvilinear expression for the surface gradient have been used, and ĝs denotes the tangential
component of ĝ. Finally, using the conservation of mass formula (6.9) leads to an evolution equation
for η: a simple integral calculation reveals that

Q = − 2
3µ

η3(−σ∇s((k21 + k22)η + ∆sη) − ρgĝs),

and so7

ηt +
1

3µ
∇s ⋅ (ση3∇s((k21 + k22)η + ∆sη) + ρgĝs η3) = 0.

6.5.2 Derivation of the Plateau border thin-�lm equation
In this section, the “thin-�lm equation” for an idealised Plateau border is derived. �e idea and

method of the derivation is similar to the case of a lamella: a Stokes �ow approximation is considered

together with the Young-Laplace equation for surface tension. �e Plateau border’s trajectory is

parameterised with arc length ℓ and its thickness is allowed to vary along its extent. To extract
leading order �ow equations, the thickness of the Plateau border is assumed to be much smaller

than the radius of curvature seen in its macroscopic trajectory (the “line curvature”). In addition,

the cross-sectional shape is idealised as a rounded triangle as shown in Figure 6.4, as satis�ed by

Plateau borders in dry foams [63]. �is shape arises because the thickness of the lamellae connected

to the three arms is much smaller than the thickness of the Plateau border, while balance of surface

tension for steady �ow implies that the arcs have constant radius of curvature. �is cross-section at

position ℓ is denoted by Ω(ℓ). �e radius of curvature at the boundary of this triangle is r, and this
is related to the area λ = ∣Ω(ℓ)∣ of the triangle by

λ = (
√
3 − π

2
)r2. (6.14)

Given the scale assumptions already made, it can be assumed that any line curvature of the Plateau

border is negligible. It follows that the amount of �uid in a line element dℓ is ρ λ dℓ. Conservation
7Note that the term k1k2η2 in the conservation of mass equation is anO(є2) correction, and thus can be neglected.
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of mass leads to the evolution equation8

λt +
∂
∂ℓ ∫Ω(ℓ)

u = S , (6.15)

where u denotes the tangential component of the �uid velocity, integrated over the cross-section
Ω(ℓ). Here, S is a source term which is needed to account for the �ux boundary condition, such
that ρS has units of mass per length per time.
Stokes �ow with the no-slip boundary condition yields a �ow of the “parabolic” type. Indeed, let

є be the ratio of the typical diameter of the Plateau border to its length. �en є ≪ 1, and as in the
case of the lamella, one can extract the �rst order asymptotic solution of the governing equations of

�ow as є → 0. Similar to (6.12) in the case of the lamella, this leads to

µ∆Ωu = ∂ℓp − ρg ĝτ in Ω(ℓ),

where ∆Ω denotes the Laplacian on the two-dimensional Euclidean surface Ω(ℓ) and ĝτ is the

tangential component of gravity. Meanwhile, the Young-Laplace equation determines the pressure

on the cross-section as p = σκ where κ is the mean curvature at the surface. Utilising the scales
once again, the curvature can be approximated as κ = 1/r, since the principal curvatures of the
Plateau border are essentially the curvature seen in its cross-section and that seen along its trajectory.

Equation (6.14) thus gives κ = −(
√
3 − 12π)12λ−12 (the minus sign correctly accounts for orientation).

Solving these set of equations, it follows that

u = 1
µ
(ρg ĝτ + σ(

√
3 − π

2
) 12 ∂ℓλ−

1

2 )w

where w is the solution of

{ ∆Ωw = −1 in Ω(ℓ),
w = 0 on ∂Ω(ℓ). (6.16)

Figure 6.5 illustrates the pro�le of the solutionw. Straightforward scaling arguments show that there
is a constant C∆ > 0, depending only on the shape of Ω(ℓ) but not its size, such that

∫
Ω(ℓ)

w = C∆∣Ω(ℓ)∣2 = C∆λ2.

By making use of the conservation of mass equation (6.15), it follows that

λt +
C∆
µ

∂
∂ℓ

(− 1
2
(
√
3 − π

2
) 12 σλ

1

2 ∂ℓλ + λ2ρg ĝτ) = S .

8Consider a small length element [ℓ, ℓ+dℓ] on the Plateau border. �e total mass inside the element is ρ ∫
ℓ+dℓ
ℓ λ ds.

In a time interval dt, a mass of dt ρ ∫Ω(ℓ) u dS enters from the le�, a mass dt ρ ∫Ω(ℓ+dℓ) u dS exits at the right and mass
of dt dℓ ρ S arises from the source term. Letting dt → 0, one obtains

ρ
d
dt ∫

ℓ+dℓ

ℓ
λ ds = ρ[∫

Ω(ℓ)
u dS − ∫

Ω(ℓ+dℓ)
u dS] + ρS dℓ,

which leads to (6.15).



CHAPTER 6. MULTISCALE MODELLING OF FOAM DYNAMICS 109

Figure 6.5. Solution of ∆w = −1 with zero Dirichlet boundary conditions in a cross-section of the Plateau border,
represented as a height function.

Finally, to determine the precise value of C∆, a �nite element method was used to solve (6.16);
convergence studies were performed that determined C∆ ≈ 0.0201, accurate to three signi�cant
digits.

6.5.3 Flux boundary condition
�e process by which �uid drains from the lamella into the Plateau borders on its boundary (due

to the reduced pressure in the Plateau border), called “marginal regeneration”, suggests that there

is a �ux-type boundary condition between the two domains. One treatment of this subject is in

[107], wherein the authors consider regimes in which the concentration of surfactant can change

over time, and mainly consider liquids that have slip at the liquid-gas interface. In [108], stress free

boundary conditions are considered, showing that in this case, suction of liquid at Plateau borders

is instantaneously transmitted throughout the �lm. However, in this work, the case in which the

liquid �lms exhibit immobile boundary conditions is considered. In this case, similar arguments

can be used to derive a �ux boundary condition, as follows.

Suppose there is a transition region between the lamella and the Plateau border, in which the

�ow transitions from the Stokes-type �ow in the lamella, to the Stokes �ow in the cross-section of

the Plateau border. On one side of the transition region, the thickness of the liquid equals that in

the lamella, η. On the other side, the curvature of the free surface equals that of the Plateau border,
1/r. Assume, as in [107], that throughout this transition region, the �uid thickness remains on the
same scale as the lamella. �is imposes a constraint on its width w satisfying w = O(√ηr). Now,
consider the pressure. �e Young-Laplace equation implies that the pressure di�erence between the

two ends of the transition region is approximately σ/r, since the curvature at the Plateau border
dominates that at the lamella. Hence the pressure gradient px , as measured in the outwards pointing
direction orthogonal to the boundary of the lamella, is approximately σ/(rw). Stokes �ow (and the
no-slip boundary condition) in the transition region then shows that the total �ux, measured in the

outwards pointing direction and near the side connected to the lamella, is

Q = η3

µ
px =

η3σ
µr
O((ηr)−12) = C

ση5/2

µr3/2
.
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�is simple derivation does not determine what value C = O(1) carries. To determine that would re-
quire more careful matched asymptotics, which is not considered here. �e �ux boundary condition

is implemented as follows: using (6.14) to relate λ to r, de�ne

Q(η, λ) ∶= C(
√
3 − π

2
) 34 ση5/2

µλ3/4
. (6.17)

�is relation is used in equations (7.8) and (7.10) in the next chapter to implement the �ux boundary

condition. In the simulations presented here, the value of the constant was set to C = 12 . �is lead to

qualitative agreement with some experimental results, however a more careful justi�cation of this

�ux boundary condition would be bene�cial.

6.5.4 Boundary layer scaling
Finally, in this section, a scaling argument is used to determine the width of certain boundary layers

which develop in the draining of a lamella. �is scaling is used as part of the discussion of the results

in the following chapter. Consider a lamella which starts with a uniform thickness η0. As the lamella
drains into nearby Plateau borders, a boundary layer develops (see, for example, Figure 7.13), the

width of which depends on η0 and the thickness λ of the connecting Plateau borders. To investigate
the scaling, consider a simpli�cation of the governing thin-�lm equation in one-dimension, on the

half-line [0,∞), such that η = η(x) satis�es the conservation equation ηt + ∂xQ = 0, where

Q = 1

3µ
(ση3∂x(k2η + ηxx)). (6.18)

Here, the e�ect of gravity has been assumed negligible. �e �ux boundary condition yields the

condition that

Q = −C ση5/2

µλ3/4
at x = 0, (6.19)

where λ is the thickness of an idealised Plateau border situated at x = 0. Non-dimensionalising (6.18)
and (6.19) with a reference length scale of L yields

η40
3µL3

(σ η̃3∂x̃(k̃2η̃ + η̃x̃ x̃)) = −C
η5/20
λ3/40

σ η̃5/2

µλ̃3/4
, (6.20)

where λ0 is a typical Plateau border thickness, and where the tilde denotes non-dimensional quan-
tities. To �nd the scaling of the boundary layer, one expects the length scale L should balance the
�ux with the �ux boundary condition. Rearranging (6.20), this yields L = O(η1/20 λ1/40 ) as the scaling
of the boundary layer width. �ese simple arguments do not reveal how the width depends on the

time of drainage – this could be determined by �nding solutions of the governing PDE, for example

with a self-similarity reduction to a nonlinear ordinary di�erential equation. Instead, additional

numerical experiments were performed, using the methods in the next chapter, and suggested that

the relation L ∼ Aη1/20 λ1/40 gave a good indication of the boundary layer width, where the value of A
is order one, with a weak dependence on time, for the typical drainage time scales considered.
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Chapter 7

Numerical Methods for Foam Dynamics

In the previous chapter, a multiscale model of foam dynamics was developed. Recall that the model

separates foam dynamics into three coupled phases: rearrangement, drainage, and rupture. In order

to implement the associated computational framework, several new numerical methods have been

developed for each of these phases. In the next set of sections, these algorithms are presented and

their convergence is tested. �e entire system is then coupled and results are shown for a variety of

problems in foam dynamics in the last section.

7.1 Numerical methods for the rearrangement phase
In the rearrangement phase, the incompressible Navier-Stokes equations for the gas phase are solved,

together with the equations for local conservation of mass for the liquid contained in the lamellae

and Plateau borders. Brie�y, the Navier-Stokes equations are solved on a �xed Cartesian grid using a

second order approximate projection method. To track the interface, the Voronoi Implicit Interface

Method is used, and for the local conservation of the thickness functions λ and η, a Lagrangian based
scheme is developed. �e main algorithm for the evolution during the macroscopic rearrangement

phase is:

1. Initialise the VIIM unsigned distance function ϕ0 and indicator function χ0 at time step zero,
together with λ0 and η0. Initialise the gas velocity �eld with u0 = 0.

2. Enter time step loop: for n = 0, 1, . . .,
(i) Advance the interface and velocity �eld in time to �nd ϕn+1 and un+1 at time step tn+1
(§7.1.1 and §7.1.2).

(ii) Update the thickness functions to �nd λn+1 and ηn+1 (§7.1.3).

(iii) Check for equilibrium (§7.1.5) and if it has been reached, execute the drainage phase

(§7.2). Otherwise, continue time stepping.
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7.1.1 Interface tracking
�e VIIM is used to track the motion of the network of interfaces (i.e. the membranes) in the

foam. Here, the bubbles and the exterior region are considered separate regions (“phases” in the

terminology of Chapter 3) in the multiphase interface evolution. A shown in §4.2 of Chapter 3,

the VIIM provides an ideal framework to accurately calculate e�ects of surface tension, not only

on membrane surfaces, but at junctions as well. In particular, in this application of Navier-Stokes

driven interface evolution, the interface is simply advected by the velocity �eld u of the gas. In this
work, the numerical method identi�ed by the є = 0+ limit (see §3.4.1) is extensively used, and the
implementation essentially used multiple narrow-banded level set functions.

Since the viscosity of a typical gas species is relatively low, the velocity �eld computed by Navier-

Stokes is o�en not particularly smooth. As a result, onemay expect that the use of extension velocities

could provide better numerical results, in terms of reduction of numerical di�usion and increased

conservation of mass. �is was indeed the case – extension velocities signi�cantly reduced the

e�ect of currents that exist nearby the interface. �e method to calculate the extension velocity is

relatively straightforward: at each time step, the Voronoi interface is reconstructed as a mesh, by

using the same mesh that is employed in surface tension calculations. For each grid point in a small

initial band surrounding the Voronoi interface, an extension velocity is calculated at the grid point

by interpolating the velocity �eld at the corresponding closest point on the mesh (using trilinear

interpolation). �e initial band is then used to calculate the extension velocity in the entire narrow

band of ϕ, using the pre-sorted fast marching strategy described in §2.5. Once found, the extension
velocity is used together with a standard second order ENO upwinding scheme to advect the level

set functions in the VIIM.

