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The Voronoi tessellation was proposed over a century ago, and today it has 
applications in many scientific disciplines [1]. In physics and materials science, 
it has been used extensively in the analysis of particle systems, for tracking 
changes in density, or for examining local neighbor relationships. While several 
mature software libraries exist (particularly Qhull  [2], built into MATLAB),     
Voro++ has been designed specifically for handling large-scale 3D research 
problems, where flexibility is required.

Whereas some codes compute the Voronoi tessellation as a single mesh,   
Voro++ makes use of a direct method of calculation whereby each cell is 
computed individually  [3]. This perspective is useful in many physical 
applications, which often rely on cell-based statistics. It provides a high degree 
of flexibility, since the computation of each cell can be individually tailored to 
account for non-standard boundary conditions. Since each cell is computed 
independently, it is straightforward to generalize to a multi-core architecture 
and achieve very high parallel efficiency.

Voro++ is free, open source software and specifically concentrates on the 3D 
tessellation. It is written in object-oriented C++, and has been designed to be 
easily modified and incorporated into other programs; a command-line utility  is 
also available for interfacing with scripting languages. The library is well-
documented and numerous examples are provided on the code website that 
demonstrate the libraryʼs features.

Voro++ has a class called container, which represents a complete simulation 
region that can be filled with particles. For computational efficiency, the 
container is divided into a rectangular grid of blocks, each of which store the 
particles in their part of the simulation. To compute the Voronoi tessellation, the 
code constructs a voronoicell class for each particle, and builds the cell by 
applying plane() calls to account for neighbors. It first applies plane cuts for all 
neighboring particles in the same container block, and then sweeps outwards 
using a pre-computed list of nearby blocks. The cell calculation is completed 
once the remaining container blocks are too far away to possibly influence it. 
The results can be output in a variety of formats, and numerous routines exist 
for carrying out cell-based calculations, such as computing cell volume. The 
above image shows a sample packing of 1000 particles in a cube, that is one of 
the standard code examples. Mixed periodic/non-periodic boundaries are also 
supported.

On a Mac Pro with a 2.66 GHz Dual-Core Intel Xeon processor, with standard 
compilation options, computing the tessellation for 100,000 random particles in 
a unit cube takes 3.11 s. For comparison, Qhull reports a calculation time of 
8.58 s for the same test on the same system.

The direct cell-by-cell construction makes it particularly easy to handle non-
standard boundary conditions, since the Voronoi cells can be individually 
tailored by applying additional plane cuts. Voro++ has a general mechanism for 
handling these cases, by creating wall classes that can be added to a 
container. The library contains classes for conical, spherical, cylindrical, and 
plane walls with arbitrary orientations, and custom classes can be written for 
other geometries.

In (g), a Voronoi tessellation has been constructed for 64 particles in a 
tetrahedron created using four planar walls. In (h), a Voronoi tessellation is 
shown for a cylindrical packing of 2,300 particles generated using a discrete-
element method (DEM) pouring simulation. For each cell, the curved cylindrical 
wall is approximated using a single plane cut that is locally aligned with the 
cylinder surface. Although some approximation errors can be seen near the top 
of the packing, this approach generally works well for dense particle packings 
and walls with low  curvature; in the example above, the total Voronoi cell 
volume is 0.32% more than the exact cylinder volume.

Since the voronoicell class is designed to only represent convex polyhedra, 
carrying out computations in non-convex simulation regions may pose some 
problems, as this could give rise to non-convex Voronoi cells. One approach is 
to decompose the domain into several convex pieces and carry out a Voronoi 
tessellation in each. Alternatively, for non-convex walls with low curvature, such 
as the helix shown in (j), accounting for the wall with a single plane cut to each 
cell may give acceptable results.

