
Voro++: A three-dimensional Voronoi cell library in C++
Chris H. Rycroft
Department of Mathematics, Lawrence Berkeley National Laboratory
Department of Mathematics, University of California, Berkeley

The Voronoi tessellation was proposed over a century ago, and today it has
applications in many scientific disciplines [1]. In physics and materials science,
it has been used extensively in the analysis of particle systems, for tracking
changes in density, or for examining local neighbor relationships. While several
mature software libraries exist (particularly Qhull [2], built into MATLAB),
Voro++ has been designed specifically for handling large-scale 3D research
problems, where flexibility is required.

Whereas some codes compute the Voronoi tessellation as a single mesh,
Voro++ makes use of a direct method of calculation whereby each cell is
computed individually [3]. This perspective is useful in many physical
applications, which often rely on cell-based statistics. It provides a high degree
of flexibility, since the computation of each cell can be individually tailored to
account for non-standard boundary conditions. Since each cell is computed
independently, it is straightforward to generalize to a multi-core architecture
and achieve very high parallel efficiency.

Voro++ is free, open source software and specifically concentrates on the 3D
tessellation. It is written in object-oriented C++, and has been designed to be
easily modified and incorporated into other programs; a command-line utility is
also available for interfacing with scripting languages. The library is well-
documented and numerous examples are provided on the code website that
demonstrate the libraryʼs features.

Voro++ has a class called container, which represents a complete simulation
region that can be filled with particles. For computational efficiency, the
container is divided into a rectangular grid of blocks, each of which store the
particles in their part of the simulation. To compute the Voronoi tessellation, the
code constructs a voronoicell class for each particle, and builds the cell by
applying plane() calls to account for neighbors. It first applies plane cuts for all
neighboring particles in the same container block, and then sweeps outwards
using a pre-computed list of nearby blocks. The cell calculation is completed
once the remaining container blocks are too far away to possibly influence it.
The results can be output in a variety of formats, and numerous routines exist
for carrying out cell-based calculations, such as computing cell volume. The
above image shows a sample packing of 1000 particles in a cube, that is one of
the standard code examples. Mixed periodic/non-periodic boundaries are also
supported.

On a Mac Pro with a 2.66 GHz Dual-Core Intel Xeon processor, with standard
compilation options, computing the tessellation for 100,000 random particles in
a unit cube takes 3.11 s. For comparison, Qhull reports a calculation time of
8.58 s for the same test on the same system.

The direct cell-by-cell construction makes it particularly easy to handle non-
standard boundary conditions, since the Voronoi cells can be individually
tailored by applying additional plane cuts. Voro++ has a general mechanism for
handling these cases, by creating wall classes that can be added to a
container. The library contains classes for conical, spherical, cylindrical, and
plane walls with arbitrary orientations, and custom classes can be written for
other geometries.

In (g), a Voronoi tessellation has been constructed for 64 particles in a
tetrahedron created using four planar walls. In (h), a Voronoi tessellation is
shown for a cylindrical packing of 2,300 particles generated using a discrete-
element method (DEM) pouring simulation. For each cell, the curved cylindrical
wall is approximated using a single plane cut that is locally aligned with the
cylinder surface. Although some approximation errors can be seen near the top
of the packing, this approach generally works well for dense particle packings
and walls with low curvature; in the example above, the total Voronoi cell
volume is 0.32% more than the exact cylinder volume.

Since the voronoicell class is designed to only represent convex polyhedra,
carrying out computations in non-convex simulation regions may pose some
problems, as this could give rise to non-convex Voronoi cells. One approach is
to decompose the domain into several convex pieces and carry out a Voronoi
tessellation in each. Alternatively, for non-convex walls with low curvature, such
as the helix shown in (j), accounting for the wall with a single plane cut to each
cell may give acceptable results.

Voronoi cells have been used in the study of flowing granular materials, as a
way of tracking small changes in packing fraction [5]. The top row of images
are snapshots of a DEM granular drainage simulation. The two colors of
particles are physically identical and are used to highlight the deformation that
takes place as drainage occurs. The bottom row of images show corresponding
plots of the local, instantaneous packing fraction. Initially, the packing fraction is
approximately 64% everywhere, near to random close packing (RCP).
However, during drainage the packing fraction decreases by approximately 5%
in the regions of highest strain. It is not possible to accurately track such small
changes if the packing fraction is computed just by summing up the number of
particles in a local region, as the sample sizes are too small. Instead, the
images shown here were computed by dividing the particle volume by the
Voronoi cell volume in a local region, which gives much better results.

Tracking small local changes in packing fraction is important in studying dense
granular rheology. The graph shown below is taken from a recent
_ _

This work was supported by the Director, Office of Science, Computational and Technology Research, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Email enquiries to chr@alum.mit.edu.

Introduction Calculating a tessellation Walls Application to granular flow

Additional code features

Constructing a single cell

Visit http://math.lbl.gov/voro++/ to
download the latest version, and see

complete documentation and examples.

References
[1] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu, Spatial tessellations: concepts
and applications of Voronoi diagrams, John Wiley & Sons, Inc., New York, NY, 2000.