7.1.2 Solving the Navier-Stokes equations
�eNavier-Stokes solver used in the foam model is similar to the method developed for multiphase

�uid �ow problems in §4.2. Except for the fact that the interface evolution in the VIIM is �rst order,

the Navier-Stokes solver implemented here is second order (in space and time). Speci�cally, a second

order approximate projection method is used, together with a Godunov scheme for the advection

term, based on the work developed in [115] . �ese improvements, compared to the solver used in

Chapter 4, were made in order to better treat the low-viscosity gas dynamics. In more detail, the

second order approximate projection method �nds an intermediate velocity u∗ such that

ρg(
u∗ − un

∆t
+ (u ⋅ ∇u)n+ 12 ) = −∇pn−

1

2 + µg
∆u∗ + ∆un

2
+ stς . (7.1)

Here, the advection term (u ⋅ ∇u)n+ 12 is implemented with a second order unsplit Godunov scheme
(see [115]), while the di�usion term is implemented with a standard Crank-Nicholson scheme. Sur-

face tension is computed as a body force with a regularised Dirac delta function, such that

st(x) = σ∑
i
∫
Γi

(κn)(y)δς(x − y) dS ,
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using the method described in §4.2. �is method of calculating surface tension is physically consis-

tent, since in the case of a dry foam, each bubble is separated from the others by a thin membrane.

Moreover, the method automatically enforces Plateau’s laws, i.e. lamellae make 120○ angles at Plateau

borders and quadruple points have symmetric angle conditions. To complete the projection step,

once the intermediate velocity in (7.1) is found, the velocity at the next time step is determined by

performing a projection

un+1 − un

∆t
= P(u

∗ − un

∆t
). (7.2)

Here, P is a projection operator which takes a velocity �eld and projects it onto the space of diver-
gence free velocity �elds, and in so doing, determines the pressure pn+

1

2 at the next time interval.

�e projection operator is essentially equivalent to the projection method described in §4.2; for

more details, including a discussion on the merits of projecting ut (as is done in (7.2)) rather than

projecting u∗, the reader is referred to [115] and the references therein.

7.1.3 Local conservation law
Recall the local conservation equation for evolving the lamella �lm thickness η, which states that

d
dt ∫S(t)

η dS = 0 (7.3)

for any surface patch S(t) on a lamella Γ that is passively advected by the velocity �eld u. One
approach for solving this conservation law is developed in [116, 117], wherein η is extended o� the
interface Γ and the conservation law is rewritten in strong form as a PDE for the extension function

satisfying1

ηt + u ⋅ ∇η = (n ⋅ ∂u
∂n

−∇ ⋅ u)η. (7.4)

Here, n is the normal vector �eld for the interface Γ, while the term in brackets measures the local
stretching and compression of the interface in the directions tangential to the surface. In [116, 117],

this PDE is solved via standard techniques on a background grid, leading to an Eulerian approach

that o�ers certain advantages especially when the interface Γ is a su�ciently smooth closed surface.

However, in this application, we have an interconnected network of lamellae with individually-

de�ned η functions, possibly being created and destroyed as the foam undergoes topological change.
In this setting, a Lagrangian particle-based approach o�ers some advantages, and has been adopted

here.

�e Lagrangian approach is based on a simple method of characteristics corresponding to the

PDE (7.4). Consider a speci�c lamella with surface Γ. On Γ, a set of particles is uniformly seeded with

positions xi , i = 1, . . . ,N , and each particle carries a thickness ηi . A speci�c particle’s coordinates

1�e formulas derived and presented in [116] do not appear as succinctly as written here, but it is a simple exercise

to show they are equivalent; see also the derivation presented in [118].
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and thickness values are evolved in time by solving the ODE system

d
dt xi = u,

d
dt ηi = (n ⋅ ∂u

∂n
−∇ ⋅ u)ηi .

In fact, one can simplify this further by noting that ∇ ⋅ u = 0, due to the incompressibility con-
straint. To solve this ODE for each particle, a simple forward Euler scheme together with trilinear

interpolation of the velocity �eld is used, as follows:

xn+1
i − xn

i

∆t
= un(xn

i )

ηn+1
i − ηn

i

∆t
= n̂ ⋅

un(xn
i + hn̂) − un(xn

i − hn̂)
2h

.

Here, un is evaluated from a trilinear interpolation of the values de�ned on the grid, and the normal

of the interface at xn
i , denoted by n̂ in the above, is evaluated by a �nite di�erence approximation

based on the level set functions used in the VIIM.

A similar algorithm is used to track the thickness of the Plateau borders. In this case, the local

conservation law states that
d
dt ∫L(t)

λ ds = 0

for any line segment L(t) on the Plateau border that is passively advected by the velocity �eld. Parti-
cles on the Plateau border are seeded with positions xi and carry thickness values λi . By considering

in�nitesimal line segments, it is straightforward to derive the corresponding di�erential equations

for the particles, which are given by

d
dt xi = u,

d
dt λi = −(τ ⋅ ∂u

∂τ
)λi .

Here, τ = τ(xi) is a unit tangent vector to the Plateau border, and in analogy with the case of the
lamella, the term in parentheses measures the local stretching and compression of the Plateau border.

A similar forward Euler and �nite di�erence scheme is used to update the λ thickness values for
particles on the Plateau border.

One side e�ect of this otherwise simple Lagrangian approach is that, over time, the particles on

the surface of the lamellae can easily become dispersed in areas and highly concentrated in others.

It therefore becomes necessary to intermittently reseed the particles by creating and destroying

particles with the goal of establishing a more uniform concentration. To reseed particles, and also

to seed particles at the beginning of the simulation, the entire multiphase interface is extracted as a

triangulated mesh, using the algorithm described in §3.8. �is produces a collection of triangles for

each lamella and a set of line segments for each Plateau border. One η particle is created for each
mesh triangle and one λ particle is created for each Plateau border mesh segment. When particles
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are created, their initial thickness values are determined by interpolating the thickness values of

old particles – in other words, a scattered data interpolation problem must be solved. To do this, a

simple algorithm has been designed, based on the idea of �nding a suitable set of particles which

are as close as possible to the interpolation point x and which can be used to interpolate with. In
particular, given a point x, the closest three points to x are found that have the property that the
projection of x onto the triangle formed by the three points is in the interior of the triangle. �e
method is given in detail in Algorithm 7.

Algorithm 7 Interpolation of scattered particles
Suppose {x i}Ni=1 is a collection of distinct points located on a su�ciently smooth surface, together with function values
{ f i}Ni=1. Given an interpolation point x on or near the same surface:
1: Order the points by proximity to x, such that d(x1 , x) ≤ d(x2 , x) ≤ d(x3 , x) ≤ ⋯ ≤ d(xN , x).
2: for i = 2, . . . ,N do for j = 1, . . . , i − 1 do for k = 0, . . . , j − 1 do
3: Let xp be the projection of x onto the plane formed by points x i , x j , and xk .
4: if xp is inside the triangle formed by x i , x j and xk then
5: Determine the unique function p such that p is a linear polynomial on the plane formed by x i , x j , xk

and which interpolates fℓ at xℓ (for ℓ = i , j, k).
6: Return the value of p at the projection point xp and exit.
7: If no appropriate interpolation triangle was found, return f1.

�is algorithm provides a general purpose method of accurately reseeding the Lagrangian parti-

cles used to track the lamellae and Plateau border �lm thickness functions. Some comments are

necessary:

• For the general particle reseeding problem, the existing particles can be binned into grid

cells, and this information can be used to make the search and proximity ordering part of the

interpolation algorithm very e�cient. In particular, in line 1 above, only the particles located

within one grid cell on either side of the interpolation point x are considered. Even with such
few particles in consideration, it was found that in practice, line 7 was rarely executed. In

other words, a successful triad of particles (xi , x j, xk) (in close proximity to x and on which
the projection of x is in the interior) was almost always found.

• For the case of the Plateau border, a similar algorithm is used: the closest pair of points (xi , x j)
is found with the property that the projection of x onto the line formed by (xi , x j) is inside
the segment, and then linear interpolation of the two ( fi , f j) values are used.

• If the function f being interpolated is smooth, the interpolation algorithm is second order
accurate in h, where h is the approximate particle separation.

As mentioned above, reseeding the Lagrangian particles must be performed intermittently in order

to ensure they do not become too dispersed. In principle, this only has to be done a �xed number of

times in the course of a simulation, even as ∆t → 0. In this work however, for reasons of simplicity
(and in connection with topological changes, see §7.1.4), the reseeding process was executed every

�xed number of time steps. Because the interpolation algorithm is second order accurate, but the

advection and evolution of the particles is only �rst order accurate, it is expected that the error in
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evolving the particles dominates the error contributed by interpolation. �is is con�rmed in the

following convergence tests.

Convergence tests

Here, some tests are performed to con�rm the numerical properties of the above Lagrangian particle-

based scheme. Consider a sphere with radius r = 1

4
, located at the origin in the domain Ω = [− 1

2
, 1
2
]3,

initialised with a uniform thickness of η ≡ 1. It is advected by the velocity �eld u = (u, v ,w) given by

u(x , y, z, t) ∶= sin πx cos 2πt,
v(x , y, z, t) ∶= − 1

3

∂u
∂x y, (7.5)

w(x , y, z, t) ∶= − 2
3

∂u
∂x z.

�is velocity �eld is designed to be a nontrivial velocity �eld satisfying ∇ ⋅ u = 0, and for which
pathlines can be computed directly with a closed-form expression. Speci�cally, a particle with initial

position (x0, y0, z0) has a pathline x(t) = (x(t), y(t), z(t)) satisfying ẋ(t) = u(x(t), t), and this
has the solution

x(t) = 2

π arctan(e
1

2
sin 2πt tan πx0

2
),

y(t) = y0 (e−
1

2
sin 2πt(1 + esin 2πt tan2 πx0

2
)(1 + tan2 πx0

2
)−1)

1/3
,

z(t) = z0 (e−
1

2
sin 2πt(1 + esin 2πt tan2 πx0

2
)(1 + tan2 πx0

2
)−1)

2/3
.

Over the time interval 0 ≤ t ≤ 1, the sphere stretches and compresses, returning to its original
shape at t = 1

2
and t = 1. Let P(t) ∶ Ω → Ω denote the pathline mapping, i.e. P(t)(x0, y0, z0) =

(x(t), y(t), z(t)). �en P(t) is invertible and its inverse is simply P(−t). Given a point x on the
interface at time t, the exact thickness value can be computed with the formula

η(x , t) = lim
є→0

∣(єτ1) × (єτ2)∣
∣(P(t)(y + єτ1) − x) × (P(t)(y + єτ2) − x)∣

, where y = P(−t)(x), (7.6)

where τ1 and τ2 are orthogonal tangent vectors to the sphere at the point y. Equation (7.6) is derived
directly from (7.3), and states that an in�nitesimal surface element on the sphere at time t = 0 is
mapped to a di�erent in�nitesimal surface element under P(t), and the ratio of their areas gives the
change in thickness of η. Formula (7.6) could further be simpli�ed by computing the limit in terms
of the derivatives of P, however it is su�cient to evaluate the right hand side with a �xed and small
value of є (in e�ect, performing numerical di�erentiation); in the following, a value of є = 10−6 is
used, which is enough to determine the solution with approximately six digits of accuracy. In Figure

7.1, the evolution of the sphere and the resulting thickness function is shown.

Using the VIIM to advect the sphere by the velocity �eld (7.5) (forward Euler in time and a

second order ENO algorithm for the advection term), the thickness function η is evolved by using
the particle scheme described above. On a grid of n × n × n cells (corresponding to h = 1/n), the
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Figure 7.1. Evolution of the lamella thickness function for a sphere advected by the velocity field defined in (7.5).
Solution computed on a 128 × 128 × 128 grid.

seeding algorithm described above is used to generate N = O(n2) particles {xi}Ni=1 on the sphere,
initialised with thickness ηi = 1. Two measures of the total error, based on an L2 and L∞ norm in
space, are de�ned with

e2 = max
0≤t≤ 3

4

( 1N
N

∑
i=1

∣ηi − η(xi , t)∣2)
1/2

, e∞ = max
0≤t≤ 3

4

max
1≤i≤N

∣ηi − η(xi , t)∣.

In Table 7.1, the results are presented for two time stepping schemes. In the �rst, ∆t = h/6 and the
particles are reseeded every 16 time steps. In the second, ∆t = 16

3
h2 and there is no reseeding. �e

results in Table 7.1 agree with the expectation that the scheme is �rst order accurate in time and

second order accurate in space. �e reseeding/reconstruction procedure itself is second order in

space, and this does not interfere with the overall error provided the total accumulated error from

reconstruction is less than other accumulated truncation errors.