Voronoi cells have been used in the study of flowing granular materials, as a 
way of tracking small changes in packing fraction  [5]. The top row of images 
are snapshots of a DEM granular drainage simulation. The two colors of 
particles are physically identical and are used to highlight the deformation that 
takes place as drainage occurs. The bottom row of images show corresponding 
plots of the local, instantaneous packing fraction. Initially, the packing fraction is 
approximately 64% everywhere, near to random close packing (RCP). 
However, during drainage the packing fraction decreases by approximately 5% 
in the regions of highest strain. It is not possible to accurately track such small 
changes if the packing fraction is computed just by summing up the number of 
particles in a local region, as the sample sizes are too small. Instead, the 
images shown here were computed by dividing the particle volume by the 
Voronoi cell volume in a local region, which gives much better results.

Tracking small local changes in packing fraction is important in studying dense 
granular rheology. The graph shown below is taken from a recent 
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The library can also carry out the radical Voronoi tessellation, which can be 
used in the analysis of polydisperse particle arrangements, where the planes 
between Voronoi cells are weighted by the particle radii. A sample tessellation 
for a packing of 159 polydisperse particles in a cube is shown in (e). In 
addition, the code can carry out neighbor calculations, so that during the 
Voronoi cell construction, each plane of the cell is labeled with the ID number 
of the neighboring particle that created it. Image  (f) was created using this 
information, drawing a line between every pair of particles whose Voronoi cells 
share a face. The radical Voronoi tessellation and neighbor-tracking Voronoi 
cell are carried out using two classes called container_poly and 
voronoicell_neighbor, which are variants of the standard container and 
voronoicell classes. To keep the source code as concise and maintainable as 
possible, the majority of the library is written using C++ templates, and class 
variants are then created as different template instances. Since the class 
variations are in-lined during compilation, this results in very high performance. 
Further extensions have been developed in a nanosphere systems study [4].

For a set of points in a domain, the Voronoi 
tessellation can be defined by associating a cell to 
each particle that corresponds to all of the space 
which is closer to that particle than any other. For the 
small 2D particle arrangement shown in (a), the 
Voronoi cells form irregular convex polygons around 
each particle. The sides of each polygon are the 
perpendicular bisectors between neighboring particles.

In three dimensions, a Voronoi cell will form an 
irregular convex polyhedron. One of the main 
components of Voro++ is the voronoicell class, which 
handles all the routines for constructing a single 3D 
cell. The cell is represented as a list of vertices that 
are connected by a table of edges, and a sample 
representation is shown in (b). The voronoicell class 
contains a routine called plane(), which can re- 
_                 _

Extra wall accuracy can be achieved 
by approximating curved wall surfaces 
with multiple plane cuts. In  (i), a 
Voronoi computation is carried out for 
a small packing of 262 particles inside 
a sphere. The curved wall surface is 
approximated with a fine rectangular 
grid of plane cuts. The sum of the 
Voronoi cell volumes differs from the 
exact sphere volume by 0.039%, and 
by refining the mesh further, any 
desired level of accuracy can be 
achieved.
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publication  [6] showing local phase 
space tracers of strain against 
packing fraction for a variety of 
simulations, which is in agreement 
with the above images. Voronoi 
volumes have also been used in 
tracking small porosity changes in 
pebble-bed reactor simulations [7].

compute the vertices and edges based on cutting the cell by a single plane. A 
Voronoi cell can be built by repeatedly cutting the cell by planes corresponding 
to the perpendicular bisectors of neighboring particles. Since the cell is convex 
and only a few  vertices need to be recomputed for each plane, this operation 
runs very quickly.

In a typical case such as (b), where a cell is created by random plane cuts, 
each vertex will have order 3. However, if a plane intersects an existing vertex, 
a higher order vertex could potentially  form. Without recognizing these cases, 
inaccuracies in floating point arithmetic can lead to algorithm errors. To handle 
_
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this, if a plane is within a small tolerance 
of an existing vertex, Voro++ recomp-
utes the cell as if that vertex was exactly 
on the plane, constructing high order 
vertices as necessary. The code dynam-
ically allocates memory for high order 
vertices, and can handle very complex 
test cases such as  (c). Here, a large 
number of plane cuts were applied 
radially around specific points, to create 
many vertices of order 64. While high 
order vertices rarely form in practice, 
having this capability makes the Voronoi 
calculations very robust, even when 
dealing with millions of cells.
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