[2] Qhull code for convex hull, Delaunay triangulation, Voronoi diagram, and halfspace intersection about
a point. http://www.qhull.org/

[3] Chris H. Rycroft, Voro++: a three-dimensional Voronoi cell library in C++ (February 2, 2009). Lawrence
Berkeley National Laboratory. Paper LBNL-1432E.
http://repositories.cdlib.org/lbnl/LBNL-1432E

[4] Carolyn L. Phillips, Christopher R. Iacovella, and Sharon C. Glotzer, Stability of the double gyroid
phase to nanoparticle polydispersity in polymer tethered nanosphere systems, preprint, 2009.

[5] Chris H. Rycroft, Multiscale modeling in granular flow, Ph.D. thesis, Massachusetts Institute of
Technology, 2007. http://math.berkeley.edu/~chr/publish/phd.html

[6] Chris H. Rycroft, Ken Kamrin, and Martin Z. Bazant, Assessing continuum relationships in simulations
of dense granular flow, accepted in J. Mech. Phys. Solids.

[7] Chris H. Rycroft, Gary S. Grest, James W. Landry, and Martin Z. Bazant, Analysis of granular flow in a
pebble-bed nuclear reactor, Phys. Rev. E 74 (2006), 021306.

The library can also carry out the radical Voronoi tessellation, which can be
used in the analysis of polydisperse particle arrangements, where the planes
between Voronoi cells are weighted by the particle radii. A sample tessellation
for a packing of 159 polydisperse particles in a cube is shown in (e). In
addition, the code can carry out neighbor calculations, so that during the
Voronoi cell construction, each plane of the cell is labeled with the ID number
of the neighboring particle that created it. Image (f) was created using this
information, drawing a line between every pair of particles whose Voronoi cells
share a face. The radical Voronoi tessellation and neighbor-tracking Voronoi
cell are carried out using two classes called container_poly and
voronoicell_neighbor, which are variants of the standard container and
voronoicell classes. To keep the source code as concise and maintainable as
possible, the majority of the library is written using C++ templates, and class
variants are then created as different template instances. Since the class
variations are in-lined during compilation, this results in very high performance.
Further extensions have been developed in a nanosphere systems study [4].

For a set of points in a domain, the Voronoi
tessellation can be defined by associating a cell to
each particle that corresponds to all of the space
which is closer to that particle than any other. For the
small 2D particle arrangement shown in (a), the
Voronoi cells form irregular convex polygons around
each particle. The sides of each polygon are the
perpendicular bisectors between neighboring particles.

In three dimensions, a Voronoi cell will form an
irregular convex polyhedron. One of the main
components of Voro++ is the voronoicell class, which
handles all the routines for constructing a single 3D
cell. The cell is represented as a list of vertices that
are connected by a table of edges, and a sample
representation is shown in (b). The voronoicell class
contains a routine called plane(), which can re-
_ _

Extra wall accuracy can be achieved
by approximating curved wall surfaces
with multiple plane cuts. In (i), a
Voronoi computation is carried out for
a small packing of 262 particles inside
a sphere. The curved wall surface is
approximated with a fine rectangular
grid of plane cuts. The sum of the
Voronoi cell volumes differs from the
exact sphere volume by 0.039%, and
by refining the mesh further, any
desired level of accuracy can be
achieved.

65%

60%

55%

50%

publication [6] showing local phase
space tracers of strain against
packing fraction for a variety of
simulations, which is in agreement
with the above images. Voronoi
volumes have also been used in
tracking small porosity changes in
pebble-bed reactor simulations [7].

compute the vertices and edges based on cutting the cell by a single plane. A
Voronoi cell can be built by repeatedly cutting the cell by planes corresponding
to the perpendicular bisectors of neighboring particles. Since the cell is convex
and only a few vertices need to be recomputed for each plane, this operation
runs very quickly.

In a typical case such as (b), where a cell is created by random plane cuts,
each vertex will have order 3. However, if a plane intersects an existing vertex,
a higher order vertex could potentially form. Without recognizing these cases,
inaccuracies in floating point arithmetic can lead to algorithm errors. To handle
_

(a)

(b)

(c)

this, if a plane is within a small tolerance
of an existing vertex, Voro++ recomp-
utes the cell as if that vertex was exactly
on the plane, constructing high order
vertices as necessary. The code dynam-
ically allocates memory for high order
vertices, and can handle very complex
test cases such as (c). Here, a large
number of plane cuts were applied
radially around specific points, to create
many vertices of order 64. While high
order vertices rarely form in practice,
having this capability makes the Voronoi
calculations very robust, even when
dealing with millions of cells.

(d)

(e) (f)

(g) (h)

DE
M

 s
im

ul
at

io
n

Lo
ca

l p
ac

kin
g

fra
ct

io
n

t = 0 s t = 0.348 s t = 0.696 s t = 1.044 s

(j)

(i)

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

10-8 10-7 10-6 10-5 0.0001 0.001 0.01 0.1 1 10

Pa
ck
in
g
fra
ct
io
n

Magnitude of Hencky strain tensor

Tall silo drainage
Wide silo drainage
Wide silo pushing

mailto:chr@alum.mit.edu
mailto:chr@alum.mit.edu
http://math.lbl.gov
http://math.lbl.gov
http://www.qhull.org
http://www.qhull.org
http://repositories.cdlib.org/lbnl/LBNL-1432E
http://repositories.cdlib.org/lbnl/LBNL-1432E
http://math.berkeley.edu/~chr/publish/phd.html
http://math.berkeley.edu/~chr/publish/phd.html