7.1.4 Topological changes
During the rearrangement phase, topological changes o�en occur, whereby bubbles change neigh-

bourship with other bubbles. When such a change takes place, individual lamellae and Plateau

borders disappear, and new interfaces are born a�er the topological change. With regards to track-

ing the interface as a whole (i.e. the entire network of lamellae), these topological changes are

automatically handled by the VIIM framework. However, the particle based approach for tracking

�lm thicknesses needs more explicit treatment, and this is discussed here.

∆t ∝ h ∆t ∝ h2
h e∞ order e2 order e∞ order e2 order

1/32 0.03928 – 0.01991 – 0.01964 – 0.01181 –

1/64 0.02060 0.9 0.01182 0.8 0.00524 1.9 0.00286 2.0

1/128 0.01067 0.9 0.00651 0.9 0.00158 1.7 0.00071 2.0

1/256 0.005820 0.9 0.00341 0.9 0.00044 1.8 0.00018 2.0

Table 7.1. Corresponding to the evolution shown in Figure 7.1, convergence results for the thickness function η
for different grid sizes.
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Figure 7.2. A T1 topological change in two dimensions. An initial configuration (left) evolves into an unstable
configuration with a quadruple point (middle), soon after splitting and forming a new film (right).

Consider a two-dimensional case, more speci�cally, a T1 topological change – see Figure 7.2.

Here, the horizontal interface in the middle shrinks and disappears, and a new vertical interface is

born. At the same time, the two triple points in Figure 7.2 (le�) come closer, merge into a single

quadruple point, and split apart into two new triple points in Figure 7.2 (right). It is di�cult to

precisely track the �lm thicknesses of the �uid in these interfaces throughout this process, primarily

because a topological change involves a complicated interaction of macroscopic and microscopic

�uid dynamics. For example, Durand and Stone [97] have examined what role various physical

parameters of the �uid play (such as surface viscoelasticity) in the time it takes for a T1 event to

occur. �e situation in three dimensions is likely to be even more involved.

Instead of resorting to a fully three-dimensional simulation, operating under the extreme scales

of the �lms, a simple procedure is used to provide a mechanism for redistributing liquid mass. A�er

a topological change occurs, liquid mass from destroyed lamellae and Plateau borders is equally

divided amongst the newly created lamellae and Plateau borders. �is method is based on conser-

vation of liquid mass, and the idea that during the topological change, Plateau border and lamella

liquid dynamics occur on the same spatial scale and contribute equally to the destruction and cre-

ation of interfaces. In the numerical algorithm, this reassignment of liquid mass takes place when

the Lagrangian particles are reseeded: the mass associated with particles for destroyed interfaces is

collected into a reserve. �is reserve is evenly distributed amongst new interfaces to create particles

with thickness values based on the measure of the interfaces. Importantly, this reassignment of

mass occurs only locally, so that if multiple topological changes have occurred since the last reseed

event, mass is not unphysically transferred to other parts of the system. To ensure this redistribution

of mass is as localised an event as possible, it is necessary to detect for such topological changes

frequently, and in this work, this is done every 20–60 time steps of the Navier-Stokes solver.

7.1.5 Testing for macroscopic equilibrium
�e Navier-Stokes equations, interface evolution, and local conservation laws are solved until the

collection of bubbles reaches amacroscopic equilibrium. A simplemethod is employed to determine

when equilibrium is reached: snapshots of the interface con�guration are taken at regular time

intervals, and if the “di�erence” between one snapshot and the next falls below some threshold, then

the interface is declared to be stationary. �is di�erence is calculated by simply counting the number

of grid points for which the indicator function χ used in the VIIM is di�erent. Suitably weighted by
the surface area of each phase, this is a simple estimate of the volume occupied by the exclusive-or

boolean operation applied to the current and past interface con�guration. �e snapshot interval
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must be long enough to eliminate false positives, while the tolerance must be chosen so that grid-size

oscillations (occurring even when the system as a whole is stationary) are not scrutinised too heavily.

�e interval and threshold can easily be determined empirically, although this could be automated

by using the characteristic time of rearrangement (o�en dictated by the Navier-Stokes time step CFL

condition) and a threshold based on distances in units of grid points. Despite the simplicity of the

method, investigations have shown that it works well and robustly detects equilibrium.

7.1.6 Implementation and parallelisation
All of the above has been parallelised using a simple domain decomposition approach, wherein the

background rectangularCartesian grid is subdivided into smaller grids that are assigned to individual

processor in an MPI implementation. Synchronisation of grid-based data on the subdomains is

performed using ghost layers of su�cient size, while the Lagrangian particles are assigned ownership

to individual processors, and their ownership is transferred whenever particles cross processor

boundaries. �e Crank-Nicholson step in the Navier-Stokes solver has been implemented with

a simple parallelised Conjugate Gradient algorithm, while the pressure Poisson problem (for the

projection step) is solved with a parallelised multigrid algorithm. It was found that this approach

scales well up to 1000s of processors.

7.2 Numerical methods for the drainage phase
In the drainage phase, it is assumed that the macroscopic rearrangement of bubbles has reached

an equilibrium, and thus the network of membranes is stationary. �e goal is to solve the coupled

nonlinear system of thin-�lm equations for the thickness functions η and λ, until such time that a
lamella becomes critically thin and ruptures. In summary, the system of equations is:

• For each lamella with surface Γ, the lamella thin-�lm equation is

ηt +∇s ⋅Q = 0 on Γ, where

Q = 1

3µ
(ση3∇s((k21 + k22)η + ∆sη) + ρgs η3) ,

(7.7)

subject to the boundary conditions

∂η
∂ν

= 0 and Q ⋅ ν = 1

2
Q(η, λ) on ∂Γ, (7.8)

where ν is the outwards-pointing unit vector orthogonal to ∂Γ and tangential to Γ. Here, Q is
the vector �ux of liquid in the lamella while Q is the function determining the �ux where a
lamella connects with Plateau border, as de�ned in (6.17). �us, the value of λ in (7.8) changes
along each piece and between pieces on the boundary of Γ.
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• For each Plateau border, parameterised by arc-length ℓ, the evolution equation is

λt +
C∆
µ

∂
∂ℓ

(− 1
2
(
√
3 − π

2
)1/2σλ1/2∂ℓλ + λ2ρgτ) = S . (7.9)

Here, C∆ ≈ 0.0201 is a constant associated with the cross-sectional shape of the Plateau border
(see §6.5.2), and S is a source term determined by the sum of �uxes of incoming liquid of the
three lamellae connected to the Plateau border, and is given by

S =
3

∑
i=1

Q(ηi , λ), (7.10)

where ηi is the thickness of lamella i. Equation (7.9) is supplemented by a quadruple point
boundary condition where four Plateau borders meet: let λi , i = 1, . . . , 4, denote the four
Plateau border thickness functions, then at each quadruple point,

{
λ1 = λ2 = λ3 = λ4, and

∑4i=1 12(
√
3 − π

2
) 12 σλ

1

2

i ∂ℓλi − λ2i ρgτ i = 0.
(7.11)

For each quadruple point, this is a nonlinear system of �ve equations in �ve unknowns (the

common value of λ and the four �uxes).

In this section, a collection of numerical methods for solving this system of PDEs is developed.

�ese methods are designed to e�ectively handle the high order nonlinear terms in the lamella and

Plateau border thin-�lm equations, as well as provide a straightforward method for implementing

the coupled boundary conditions.

To motivate the choice of numerical method, consider �rst the case of a single lamella. �ere

are a variety of approaches for solving degenerate fourth order nonlinear equations, particularly

those that describe thin-�lm liquid dynamics whose solutions are positivity-preserving. Generally

speaking, they are split into two categories: thin-�lm equations on a �at Euclidean domain, and

thin-�lm equations on a curved surface. In the case of the �at Euclidean domain, more is known

about the convergence of numerical schemes, see for instance [119–121] that describe �nite element,

�nite volume and �nite di�erence based schemes. �ese schemes satisfy discrete analogues of certain

energy integrals satis�ed by the exact solution in the continuous setting, and these properties are

used to prove convergence of the numerical method [122]. Because these equations are fourth order,

special attention must be given to the time-stepping scheme, since an explicit scheme usually entails

a very restrictive time step condition required for stability. In [123], semi-implicit methods and

convexity-splitting schemes that alleviate this problem are discussed. In particular, convergence

is proved for a semi-implicit biharmonic-modi�ed forward time stepping scheme, based on the

Laplace-modi�ed forward time stepping scheme introduced in [124]. For a speci�c class of fourth-

order nonlinear parabolic PDEs, it is possible to prove that this biharmonic-modi�ed time-stepping

scheme is unconditionally stable. �emethod also happens to be straightforward to implement, and

has been adopted here to time-step the lamella thin-�lm equation. Di�erent time integrations can

also be obtained with dynamical systems approaches [125].
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For the case of solving PDEs on a curved surface, there are two main approaches: either explic-

itly representing the surface or implicitly representing the surface, each with their advantages and

disadvantages. In the �rst case, a typical method is to mesh the surface (e.g. as a set of triangles)

and use the �nite element (see, e.g. [126]). Once a high quality mesh is generated, this approach is

straightforward to implement, but the disadvantage is that generating such a mesh can sometimes

be di�cult to do automatically. In the second case, the surface in R3 is implicitly represented as a
�xed level set of a function de�ned in R3, such as the signed distance function, and the solution
of the PDE (e.g. η) is extended o� the surface into R3 (see, e.g. [116, 117, 127, 128]). �is implicit
approach transforms the two-dimensional PDE on the surface to a full three-dimensional PDE, so

that methods based on regular Cartesian grids can be used, such as �nite di�erences. However, one

must carefully consider how to solve the higher-dimensional PDE and assess the need for (possibly

frequent) reinitialisation/re-extension of the embedding function. Another in�uencing factor is that

the implicit approach is easiest when the surface is smooth and closed, whereas the explicit approach

easily allows for surfaces with boundaries.

In the case of multiply connected lamellae and Plateau borders, a �nite element based method

appears to be the most natural approach. Once a high quality mesh is generated, �ux boundary

conditions for the lamellae and Plateau borders can be incorporated more easily. However, the

coupling imposed by the boundary conditions must be considered. One approach is to implement

the �ux boundary condition implicitly, but this requires solving a nonlinear system of equations for

each lamella and Plateau border at every time step. Instead, it was found that implementing the �ux

boundary condition in an essentially explicit fashion, at the beginning of each time step, leads to a

much simpler implementation. Despite the mixture of semi-implicit methods (for the lamellae and

Plateau borders) and explicit methods (for the boundary conditions), it was found that the overall

scheme was in fact quite stable, and allows for relatively large time steps.

�e overall method is as follows. Given the mesh, discretised �lm thicknesses for η and λ are
de�ned on mesh vertices. In particular, Plateau borders, which correspond to the junctions on the

mesh where three lamellaemeet, havemultiple functions de�ned at the correspondingmesh vertices:

at least three η function values (for the three lamellae) and at least one λ value. At a quadruple point,
there are six lamellae η function values and four λ functions de�ned. �ese collocated function values
share information via the �ux boundary conditions and quadruple point boundary conditions. With

this general picture in mind, the main algorithm for the drainage phase is:

1. Generate a triangular mesh of the set of interfaces (§7.2.1).

2. Interpolate λ and η from the rearrangement phase to initialise λ and η at mesh vertices at time
step zero.

3. Enter time step loop: for n = 0, 1, . . .
(i) Solve the Plateau border boundary condition at each quadruple point to obtainNeumann

boundary conditions for each Plateau border (§7.2.2).

(ii) Calculate the �ux Q, used as a boundary condition for the lamellae and as a source for
the Plateau borders (§7.2.3).
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Figure 7.3. An example of a triangular mesh generated automatically from the network of connected lamellae.
Individual lamellae are coloured differently and triangles meet consistently at junctions to form segmented line
curves at Plateau borders.

(iii) Solve for ηn+1 and λn+1 for each lamella and Plateau border (§7.2.4 and §7.2.5).

(iv) If a lamella becomes too thin, simulate rupture (§7.3) and terminate loop, otherwise

continue time stepping.

4. With the �nal thickness functions of the remaining lamella and Plateau borders, reinitialise

the rearrangement phase (§7.3).

In the next set of sections, more details are given for these components and how they couple with

each other. Some remarks are then given on implementation and parallelisation, before turning to

some convergence tests which con�rm the accuracy of the proposed algorithms.

7.2.1 Mesh generation
To automatically generate a mesh of the set of lamellae, the algorithm in Chapter 5 is used. �e result

is a high-quality mesh such that triangles meeting at junctions (i.e. the Plateau borders) do so by

sharing common edges. In other words, each Plateau border is a set of connected line segments,

where each line segment is shared with three triangles from di�erent lamellae. Figure 7.3 illustrates

a typical mesh obtained by this algorithm. In practice, it was observed that the generated meshes

were always of good quality, with reasonable lower and upper bounds on the angles of the triangles.

7.2.2 Plateau border boundary condition
�e boundary conditions at quadruple points (7.11) are a set of nonlinear simultaneous equations

combining Dirichlet and Neumann boundary condition types. �is boundary condition has been

implemented in an explicit fashion: viewed as a type of domain decomposition, the approach de-

couples the Plateau borders for a short amount of time at each time step. It was found that it is

possible to maintain �rst order accuracy (in time), as well as conservation of mass, by combining

both Dirichlet and Neumann boundary conditions in an alternating fashion, as follows.

Consider a speci�c quadruple point. On the mesh, the quadruple point is a single vertex which

has emanating from it four Plateau borders, which are four curves in space made up of line segments;

let i = 1, 2, 3, 4 index these Plateau borders. Let λi ,0 denote the value of the thickness function for



CHAPTER 7. NUMERICAL METHODS FOR FOAM DYNAMICS 123

λ j

λ j,0

λk

hi ,1

hi ,0

λ j,1
λ j,2

xk,1
xk,2

λi

Figure 7.4. Schematic of a quadruple point and the four Plateau borders emanating from it. Here, h i ,0 and h i ,1
are edge lengths and λ i , j are thickness values at mesh vertices x i , j.

Plateau border i at the quadruple point, let λi ,1 denote its value at the position at precisely one edge

length of size hi ,0 away from the quadruple point, and let λi ,2 denote its value two edge lengths away,

the second edge having length hi ,1; see Figure 7.4. Also let xi , j denote the position of the vertices, so
that x1,0 = ⋯ = x4,0 =∶ x0. �e strategy is to:

1. Use the values of λi ,1 and λi ,2, i = 1, . . . , 4, together with the quadruple point boundary condi-
tion, to obtain a common value of λ0 at the quadruple point;

2. Use λ0 to calculate �uxes λ′i , used as Neumann boundary conditions for the Plateau border
time stepping scheme;

3. Time step each Plateau border according to the �nite element method described below (§7.2.5)

– in general, due to the decoupling, this yields di�erent values of λi ,0 at the quadruple point at

the next time step;

4. Project these values onto a common value, in such a way that the total mass is conserved.

In essence, this strategy uses the quadruple point boundary condition to obtain �ux boundary con-

ditions for each Plateau border in such a way to conserve the total mass in the system, at the expense

of obtaining discontinuities in λ at each quadruple point a�er each time step. At the end of each
time step, this discrepancy is resolved via a projection procedure that conserves mass. Altogether,

the procedure leads to a �rst order accurate time stepping scheme that conserves the total mass of

liquid in the network of Plateau borders.

In more detail, by approximating the derivatives in (7.11) with second order �nite di�erences, the

quadruple point boundary condition, with common value λ0, leads to
4

∑
i=1

1

2
(
√
3 − π

2
) 12 σλ

1

2

0 [
λi ,1 − λ0
hi ,0

+ hi ,1(λi ,1 − λ0) + hi ,0(λi ,1 − λi ,2)
hi ,1(hi ,0 + hi ,1)

] − λ20ρgi = 0. (7.12)

Here, gi is a second order approximation of the tangential component of gravity evaluated at the
quadruple point for Plateau border i, computed as2

gi = gĝ ⋅ (xi ,1 − x0
hi ,0

+ hi ,1(xi ,1 − xi ,0) + hi ,0(xi ,1 − xi ,2)
hi ,1(hi ,0 + hi ,1)

).
2�e equation for g i may be viewed as calculating ĝ ⋅ τ = ĝ ⋅ d

dℓ x(ℓ) where ℓ is the arc length and x(ℓ) parameterises
the Plateau border.
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Equation (7.12) reduces to a cubic equation, as follows. We seek a physical solution and so may

assume that λ0 > 0. Letting z ∶=
√

λ0, the summation in (7.12) leads to the equation

C(a − bz2) − dz3 = 0, (7.13)

where

C = 1

2
(
√
3 − π

2
) 12 σ ,

a =
4

∑
i=1

λi ,1

hi ,0
+ hi ,1λi ,1 + hi ,0(λi ,1 − λi ,2)

hi ,1(hi ,0 + hi ,1)
,

b =
4

∑
i=1

1

hi ,0
+ 1

hi ,0 + hi ,1
,

d =
4

∑
i=1

ρgi .

If d = 0, there is exactly one positive solution of (7.13). If d ≠ 0, it can be shown that if hi , j = O(h)
and h is su�ciently small, then there is exactly one positive solution of the same order as λ1/2i ,1 . In
practice, it was observed that an appropriate solution of the cubic equation could always be found,

a�erwhich the sought a�er solution to the quadruple point boundary condition is simply λ0 = z2.
Equipped with this value of λ0, �ux values for each Plateau border can be calculated as the

summands in (7.12):

Wi ∶= 1

2
(
√
3 − π

2
) 12 σλ

1

2

0 [
λi ,1 − λ0
hi ,0

+ hi ,1(λi ,1 − λ0) + hi ,0(λi ,1 − λi ,2)
hi ,1(hi ,0 + hi ,1)

] − λ20ρgi . (7.14)

�ese values are used in the �nite element method for advancing in time each Plateau border (see

below, §7.2.5), and since they satisfy∑i Wi = 0, it follows that the (discrete) mass in the network of
Plateau borders is conserved (ignoring the source term S). A�er one time step of the �nite element
method for each Plateau border, four not necessarily equal thickness values λ̃n+1

i ,0 are obtained at the

quadruple point at time step n + 1. �ey are replaced via a simple projection:

λn+1
i ,0 =

∑4j=1 λ̃n+1
j,0 h j,0

∑4j=1 h j,0
.

�is projection conserves mass since∑i λn+1
i ,0 hi ,0 = ∑i λ̃n+1

i ,0 hi ,0.

7.2.3 Flux boundary condition
�e �ux boundary condition is calculated at the beginning of each time step, and used as a boundary

condition for the lamella thin-�lm equation, and as a source term for the Plateau border thin-�lm

equation. Consider a speci�c Plateau border, and let i = 1, 2, 3 index the three lamellae connected to
the Plateau border. At a mesh vertex x j belonging to the Plateau border, let ηi , j and λ j be the value
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of the thickness functions at that particular mesh vertex. Given these �lm thicknesses, a per-lamella

�ux value is calculated with

Qi , j = 1

2
(
√
3 − π

2
) 34

ση5/2i , j

µλ3/4j
. (7.15)

�e sum of the three �ux values de�nes the source term for the Plateau border:

S j =
3

∑
i=1

Qi , j. (7.16)

Once calculated, the three �ux values Qi , j, i = 1, 2, 3, and the source term S j are used in the �nite

element methods below.

7.2.4 Lamella thin-�lm equation
Let Γ denote the surface of a speci�c lamella. To describe the �nite element method for solving

the thin-�lm equation, the time discretisation is �rst considered, followed by de�ning a suitable

variational form of the governing PDE and its discrete counterpart.

Time discretisation

Since (7.7) is a fourth order, nonlinear parabolic PDE, any explicit time stepping scheme, such as

forward Euler, is likely to have a severe time step constraint required for stability, such as ∆t = O(h4).
�is would make the computation prohibitively expensive, and so implicit schemes are necessary.

�ebackward Eulermethod is not an appealing option either, since it leads to a fully nonlinear system

of equations to solve, the solution of which requires good initial guesses and/or many iterations, and

this again essentially requires small time steps. One might then consider a mixture, and apply an

implicit method only to the highest order term (i.e. ∇s ⋅ ((ηn)3∇s∆sηn+1)) and keep all other terms
explicit, including the nonlinear terms. �is method leads to a linear symmetric positive de�nite

system to invert at each time step, the matrix of which is a function of the nonlinearity. However, in

practice, this particular method was observed to be numerically unstable for large time steps.

A solution is to use a biharmonic-modi�ed forward time stepping scheme. �e scheme is derived

by applying forward Euler and adding a term of the form α∆2s(ηn+1 − ηn), where α is a constant, and
for (7.7), corresponds to the scheme

ηn+1 − ηn

∆t
+ α

σ
3µ
∆2s(ηn+1 − ηn) + 1

3µ
∇s ⋅ (σ(ηn)3∇s((k21 + k22)ηn + ∆sηn) + ρgs (ηn)3) = 0. (7.17)

Since ∆2s(ηn+1 − ηn) isO(∆t) in magnitude, the addition of this term does not alter the convergence
rate of the forward Euler scheme – it will still be �rst order, and the error depends on the size of

α. For any α > 0, the scheme becomes implicit and leads to a symmetric positive de�nite system
of equations to solve at each time step, the matrix of which is a discretisation of I + ∆tα σ

3µ∆
2
s . By

choosing α large enough, it is possible to prove mathematically that the resulting scheme is stable
– see [123] for a proof for a similar PDE. For the scheme (7.17), α needs to bound η3; in this work,
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at each time step α is set to be α = 2maxΓ η3. In addition, (7.17) is supplemented by boundary
conditions as given by (7.8), such that ∇sηn+1 ⋅ ν = 0 and

2

3µ
(ασ∇s∆s(ηn+1 − ηn) + σ(ηn)3∇s((k21 + k22)ηn + ∆sηn) + ρ gs (ηn)3) ⋅ ν = Q(ηn , λn) on ∂Γ,

where ν is the outwards-pointing unit vector orthogonal to ∂Γ and tangential to Γ. Notice that the
�ux boundary condition is a mixture of implicit and explicit terms that takes the same form as

the biharmonic-modi�ed time stepping scheme; for the most part the �ux boundary condition is

evaluated explicitly (at the current time step) with the α modi�cation making it semi-implicit. �is
form of the boundary condition is suitable for the �nite element formulation used below.

Finite element method

�e �nite element method used here is based on the formulation and theory presented in [126] for

parabolic PDEs on surfaces.

Weak form. On a smooth surface, there exist analogues of the usual integration-by-parts formulas,
including

∫
Γ

∇s f ⋅ ∇sg = −∫
Γ

f ∆sg + ∫
∂Γ

f ∇sg ⋅ ν,

and, if f is everywhere tangential to the surface,

∫
Γ

g∇s ⋅ f = −∫
Γ

f ⋅ ∇sg + ∫
∂Γ
g f ⋅ ν.

By making use of the integration-by-parts formulas on the manifold, a suitable variational form of

the governing PDE (7.7) is to �nd two functions η and p satisfying

∫
Γ

ηtϕ = 1

3µ ∫Γ
(ση3∇s((k21 + k22)η + p) + ρgs η3) ⋅ ∇sϕ − ∫

∂Γ
ϕQ ⋅ ν, and

∫
Γ

pψ = −∫
Γ

∇sη ⋅ ∇sψ,

for all test functions ϕ ∈ C([0, T];H1(Γ)),ψ ∈ H1(Γ). �is formulation introduces a second function
p satisfying p = ∆sη in the weak sense and creates a coupled system of equations to solve for both
η and p. �is weak form requires less regularity on η, and this carries over to the discrete setting,
since then linear �nite elements can be used for both η and p.

Discrete variational form. A �nite element scheme using linear elements is as follows. �e smooth
surface of the lamella is approximated by a triangulation Th such that Γh = ∪t∈Th t. �e vertices (xi)ni=1
are assumed to lie on Γ so that Γh is a Lipschitz continuous surface interpolating Γ. Here, h denotes
the maximum circumdiameter of the triangles in Th. �e error due to approximating the surface Γ
by the triangulation Γh introduces an error that is no worse than second order as h → 0 [126]. Let
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Vh be the linear �nite element space consisting of all continuous functions de�ned on Γh that are

linear when restricted to an element of Th. Let {χ j} be the standard Lagrange basis functions so that
if v ∈ Vh, then v = ∑i v(xi)χi .

Using this �nite element, together with the forward time stepping scheme, the discrete variational

form is as follows. Given ηn , pn ∈ Vh at the current time step, �nd ηn+1, pn+1 ∈ Vh at the next time

step, such that

∫
Γh

ηn+1 − ηn

∆t
ϕ = α

σ
3µ ∫Γh

∇s(pn+1 − pn) ⋅ ∇sϕ

+ 1

3µ ∫Γh
[σ(ηn)3∇s(kηn + pn) + ρgs(ηn)3] ⋅ ∇sϕ

− 1
2
∫
∂Γh

Q(ηn , λn)ϕ, (7.18)

for all ϕ ∈ Vh, and

∫
Γh

pn+1ψ = −∫
Γh

∇sηn+1 ⋅ ∇sψ,

for allψ ∈ Vh. Here, gs andQ are de�ned to be the piecewise linear interpolant of their values de�ned
on mesh vertices (in the case of Q, they are given by (7.15)), while k is de�ned to be the piecewise
linear functionwhose value onmesh vertices is k21 +k22; see later for additional remarks. �is choice of
interpolation allows the integral quantities to be calculated with straightforward quadrature schemes.

In particular, many of the integrals reduce to the form of ∫T f 3g where T is a triangle and f and g
are linear functions on T . �is in turn reduces to a function of the three values of f and g on the
vertices of the triangle, a closed form expression of which can be found by, e.g., symbolic computer

algebra.

�e variational form leads to a linear solve for ηn+1 in the usual way, as follows. Let ηn+1
i denote the

value of ηn+1 at vertex i, letM be the mass matrix de�ned byMi j = ∫Γh χi χ j and let K = ∫Γh ∇χi ⋅ ∇χ j
be the usual sti�ness matrix. Abusing notation and considering ηn+1 and pn+1 as a vector in Rn, we

thus require that

{
Mηn+1−Mηn

∆t = α σ
3µKpn+1 + f , and

Mpn+1 = −Kηn+1,
(7.19)

where f = f (ηn) contains the explicit terms, i.e.

fi = −α
σ
3µ ∫Γh

∇spn ⋅ ∇sϕi +
1

3µ ∫Γh
[σ(ηn)3∇s(kηn + pn) + ρgs(ηn)3] ⋅ ∇sϕi −

1

2
∫
∂Γh

Q(ηn , λn)ϕi .

According to (7.19), it follows that pn+1 = −M−1Kηn+1, however this requires inversion of the full mass

matrix. It is simpler and more e�cient to make an approximation using instead the lumped mass

matrix, i.e. M̃ = diag(Mii), and write pn+1 = −M̃−1Kηn+1. Experiments indicated this approximation

did not alter the overall convergence rate of the �nite element scheme. Eliminating pn+1 from (7.19),
we obtain

(M + α∆t σ
3µKM̃

−1K)ηn+1 = Mηn + ∆t f (ηn).
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�is is a symmetric positive de�nite system for the unknown ηn+1, whose matrix (le�-multiplied by

M−1) approximates the operator I + α∆t σ
3µ∆

2
s . To solve this equation, a simple Conjugate Gradient

method is used, althoughmore sophisticatedmethods such as multigrid would lead to more e�cient

solvers.

Additional comments

�e curvature function k containing the principal curvatures k1 and k2 in (7.18) is de�ned to in-
terpolate k21 + k22 at mesh vertices. To calculate the vertex values, we must calculate the principal
curvatures of the interface Γ given implicitly by the function ϕ in the VIIM. By utilising the in-
dicator function χ in the VIIM, it is simple to construct a signed level set function ψ whose zero
level set contains Γ. Using this function, calculating k can be done with simple �nite di�erences,
as follows. Note that n = ∇ψ/∣∇ψ∣ is a normal vector �eld of Γ. �e gradient of n has eigenvalues
{0, k1, k2} and is related to the shape operator on Γ. �e mean curvature of Γ can be calculated
with κ = k1 + k2 = ∇ ⋅ n = tr(∇n). A similar relation can be used to calculate k, speci�cally that
k = k21 + k22 = tr((∇n)2). �is quantity is calculated at grid points using standard second order
�nite di�erences, a�er which the grid point values are trilinearly interpolated onto the vertices of

the triangulation Γh, thereby yielding k at mesh vertices.
Similarly, the tangential component of gravity gs in (7.18) is also de�ned to be the piecewise linear

interpolant of gs de�ned at mesh vertices. �is in turn is calculated by using the same normal vector
�eld n that was used to calculate k above: speci�cally, using the same signed level set function ψ, the
normal n = ∇ψ/∣∇ψ∣ is evaluated at grid points using standard second order �nite di�erences. One
can then calculate gs = g − (g ⋅ n)n at grid points, and then use trilinear interpolation to de�ne gs
on mesh vertices.

7.2.5 Plateau border thin-�lm equation
�e numerical method for solving the Plateau border thin-�lm equation (7.9) is similar to that used

for the lamella. An analogue of the biharmonic-modi�ed forward time stepping scheme is adopted,

except in this case, it is forward Eulermodi�ed by a term of the form α∂ℓℓ. Provided α is large enough,
this time stepping scheme is expected to be a stable, �rst order accurate time stepping scheme for the

second order nonlinear parabolic PDE. In addition, a �nite element-based spatial discretisation has

been used, but since there is only one spatial dimension, this can also be viewed as a conservative

�nite di�erence approximation.

Numerical discretisation

Let Γ denote the curve of a Plateau border. In the triangulated mesh, Γ is approximated by a set

of connected line segments Sh such that Γh = ∪e∈Sh e. �e vertices (xi)ni=1 are assumed to lie on Γ
so that Γh is a Lipschitz continuous curve interpolating Γ. Let Vh be the linear �nite element space

consisting of all continuous functions de�ned on Γh that are linear when restricted to an element of

Sh. Let {χ j} be the standard Lagrange basis functions so that if v ∈ Vh, then v = ∑i v(xi)χi .
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Using the analogue of a Laplace-modi�ed forward time stepping scheme, the �nite element

method is as follows. Given λn ∈ Vh at the current time step, �nd λn+1 ∈ Vh at the next time step,

such that

∫
Γh

λn+1 − λn

∆t
ϕ = C∆

µ ∫
Γh

[− 1
2
σ(

√
3 − π

2
) 12 (

√
λn∂ℓλn + α∂ℓ(λn+1 − λn)) + (λn)2ρgτ]∂ℓϕ

+ ∫
∂Γh

Wϕ + ∫
Γh

Snϕ, (7.20)

for all ϕ ∈ Vh. Here, W is the Plateau border �ux boundary condition that is derived from the

quadruple point boundary condition (as given by (7.14)), while Sn is de�ned to be the piecewise
linear interpolant of the source term de�ned at the vertices given by (7.16). �e tangential component

of gravity is calculated on a per-edge basis, such that gτ = g ⋅ τ is piecewise constant. Finally, the
stabilisation factor used in the Laplace-modi�ed forward time stepping scheme has been set to

α = 2maxΓh
√

λn, evaluated at the beginning of each time step.

Similar to the case of the lamella, the discrete variational form (7.20) leads to a symmetric positive

de�nite system for λn+1. In fact, the associated matrix can be made tridiagonal if the Lagrange basis

functions are ordered by position along the Plateau border. However, despite the possibility of using

an e�cient tridiagonal solver, a simple Conjugate Gradient method has again been used to solve this

system.

7.2.6 Implementation and parallelisation
�e above �nite element method is relatively straightforward to implement as it is almost identical

to a one- or two-dimensional �nite element problem in �at Euclidean space, except the vertices of

the triangles/segments lie in R3. An unordered map (implementing a hash table) was used for the
main data structure, and maps a globally unique vertex identi�er to the λ and η values de�ned at
that vertex. �e VIIM framework provides identi�ers for each type of surface, for example a Plateau

border is the intersection of three di�erent bubbles and can be identi�ed by a 3-tuple of integers.

To parallelise the code, the inherent domain decomposition in the problem has been utilised:

each lamella and Plateau border is assigned in its entirety to individual processors in an MPI imple-

mentation. To do this, the cost of solving the symmetric positive de�nite systems was estimated for

each lamella and Plateau border (via a simple function of the number of mesh elements), and based

on this, a simple load balancing algorithm was designed so that each processor had approximately

the same amount of work to do, when possible. (For example, one processor might be responsible

for a single, large lamella, while another processor may have a few small lamellae and several Plateau

borders.) In this fashion, parallelisation has been greatly simpli�ed since it is unnecessary to paral-

lelise the matrix equation solvers. Furthermore, synchronisation among processors is only necessary

for mesh vertices shared by multiple Plateau borders and/or lamellae. Such synchronisation is used

to determine the �ux boundary conditions and quadruple point boundary conditions, and can be

performed with MPI’s global gather operations. It follows that the scaling e�ciency of the overall ap-

proach depends heavily on the number and size of the lamellae and Plateau borders, and how this is

distributed to the processors. In the work presented here, this approach gave good parallel e�ciency
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Figure 7.5. Geometry of the Plateau border convergence test, consisting of four Plateau borders meeting at two
quadruple points.

in most cases. An exception is when the drainage phase is applied to relatively few bubbles, in which

case many of the processors are idle. Usually, however, the computational cost of the macroscopic

rearrangement phase dominates the cost of the drainage phase.

7.2.7 Convergence tests
Plateau border

Here, convergence is tested for the numerical scheme that is used to solve the Plateau border thin-

�lm equations. A system of four Plateau borders meeting at two quadruple points is designed (as

shown in Figure 7.5) with the aim to test all aspects of the numerical scheme, including coupling

of solutions via the quadruple point boundary condition as well as surface tension and gravity. For

each Plateau border we have the evolution equations

∂tλi +
C∆
µ

∂
∂ℓ

(− 1
2
(
√
3 − π

2
) 12 σλ

1

2

i ∂ℓλi + λ2i ρg ĝτ i) = Si , i = 1, 2, 3, 4, (7.21)

which are coupled via the quadruple point boundary condition

{ ∑
4
i=1

1

2
(
√
3 − π

2
) 12 σλ

1

2

i ∂ℓλi − λ2i ρg ĝτ i = 0,
λ1 = λ2 = λ3 = λ4,

(7.22)

at the two quadruple points.

Two di�erent tests are considered: one in which an exact solution is constructed, and another

in which the solution is unknown and grid convergence is used. For the �rst case, an exact solution

of this system is designed by substituting known expressions for λ1, λ2, and λ3 into their respective
evolution equations, thereby determining S1, S2, and S3. �e quadruple point boundary condition
is then used to �nd a cubic polynomial in ℓ for λ4 that has the correct value and derivative at each
quadruple point, and this in turn generates S4. Using the expressions for Si , the numerical method
is used to solve the system of PDEs, with the aim of recovering the exact solutions.

In more detail, consider the geometry shown in Figure 7.5. Here, Plateau borders number 1, 2,

and 3 are circular arcs of arc length π while Plateau border number 4 is a straight line of arc length 2.
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�e parameterisation is such that ℓ = 0 at quadruple point x0, and ℓ = π or ℓ = 2 at quadruple point
x1. Gravity points from the middle of Plateau border 4 to the middle of Plateau border 3. Let

λ0(ℓ, t) = 2 + cos(3ℓ + t),
λ1(ℓ, t) = 2 + cos(3ℓ + t) + 3 sin ℓ,
λ2(ℓ, t) = 2 + cos(3ℓ + t) + 1

2
sin 2ℓ.

�ese were chosen to be nontrivial smooth solutions that are strictly positive for all time t. Using
the quadruple point boundary condition (7.22), we can solve for both λ3(ℓ, t) and λ′3(ℓ, t) at ℓ = 0
and ℓ = 2. For each point in time, these four values uniquely determine a cubic polynomial in ℓ,
which is chosen to be the remaining solution λ3(ℓ, t). �is yields

λ3(ℓ, t) = 2 + cos t + x
f1(t)

C1
√
2 + cos t

− 1

2
x2(3 cos t − f2(t)

C1
√
2 − cos t

+ 2 f1(t)
C1

√
2 + cos t

)

+ 1

4
x3(2 cos t − f2(t)

C1
√
2 − cos t

+ f1(t)
C1

√
2 + cos t

)

where

C1 = 1

2
(
√
3 − π

2
) 12 σ ,

f1(t) = ρg(2 + cos t)2 + C1
√
2 + cos t(9 sin t − 4),

f2(t) = ρg(2 − cos t)2 + C1
√
2 − cos t(9 sin t − 2).

Substituting the expressions for λ1, . . . , λ4 into (7.21)we can �nd closed-formexpressions of S1, . . . , S4.
�ese are too cumbersome to repeat here, but pose no problem when evaluating numerically. Now

we must choose speci�c values for the physical parameters, and we set µ = σ = ρ = g = 1. �ese
values were chosen to (i) make surface tension and gravity equally important e�ects for the purposes

of convergence tests, and (ii) guarantees that λ4 is strictly positive for all time t. Figure 7.6 (le� pair)
illustrates the exact solutions λ1, . . . , λ4 at a two example points in time.
For the numerical method, each Plateau border is discretised with n equal sized line segments,

so that h ≈ π/n for Plateau borders 1, 2, and 3, and h = 2/n for Plateau border 4. �e system of
PDEs is solved using the method described in §7.2.5 and the method to solve the quadruple point

boundary condition described in §7.2.2. �e error of the numerical solution is de�ned as

ep = max
i=1,2,3,4

max
t∈[0,1]

∥λh
i − λi∥Lp ,

i.e., the maximum error over all (discrete) points in time of all Plateau borders, measured in the

Lp norm for p = 2 and p = ∞, where λh
i denotes the numerical solution. To determine the order

of accuracy, two time stepping schemes are considered: (i) one in which ∆t = 1/n ∝ h; and (ii)
∆t = 32/n2 ∝ h2. �e convergence results are shown in Table 7.2, and con�rms our expectation that
the scheme is �rst order accurate in time and second order accurate in space.

For the second convergence test, the same Plateau border geometry and numerical discretisation

is used, and the case when Si ≡ 0 for all time is investigated. In particular, the Plateau borders are
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Figure 7.6. (Left pair) Exact solution for the Plateau border convergence test at times t = 0 and t = 2. (Right)
Numerical solution at time t = 10 for the case when S i ≡ 0 and λ i(t = 0) ≡ 1 for all i.

∆t ∝ h ∆t ∝ h2
n e∞ order e2 order e∞ order e2 order

32 0.06374 – 0.05624 – 0.06374 – 0.05624 –

64 0.03212 1.0 0.02846 1.0 0.01597 2.0 0.01415 2.0

128 0.01612 1.0 0.01433 1.0 0.00400 2.0 0.00354 2.0

256 0.00808 1.0 0.00720 1.0 0.00100 2.0 0.00089 2.0

512 0.00404 1.0 0.00361 1.0 0.00025 2.0 0.00022 2.0

Table 7.2. Results for the Plateau border convergence test using a known solution.

initialised with a uniform thickness so that λi ≡ 1 for all i at time t = 0. In this case, the system (7.21)–
(7.22) conserves mass, i.e. d

dt ∑i ∫Γi λi = 0. Since the exact solution is unknown, grid re�nement is
used to study convergence by de�ning

dp(h) = max
i=1,2,3,4

max
t∈[0,10]

∥λ2hi − λh
i ∥Lp ,

and then estimating the convergence rate by using ratios of dp with log2(d(2h)/d(h)). As before,
two time stepping schemes are considered: (i) ∆t = 5/n ∝ h and (ii) ∆t = 320/n2 ∝ h2. �e results
are shown in Table 7.3, and a plot of the solution at time t = 10 is shown in Figure 7.6 (right). �e
results indicate �rst order accuracy in time and second order in space. It was also con�rmed that

mass of the discrete solution was conserved, independent of the grid size.

∆t ∝ h ∆t ∝ h2
n d∞ order d2 order d∞ order d2 order

64 0.01136 – 0.00308 – 0.01877 – 0.00482 –

128 0.00569 1.0 0.00119 1.4 0.00697 1.4 0.00141 1.8

256 0.00170 1.7 0.00038 1.6 0.00121 2.5 0.00031 2.2

512 0.00062 1.4 0.00016 1.2 0.00027 2.2 0.00008 2.0

1024 0.00028 1.1 0.00008 1.0 0.00007 2.0 0.00002 2.0

Table 7.3. Results for the Plateau border convergence test with unknown solution, using grid refinement.
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Figure 7.7. Time evolution of the exact solution for the lamella thin-film equation convergence test on a catenoid.

Lamella

Next, convergence is tested for the numerical scheme used to solve the lamella thin-�lm equations.

Two tests are performed: one in which an exact solution is manufactured, and another in which

the solution is unknown and grid convergence is used. In both cases, the lamella takes the shape

of a catenoid. �is is a surface of revolution with constant (in fact, zero) mean curvature, which

has a nontrivial Gaussian curvature, so that k21 + k22 varies in space. �e surface is parameterised by
u ∈ [0, 2π) and v ∈ [− 5

4
, 5
4
] so that

x = cosh v cosu, y = cosh v sinu, z = v ,

and is shown in Figure 7.7.

In the �rst test, an exact solution of the lamella thin-�lm equation is created by choosing η =
η(u, v) = 1 + 1

4
sin(u + t) cos(4πv/5) and calculating f such that

ηt +
1

3µ
∇s ⋅ (ση3∇s((k21 + k22)η + ∆sη) + ρgĝs η3) = f . (7.23)

�is is supplemented by the implied �ux boundary conditionQ⋅ν = Q that the exact solution satis�es.
A closed-form expression for f and Q is most easily obtained by using computer algebra so�ware,
together with the curvilinear coordinate expressions for the surface Laplacian, etc. in the (u, v)
coordinate system. �e result is too involved to repeat here, but poses no problem in evaluating

numerically. In the following, ĝ = ẑ, and the parameters were chosen such that µ = 1, σ = 0.2 and
ρg = 0.5. Altogether, this choice of exact solution η and parameters were designed to represent a
solution that is relatively smooth, with competing e�ects of gravity and di�usion, in such a way that

the numerics are nontrivial but still e�ectively examines convergence properties. (Di�erent values

of parameters, solutions, and geometries were also tested, and results similar to the following were

obtained.)

A �nite element mesh is generated for the catenoid based on a Cartesian grid dividing the

interval v ∈ [− 5
4
, 5
4
] into n equal sections and u ∈ [0, 2π] into 2n equal sections. While the curvature

term k21 + k22 can be shown to equal 2 sech
2 v, we instead calculate this term numerically, using the

procedure outlined in §7.2.4 based on a level set function whose zero level set coincides with the
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∆t ∝ h ∆t ∝ h2
n h e∞ order e2 order e∞ order e2 order

8 0.843 0.15422 – 0.27302 – 0.15422 – 0.27302 –

16 0.445 0.06780 1.3 0.11975 1.3 0.04255 2.0 0.07190 2.1

32 0.229 0.03631 0.9 0.06287 1.0 0.01139 2.0 0.01895 2.0

64 0.117 0.01952 0.9 0.03263 1.0 0.00284 2.0 0.00482 2.0

128 0.059 0.01013 1.0 0.01663 1.0 0.00071 2.0 0.00121 2.0

Table 7.4. Results for the lamella convergence test using a known solution.

catenoid. In a similar fashion, the gravitational term ĝs is computed via the normal vector �eld, also
using a level set function and �nite di�erences. �us, in the following, we are testing the combined

e�ects of the �nite element method and �nite di�erence methods to calculate k21 + k22 and ĝs. �e
error in the computed solution ηh is measured with

ep = max
0≤t≤π

∥ηh − η∥Lp

for p = 2 and p = ∞. Two time stepping schemes are considered: (i) ∆t = π/4n = O(h) and (ii)
∆t = 2π/n2 = O(h2). �e results are shown in Table 7.4 and agree with our expectation that the
�nite element scheme is �rst order in time and second order in space.

In the second test, the lamella thin-�lm equation is solved on the same catenoid, with Q ≡ 0,
f ≡ 0, and the initial condition η(t = 0) ≡ 1. In this example, the direction of gravity is chosen
to be ĝ = ŷ, and all other parameters identical to the previous test. �e resulting evolution of �lm
thickness is shown in Figure 7.8 (computed using n = 128), and shows that the liquid drains in the
direction of gravity, but also collects in regions of high curvature. Since the solution is unknown,

grid re�nement is used to measure convergence: de�ning the di�erence between solutions on two

di�erent grid sizes as

dp =max
0≤t≤2

∥η2h − ηh∥Lp ,

the convergence rate can be estimated with ratios of dp. For a time step ∆t = 4/n2 = O(h2), the
results are given in Table 7.5 and show second order convergence.
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Figure 7.8. Evolution of film thickness on a catenoid with initially uniform thickness η ≡ 1 at time t = 0 (gravity
points directly down). The white lines are contour lines of the thickness function η.

n h d∞ order d2 order

16 0.445 0.06782 – 0.07931 –

32 0.229 0.01344 2.5 0.02018 2.1

64 0.117 0.00434 1.7 0.00665 1.7

128 0.059 0.00107 2.1 0.00161 2.1

Table 7.5. Corresponding to Figure 7.8, results for the lamella convergence test with unknown solution, using
grid refinement.
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Lamella removed

Plateau border

ridge

Figure 7.9. (Left) Three lamellae meet at a Plateau border. (Right) After removal of the indicated lamella, the
associated Plateau border ceases to exist as well and what remains is a sharp ridge that will quickly smooth due
to macroscopic effects of surface tension.

7.3 Coupling drainage and rearrangement via rupture
In the drainage phase, the coupled system of thin-�lm equations are evolved until the minimum

lamella thickness falls below a critical threshold η < ηthreshold. Rupture is then modelled as a three-
step process that couples the results of the drainage phase with reinitialising the rearrangement

phase. In the �rst step, the membrane which had minimal thickness is removed and the liquid mass

it contained is uniformly distributed around the Plateau borders it was once connected to. However,

once it is removed, the associated Plateau borders are no longer the intersection of three lamellae

and instead become ridges in adjacent lamellae, as shown in Figure 7.9. Hence, in the second step,

the liquid mass in these Plateau borders is locally “injected” into the adjacent lamellae, and this is

accomplished in the same process as reinitialising the rearrangement phase. In more detail:

(i) In the �rst step, liquid mass in the ruptured lamella is temporarily reassigned to the Plateau

borders. �is is accomplished with a simple update of the appropriate Plateau border thickness

functions: let ΓL denote the lamella which has ruptured, and let {ΓPBi}Ni=1 denote the set of
Plateau borders (with thickness functions λi) that were on the boundary of ΓL. An adjustment

factor δ is computed with the formula

δ =
2 ∫ΓL η

∑N
i=1 ∫ΓPBi 1

and is used to update λi ← λi + δ. �is update conserves liquid mass.

(ii) In the second step, the Lagrangian particle scheme described in §7.1.3 is reinitialised with

the updated thickness functions η and λ obtained from the �nal step of the drainage phase.
�is uses an identical procedure to that used to re-seed the Lagrangian particle scheme: the

mesh elements used in the �nite element formulation are used as locations to seed {ηi} and
{λi} particles with thickness values obtained from the �nite element solver. Such particles are
generated for all lamellae and Plateau borders which have not been removed by the rupture

event. Fictitious {λi} particles are also generated for the removed Plateau borders {ΓPBi};
however these are immediately injected onto the adjacent lamellae. �is is done by imagining

each of these particles to be a “ball of liquid” of �nite radius, and collapsing this ball onto the

adjacent lamellae in such a way that mass is conserved. In this work, these balls were chosen
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to have radius h where h is the grid cell size, such that they have a radially symmetric density
that decays to zero at the boundary of the ball.

(iii) Finally, to complete the coupling between the drainage phase and rearrangement phase, the

VIIM is noti�ed of the removal of a lamella by merging the two bubbles on either side of the

lamella. �is is done with a simple update of the indicator function χ used in the VIIM, which
re-identi�es the two bubbles on either side of the lamella as now being the same, now larger,

bubble. �e rearrangement phase can now be re-executed with new system of interconnected

interfaces and �lm thicknesses.

�is procedure of reassigning mass from the removed lamella into adjacent Plateau borders,

which themselves are removed as their liquid mass is injected locally into remaining lamellae, pro-

vides a �rst approximation of the physical rupture mechanism. In actuality, the rupture process

occurs over a very short time scale and, depending on spatial scales and �lm thicknesses, can lead to

di�erent behaviours, as studied in [90]. For the spatial scales and foam solutions considered in this

work, it is expected that the redistribution process implemented above provides at least a qualita-

tively accurate account of the rupture process. However, it would be ideal to consider more carefully

the e�ect of non-uniform rupture and how this a�ects redistribution of liquid mass. Such a study

could use, for example, a fully three-dimensional direct numerical simulation of the incompressible

Navier-Stokes equations for the liquid-gas system, and attempt to resolve the extreme scales of iso-

lated rupturing �lms, at least for the short amount of time it takes for rupture to occur. �is could

be achieved with adaptive mesh re�nement techniques, and is the subject of possible future work.

7.4 Results
In the previous set of sections, several numerical schemes have been developed for use in the re-

arrangement, drainage, and rupture phases of the multiscale model of foam dynamics. For each

of these phases, the corresponding methods have been designed to accurately solve the underlying

evolution equations, with the ability to couple to the other phases. Here, several results of the meth-

ods are presented. In the �rst set of results, individual components of the foam model are tested

and veri�ed, demonstrating various physical mechanisms of the model. �e entire system is then

coupled to study two problems exhibiting nontrivial foam dynamics that involve foam collapse via

bubble rupture cascades.

In all of these results, the physical parameters have been chosen to represent a typical soap bubble

foam: the density and viscosity of the liquid is similar to that of water, gravity is normal Earth gravity,

and the gas phase represents typical ambient air at room temperature. �e precise values of the

physical parameters used in the following results are given in Table 7.6.

7.4.1 Rearrangement phase
To demonstrate rearrangement and surface area minimisation, Figure 7.10 shows the e�ect of remov-

ing a speci�c lamella from a cluster which is otherwise in macroscopic equilibrium. A�er removal,
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Figure 7.10. A small cluster, initially in equilibrium, undergoes rearrangement due to the removal of a lamella
(orange) at time t = 0. (Top) Total surface area as a function of time. (Bottom) Evolution of cluster during
rearrangement.

surface tension drives the cluster into a new con�guration, undergoing various topological changes

in the process. Figure 7.10 (top) plots the total surface area as a function of time and shows that it

reaches a local minimum; the bottom �gures illustrate how the “hole” made by removing the lamella

is �lled-in, generating capillary waves as it does so, with 120○ angle conditions satis�ed throughout

the process, ultimately leading to an equilibrium where each lamella has constant mean curvature.

To test the accuracy of the Navier-Stokes solver, in Figure 7.11, numerical results are compared to

that of a bubble oscillation experiment by Kornek et al. [95]. In this work, several high-speed movies
were captured of bubbles colliding and merging together; once merged, the resulting larger bubbles

oscillate due to e�ects of surface tension. One of these movies was used to determine the radii of

two slightly overlapping bubbles, as shown by the t = 0 inset in Figure 7.11. Experimental parameters
quoted in [95] were then used as parameters for the Navier-Stokes solver. In particular, the density of

the gas was quoted as 1.2 kgm−3, however the authors were uncertain as to precisely what percentage

of butane was contained in the gas mixture. It was found that better agreement between numerical

results and the experiment were obtained by slightly altering the density to 1.15 kgm−3. Overall, the

numerical results illustrated in Figure 7.11 show good qualitative agreement with the experiment. It

is possible to more carefully analyse the results by measuring modes and frequencies of oscillation,

as well as dampening rates, as was done in [95], however this has not been considered here.

In the next example, the e�ect of rearrangement on changes in �lm thickness is demonstrated

by considering an oscillating soap bubble, as shown in Figure 7.12. A bubble with an initial shape of

an ellipsoid (semi-principal axes of lengths of 20
3
mm, 5mm and 4mm) is initialised with a uniform

lamella thickness of η ≡ 0.3 µm. Figure 7.12 (top) shows the evolution of the subsequent variations
in �lm thickness: areas where the bubble has “compressed” tend to increase in thickness, while the

thickness decreases near points of expansion. In Figure 7.12 (bottom), the same results are shown
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Figure 7.11. Comparison of numerical results with experiment. Two spherical soap bubbles merge at t =
0, subsequently causing surface tension driven oscillations that eventually lead to a larger spherical bubble.
Experimental results reproduced from [95] (by permission of IOP Publishing); numerical simulation uses identical
physical parameters and time scale, and was computed on a 64 × 64 × 96 grid.

0.1
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η
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t = 0 t = 2.3ms t = 4.6ms t = 6.9ms t = 9.2ms t = 11.5ms

Figure 7.12. Evolution of lamella thickness for an oscillating bubble. (Top row) Colours indicate thickness η of
the lamella and the white curves are contour lines of η. (Bottom row) The same bubble oscillation visualised with
thin-film interference. Simulation computed on a 256× 256× 256 grid in a cubic domain of side length 20mm with
periodic boundary conditions.
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Plateau borders Lamellae (side view) Top view Bottom view

4.5 × 10−8m2 8.5 × 10−5m2
λ

2.1 × 10−8m 1.4 × 10−5m

η

Figure 7.13. Solution of the coupled lamella and Plateau border thin-film equations on a pyramid of four spherical
bubbles. Colours indicate thickness η of the lamellae and cross-sectional area λ of the Plateau borders, the black
curves are contour lines of η, and (except for the top and bottom views) gravity points down.

using thin-�lm interference: constructive and destructive interference of re�ected light, together

with variations in �lm thickness, lead to interference patterns (“rainbows”) seen in everyday soap

�lms. Here, the physically-based ray tracing rendering engine LuxRender [129] has been used to
solve the Fresnel equations to obtain re�ection, refraction, and thin-�lm interference e�ects. In

particular, the bubble has been globally illuminated by a beach scene: in the re�ected image, one

can see two suns (from the front and back surfaces of the bubble), with the sky in the upper half.

Comparing the patterns with the �lm thickness shown in the top row, we can see there is a correlation

between �lm thickness variation and the interference patterns.

7.4.2 Drainage phase
In this example, liquid drainage in a coupled lamellae and Plateau border system is demonstrated.

Figure 7.13 shows a pyramid of four spheres with diameters 2mm, forming a network of six lamellae

and ten Plateau borders. �e lamellae are initialised at time t = 0 with a uniform thickness of
η = 5 µm and the Plateau borders with uniform cross-sectional area λ = 0.05mm2. Figure 7.13
shows the thickness a�er draining for 16.1 s. �e e�ect of gravity is seen with the accumulation

of liquid at the bottom of the lamellae and Plateau borders, while the e�ect of the �ux boundary

condition can be observed with the reduced thickness of the lamellae at the junctions. In the case of

the Plateau borders, the thickness pro�le has essentially attained an equilibrium: as the liquid drains

to the bottom due to gravity, the Plateau borders become thin at the top, thereby reducing the liquid

pressure, which in turn leads to a pressure gradient opposing the force of gravity.

7.4.3 Rupture and redistribution of mass
To demonstrate rupture and redistribution of liquid mass, in Figure 7.14, a cluster of bubbles with

non-uniform thickness has been draining, and the internal lamella separating the two front facing

bubbles ruptures immediately a�er time t = 0. �e liquid originally contained in the lamella, together
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Figure 7.14. Evolution during rupture. An internal lamella joining the two front facing bubbles ruptures and is
removed, leading to rearrangement of bubbles and varying film thicknesses.

with the Plateau borders it was once connected to, is locally distributed to the remaining lamellae,

as shown by the sudden increase in thickness. �e system, driven by macroscopic rearrangement,

quickly moves into a new con�guration.

7.4.4 Coupled rearrangement, drainage, and rupture
By assembling the complete physical system, the multiscale model can be used to predict the evolu-

tion of foam cluster dynamics, under the combined e�ects of rearrangement, drainage, and rupture.

�is is demonstrated here with two foam collapse problems.

�e �rst example serves to highlight how foam dynamics can crucially depend on the interaction

between the three phases – in other words, while the drainage phase determines which lamellae are

ruptured, both the rupture phase and rearrangement phase contribute signi�cantly to this process

as well, through nontrivial transport of membrane liquid. To motivate the design of this example,

suppose that the lamellae start with a uniform thickness of η0. As seen in the drainage example in
Figure 7.13, it is o�en the case that as lamellae drain over time, a boundary layer in their thickness

develops near the Plateau borders, due in part to the �ux boundary condition. Scaling arguments

(see §6.5.4) applied to the lamella thin-�lm equation together with the �ux boundary condition,

suggest that the width of the boundary layer a�er a �xed amount of time isO(η1/20 λ1/40 ), where λ0 is
a typical thickness of the Plateau border. For typical �lm thicknesses and drainage times, the length

predicted by the scaling is on the order of 0.1 mm, and this was con�rmed by numerical tests, as is

the result that Plateau borders tend to have the same order of magnitude thickness across the entire

network. It follows that for a cluster of bubbles which initially have the same lamellae thickness, all

lamellae drain at approximately the same rate, and thus those bubbles smaller than the boundary

layer will thin more rapidly and rupture �rst.
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t = 193.78 ms t = 194.05 ms t = 198.40 ms t = 214.33 ms

t = 182.20 ms t = 182.25 ms t = 182.30 ms t = 182.55 ms

t = 0 ms t = 182.03 ms t = 182.07 ms t = 182.16 ms
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Figure 7.15. Results of the coupled multiscale model for a cluster of bubbles attached to a membrane. In the
top-left frame, a side-view of the initial configuration is shown, using semi-opaque lamellae and emphasising the
Plateau borders, to highlight the 3D structure of the results. In the rest of the frames, a top-down view is given,
showing the lamellae film thickness η, corresponding to the indicated colour scale. The background membrane
absorbs some of the drainage, but is chosen not to rupture. As the system evolves, rupture events can be identified
by the localised increases in lamellae thickness.

To demonstrate this behaviour, and how it e�ects rearrangement of bubbles, an example is shown

in Figure 7.15. A cluster of 17 bubbles is suspended by a membrane, so that bubbles protrude below

and above the membrane. �is con�guration was designed in order to make the rearrangement

simpler to visualise with a top-down perspective. �e cluster has a range of bubble sizes, from 0.1

to 0.5 mm in diameter, and at time t = 0 is initially in equilibrium, such that each lamella has a
uniform thickness of 10 µm, and each Plateau border a uniform cross-sectional area of 0.002mm2.
A�er draining for a time of 182ms, some of the smallest lamellae rupture in quick succession. As this

occurs, adjacent bubbles grow in size and increase in thickness. Initially, much of the rupture events

are associated with the smaller lamellae, but because rupture e�ects the macroscopic dynamics of

the bubbles, in some cases, larger lamellae rupture due tomembrane stretching. On this small spatial

scale, the rearrangement phase typically takes 0.1 ms to equilibrate, while drainage steps takes tens

of milliseconds. �e results show how a nontrivial sequence of rupture events is obtained, and
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how bubble rearrangement a�ects rupture events, both locally and globally, due to changes in �lm

thickness and macroscopic hydrodynamics.

Finally, in the last example, Figure 7.16 shows the results for a larger cluster of 27 bubbles with a

typical bubble diameter of 3 mm. In this example, a cluster starts in macroscopic equilibrium with

a uniform lamellae thickness of 1 µm, and each Plateau border a uniform cross-sectional area of
0.05mm2. Compared to the case in Figure 7.15, in this example the typical bubble size is much larger.

As a result, the rupture of a single lamella can have a greater impact on the global dynamics. We see

this in Figure 7.16 – a�er draining for 6.3 s, a single lamella ruptures, and this causes a rapid collapse

of the entire structure.

7.5 Concluding remarks
In this chapter and the previous, a multiscale model of the dynamics of a foam has been developed,

permitting the study of the e�ects of �uid properties, topology, bubble shape, and distribution, on

drainage, rupture, and rearrangement. Several numerical methods were developed to accompany

this model, ranging from Lagrangian-based schemes for transporting �lm thickness during rear-

rangement, to biharmonic-modi�ed �nite element methods and techniques for treating the coupled

boundary conditions in the system of thin-�lm equations in the drainage phase. Using two foam

collapse problems, it was demonstrated how rupture, liquid drainage, and gas hydrodynamics each

a�ect one another on both local and global scales.

Both the scale-separated model and the underlying numerical algorithms are general enough to

allow extension of the physics at individual scales to include other phenomena. For example, some

types of surfactant solution give rise to �lms with long lifetimes. In such �lms, disjoining pressures

and van der Waals force can be important in liquid drainage and rupture initiation; these additional

physics can be modelled by adding extra terms to the thin-�lm equations. Di�usive coarsening,

which can also be important for long lifetime foams, could be added by generalising the thin-�lm

equations to allow slow movement of the membranes, using equations similar to those derived in

[103]. In other types of surfactant solution, mobile/stress-free boundary conditions at the liquid-gas

interface are more appropriate than the no-slip boundary conditions used here [106, 108, 130]. In

principle, it is possible to derive di�erent thin-�lm equations on the curved lamellae, taking into

account these boundary conditions. In so doing, it is expected that this would lead to coupled PDEs

for �lm thickness evolution: one for the �lm thickness, which is coupled to a second equation for

the tangential velocity �eld of the liquid inside the membrane. Similar approaches may also allow

surface viscosities, evaporation dynamics, and heating of a foam to be modelled.

Additional future work could include more detailed considerations of some of the assumptions

made in this model. For example, in the macroscopic rearrangement phase, the �lms were idealised

as massless and in�nitely thin, so that the liquid was essentially passively advected by the gas dynam-

ics. �us, inertial and viscous e�ects of the liquid inside the �lms were neglected. Some experimental

studies indicate that such e�ects can dampen the motion of the �lms. In the work of [95], several

experiments were performed which indicated that the dampening rate for soap bubble oscillations

is 40%–60% faster in practice, compared to small-scale perturbation theory and numerical experi-
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Figure 7.16. Collapse of a foam cluster, visualised with thin-film interference.
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ments. Nevertheless, the frequency of oscillation of the experimental data matches theoretical and

numerical predictions. To address the di�erence in dampening, it may be possible to suitably modify

the surface tension force in Navier-Stokes, and/or the local viscosity of the gas, to take into account

these inertial e�ects.
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Chapter 8

Summary and Future Directions

A central theme in this work has been in the study of multiphase problems, including multiphase

curvature �ow and multiphase incompressible �uid dynamics, generating high-quality meshes for

interconnected surfaces, and multiscale modelling of rupture dynamics in foams. While several

new models and numerical methods have been developed here, a main contribution is that of the

Voronoi Implicit Interface Method. �e VIIM provides a general purpose and �exible method

for tracking the evolution of multiple interacting interfaces. It can be coupled to geometry and

physics, automatically handles topological changes in the interface, works in any number of spatial

dimensions, and is accurate, robust, and e�cient.

Recall the core idea of the VIIM: the motion of surfaces nearby to the interface determines the

motion of the interface itself. �ese nearby surfaces are de�ned as the є-level sets of the distance
function to the interface, and the interface motion is reconstructed from the motion of the є-level
sets using the Voronoi interface. �us, the speed of the interface is in some sense the “average”

speeds of the nearby є-level sets. �is property leads to several advantages. For example, since the
neighbouring surfaces can move under quite general speed laws (as we saw in the theory of level set

methods in Chapter 2), the VIIM provides a natural method for determining the motion of triple

junctions under these speed laws. In the case of curvature �ow, this naturally leads to triple point

angle conditions that are observed in a range of physical systems, such as foams and grain growth.

As was shown in many convergence tests and applications, de�ning the motion of the interface in

this manner leads to a interface tracking method that accurately evolves junctions in space and time.

Furthermore, the VIIM idea also leads to a type of regularisation: in the case that speed laws are

discontinuous across the interface (as they were, for example, in curvature �ow with constraints,

or specifying di�erent curvature coe�cients, or even in some sense during topological changes in

surface tension driven �uid �ow), the VIIM regularises the motion by averaging the speed laws

across the interface.

Several possibilities exist for future work involving the VIIM, such as developing a mathematical

theory for multiphase interface evolution and in designing advanced numerical methods to further

increase its accuracy. In addition to further work on multiphase �uid �ow problems, there are also

several multiphase problems that have not been considered here, which the VIIM could be applied

to. We conclude by discussing some of these possibilities.
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Mathematical theory of the VIIM

�e basic mathematical formulation of the VIIM is to �nd an є-smoothed solution given by

ϕє = lim
∆t→0,n→∞

(Vє ○ E∆t)n(ϕ0),

and then take the limit as є → 0+ to �nd

ϕє=0+ = lim
є→0+

ϕє ,

where Vє is the operator which reconstructs the unsigned distance function from the є-level sets
using the Voronoi interface, and E∆t is the evolution operator which evolves the є-level sets for a
single time step ∆t. �e numerical tests in Chapter 3 suggest that ϕє is well-de�ned, and so is the

limit as є → 0+. Clearly, it would be worthwhile to develop a mathematical theory to accompany
these numerical results. From a mathematical perspective, key questions to ask include:

• Under what conditions does the VIIM coincide with the theory of surface evolution via level

set methods in the case of only two phases? For example, in the “�gure 8” problem considered

by Evans and Spruck [131], for curvature �ow in the level set method, the zero level set “fattens”

and develops a non-empty interior. In the VIIM, with the same initial condition and speed

law, the interface will not fatten. Although this particular scenario is widely considered as

pathological in the practical application of interface tracking methods, it is nevertheless of

interest in a theoretical setting.

• Are there statements similar to the comparison principle in level set methods for multiphase

�ow? �e comparison principle is a key result in proving various well-posedness properties of

surface evolution problems using the level set method. Finding an equivalent in multiphase

problems is subtle, essentially due to the inherent coupling at junctions.

• What requirements are there on the speed laws that ensures the є → 0+ de�nition leads to a
well-posed de�nition of interface evolution?

�is is the subject of ongoing research.

Numerical methods for the VIIM

�e convergence tests in Chapters 3 and 4 showed that, generally speaking, the VIIM converges with

�rst order accuracy in space and time. In this Eulerian framework, �rst order accuracy at junctions

is basically the best one can hope for. �us, to increase the accuracy of the VIIM, methods using

adaptive mesh re�nement may be useful. In such an approach, the computational grid would be

re�ned around junctions, while smooth interfaces away from junctions could continue to use a

relatively coarse grid. Since junctions are codimension-two surfaces, the amount of re�nement is

minimal. However, by introducing smaller space scales, smaller time scales may also be needed

for stability reasons. Since using a small time step everywhere in the domain could be prohibitive,

techniques based on “sub-cycling” time could be used [132].
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From a high level point of view, the VIIM moves a multiphase interface with the following

formulation:

1. Advance the є-level sets (de�ned as sets a distance є away from the multiphase interface), for
one time step.

2. Rede�ne the interface at the next time step as the Voronoi interface of these є-level sets, and
loop to 1.

In this work, techniques based on level setmethods and �nite di�erenceswere used to implement this

scheme. Note however that these steps may be approximated using a host of numerical technologies,

such as �nite element methods, semi-Lagrangian techniques, and front tracking methods. Di�erent

approaches may lead to di�erent features, and this is worthy of investigation.

Future applications

Several potential applications of the VIIM include:

• Statistics for Navier-Stokes driven di�usive coarsening. Gas di�usion across permeable mem-
branes in a dry foam leads to di�usive coarsening (sometimes referred to as Ostwald ripening),

in which the gaseous regions change volume over time, similar to multiphase curvature �ow

(Figure 3.15). To study the long-time statistics of this e�ect, multiphase curvature �ow in 2D

and 3D is o�en used, for example in the computational studies in [37–39], as well as statistical

relations derived in [96]. Multiphase curvature �ow is a good approximation of di�usive coars-

ening when the gas dynamics are negligible. It would therefore be interesting to investigate

how full surface tension-driven Navier-Stokes dynamics a�ect coarsening statistics (similar

to Figure 4.11), especially when inertial and viscous e�ects balance or overpower permeability.

Two-dimensional dry foam coarsening results with Navier-Stokes were partially studied in

[17]. Here, the VIIM provides an opportunity to study this e�ect in generality in both two and

three dimensions.

• Multi-region image segmentation. In a similar fashion, the application of the VIIM to multi-
region image segmentation is also worthy of investigation. A common method to perform

image segmentation is to evolve the boundary of di�erent regions, again byminimising certain

energy functionals, in such a way to identify objects and their boundaries in a digital image.

Dubrovina and Kimmel [133] have made preliminary investigations into using the VIIM for

this purpose and tested simple two-dimensional image segmentation problems. Using the

same techniques, three-dimensional image segmentation could also be performed on a range

of image segmentation problems.

• Grain growth in materials design. Many metal and ceramic materials exhibit “grains”, i.e. re-
gions of di�erent crystal orientation or alignment. �e geometry and evolution of the grains

is o�en crucial in determining overall material properties, such as strength, resistance to cor-

rosion, ability to fracture, magnetism, etc. Depending on external factors such as temperature,
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the grain boundaries move in order to reduce their interfacial energy. For example, in a sim-

ple model of grain growth, grains move to minimise their total surface area. �is leads to

curvature �ow with triple junctions satisfying 120○ angle conditions – an example was shown

in Figure 3.15. In this simple case, a variety of numerical approaches are available to model

multiphase curvature �ow, such as di�usion generated motion and phase-�eld methods. How-

ever, in complex grain growth problems, more complicated laws of motion are needed, such as

taking into account the “roughness” of grain-boundaries that can slow grain movement [134].

When more complex laws of motion are speci�ed, existing numerical methods become more

di�cult to apply. Here, the �exibility of the VIIM provides a unique opportunity to solve this

problem, with the potential to model complex grain growth.

Finally, in regards to themultiscale model for foam dynamics, several possibilities exist for extending

the model to include additional physics. Some of these were discussed in the conclusions of Chapter

7. Additional possibilities include:

• �ree-dimensional simulations of topological changes and rupturing �lms. �e dynamics of
topological changes, such as a T1 event in a two-dimensional foam shown in Figure 4.7 and

Figure 7.2, have received relatively little attention [97]. It would be worthwhile to study such

topological changes using a fully three-dimensional numerical simulation that attempts to

resolve the extreme scales, including �lm thicknesses. �is would entail studying the dynamics

in a small spatial window and using adaptive mesh re�nement techniques. �e results would

give a better indication of how liquid mass inside the �lm is redistributed as a result of the

topological change, and this could be used to develop quantitative models to be coupled to the

multiscale model. In a similar fashion, the rupturing of a �lm as it retracts back on itself could

also be modelled by resolving the scales (and again using adaptive mesh re�nement). �e

results could be compared to models using asymptotic arguments and also be incorporated

into the multiscale model.

• Foams in contact with walls. In the multiscale model, the foam was assumed to be isolated
and not in contact with the wall of a chamber. When Plateau borders are in contact with a

�xed wall, their cross-sectional shape changes. In principle, this could be incorporated into

the model by using a di�erent value for the coe�cient C∆ in the thin-�lm equations for these
Plateau borders. However, modelling the slip of lamellae and Plateau borders in contact with

walls may require carefully constructed contact-angle models and slip boundary conditions.

�is could also be studied in the context of the multiscale model of foam dynamics.
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57. A. Guéziec & R. Hummel. Exploiting Triangulated Surface Extraction Using Tetrahedral De-

composition. IEEE Transactions on Visualization and Computer Graphics, 1(4), 328–342 (1995).
doi:10.1109/2945.485620

58. B. A. Payne & A. W. Toga. Surface Mapping Brain Function on 3D Models. IEEE Computer
Graphics and Applications, 10(5), 33–41 (1990). doi:10.1109/38.59034

59. S. L. Chan & E. O. Purisima. A new tetrahedral tesselation scheme for isosurface generation.

Computers and Graphics, 22(1), 83–90 (1998). doi:10.1016/S0097-8493(97)00085-X

60. J. von Neumann. inMetal Interfaces (ed C. Herring) (American Society for Metals, Cleveland,
1952), 108–110

61. W. W. Mullins. Two-Dimensional Motion of Idealized Grain Boundaries. Journal of Applied
Physics, 27(8), 900–904 (1956). doi:10.1063/1.1722511

62. R. D. MacPherson & D. J. Srolovitz. �e von Neumann relation generalized to coarsening of

three-dimensional microstructures. Nature, 446, 1053–1055 (2007). doi:10.1038/nature05
745

63. D. L. Weaire & S. Hutzler.�e Physics of Foams (Oxford University Press, 2001)

64. J. A. Sethian & P. Smereka. Level Set Methods for Fluid Interfaces. Annual Review of Fluid
Mechanics, 35, 341–372 (2003). doi:10.1146/annurev.fluid.35.101101.161105

65. J. U. Brackbill, D. B. Kothe & C. Zemach. A continuum method for modeling surface tension.

Journal of Computational Physics, 100(2), 335–354 (1992). doi:10.1016/0021-9991(92)902
40-Y

66. M. Sussman, P. Smereka & S. Osher. A Level Set Approach for Computing Solutions to Incom-

pressible Two-Phase Flow. Journal of Computational Physics, 114(1), 146–159 (1994). doi:10.1
006/jcph.1994.1155

67. A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell & M. L. Welcome. A Conservative Adaptive

Projection Method for the Variable Density Incompressible Navier-Stokes Equations. Journal
of Computational Physics, 142(1), 1–46 (1998). doi:10.1006/jcph.1998.5890

68. A. J. Chorin. Numerical Solution of theNavier-Stokes Equations.Mathematics of Computation,
22(104), 745–762 (1968). doi:10.1090/S0025-5718-1968-0242392-2

69. J. Bloomenthal & K. Ferguson. Polygonization of non-manifold implicit surfaces, in Proceed-
ings of the 22nd annual conference on computer graphics and interactive techniques (ACM, 1995),
309–316. doi:10.1145/218380.218462

70. H. Suzuki, T. Fujimori, T. Michikawa, Y. Miwata & N. Sadaoka. Skeleton Surface Generation

from Volumetric Models of �in Plate Structures for Industrial Applications, inMathematics
of Surfaces XII (eds R. Martin, M. Sabin & J. Winkler) 442–464 (Springer Berlin Heidelberg,
2007). doi:10.1007/978-3-540-73843-5_27

http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/10.1109/2945.485620
http://dx.doi.org/10.1109/38.59034
http://dx.doi.org/10.1016/S0097-8493(97)00085-X
http://dx.doi.org/10.1063/1.1722511
http://dx.doi.org/10.1038/nature05745
http://dx.doi.org/10.1038/nature05745
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161105
http://dx.doi.org/10.1016/0021-9991(92)90240-Y
http://dx.doi.org/10.1016/0021-9991(92)90240-Y
http://dx.doi.org/10.1006/jcph.1994.1155
http://dx.doi.org/10.1006/jcph.1994.1155
http://dx.doi.org/10.1006/jcph.1998.5890
http://dx.doi.org/10.1090/S0025-5718-1968-0242392-2
http://dx.doi.org/10.1145/218380.218462
http://dx.doi.org/10.1007/978-3-540-73843-5_27


REFERENCES 156

71. M. H. Shammaa, H. Suzuki & Y. Ohtake. Extraction of isosurfaces from multi-material CT

volumetric data of mechanical parts, in Proceedings of the 2008 ACM symposium on solid and
physical modeling (ACM, 2008), 213–220. doi:10.1145/1364901.1364931

72. H.-C. Hege, M. Seebass, D. Stalling & M. Zöckler. A generalized marching cubes algorithm
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