Voro++
|
00001 // Voro++, a 3D cell-based Voronoi library 00002 // 00003 // Author : Chris H. Rycroft (LBL / UC Berkeley) 00004 // Email : chr@alum.mit.edu 00005 // Date : August 30th 2011 00006 00007 /** \file v_compute.cc 00008 * \brief Function implementantions for the voro_compute template. */ 00009 00010 #include "worklist.hh" 00011 #include "v_compute.hh" 00012 #include "container.hh" 00013 #include "container_prd.hh" 00014 00015 namespace voro { 00016 00017 /** The class constructor initializes constants from the container class, and 00018 * sets up the mask and queue used for Voronoi computations. 00019 * \param[in] con_ a reference to the container class to use. 00020 * \param[in] (hx_,hy_,hz_) the size of the mask to use. */ 00021 template<class c_class> 00022 voro_compute<c_class>::voro_compute(c_class &con_,int hx_,int hy_,int hz_) : 00023 con(con_), boxx(con_.boxx), boxy(con_.boxy), boxz(con_.boxz), 00024 xsp(con_.xsp), ysp(con_.ysp), zsp(con_.zsp), 00025 hx(hx_), hy(hy_), hz(hz_), hxy(hx_*hy_), hxyz(hxy*hz_), ps(con_.ps), 00026 id(con_.id), p(con_.p), co(con_.co), bxsq(boxx*boxx+boxy*boxy+boxz*boxz), 00027 mv(0), qu_size(3*(3+hxy+hz*(hx+hy))), wl(con_.wl), mrad(con_.mrad), 00028 mask(new unsigned int[hxyz]), qu(new int[qu_size]), qu_l(qu+qu_size) { 00029 reset_mask(); 00030 } 00031 00032 /** Scans all of the particles within a block to see if any of them have a 00033 * smaller distance to the given test vector. If one is found, the routine 00034 * updates the minimum distance and store information about this particle. 00035 * \param[in] ijk the index of the block. 00036 * \param[in] (x,y,z) the test vector to consider (which may have already had a 00037 * periodic displacement applied to it). 00038 * \param[in] (di,dj,dk) the coordinates of the current block, to store if the 00039 * particle record is updated. 00040 * \param[in,out] w a reference to a particle record in which to store 00041 * information about the particle whose Voronoi cell the 00042 * vector is within. 00043 * \param[in,out] mrs the current minimum distance, that may be updated if a 00044 * closer particle is found. */ 00045 template<class c_class> 00046 inline void voro_compute<c_class>::scan_all(int ijk,double x,double y,double z,int di,int dj,int dk,particle_record &w,double &mrs) { 00047 double x1,y1,z1,rs;bool in_block=false; 00048 for(int l=0;l<co[ijk];l++) { 00049 x1=p[ijk][ps*l]-x; 00050 y1=p[ijk][ps*l+1]-y; 00051 z1=p[ijk][ps*l+2]-z; 00052 rs=con.r_current_sub(x1*x1+y1*y1+z1*z1,ijk,l); 00053 if(rs<mrs) {mrs=rs;w.l=l;in_block=true;} 00054 } 00055 if(in_block) {w.ijk=ijk;w.di=di;w.dj=dj,w.dk=dk;} 00056 } 00057 00058 /** Finds the Voronoi cell that given vector is within. For containers that are 00059 * not radially dependent, this corresponds to findig the particle that is 00060 * closest to the vector; for the radical tessellation containers, this 00061 * corresponds to a finding the minimum weighted distance. 00062 * \param[in] (x,y,z) the vector to consider. 00063 * \param[in] (ci,cj,ck) the coordinates of the block that the test particle is 00064 * in relative to the container data structure. 00065 * \param[in] ijk the index of the block that the test particle is in. 00066 * \param[out] w a reference to a particle record in which to store information 00067 * about the particle whose Voronoi cell the vector is within. 00068 * \param[out] mrs the minimum computed distance. */ 00069 template<class c_class> 00070 void voro_compute<c_class>::find_voronoi_cell(double x,double y,double z,int ci,int cj,int ck,int ijk,particle_record &w,double &mrs) { 00071 double qx=0,qy=0,qz=0,rs; 00072 int i,j,k,di,dj,dk,ei,ej,ek,f,g,disp; 00073 double fx,fy,fz,mxs,mys,mzs,*radp; 00074 unsigned int q,*e,*mijk; 00075 00076 // Init setup for parameters to return 00077 w.ijk=-1;mrs=large_number; 00078 00079 con.initialize_search(ci,cj,ck,ijk,i,j,k,disp); 00080 00081 // Test all particles in the particle's local region first 00082 scan_all(ijk,x,y,z,0,0,0,w,mrs); 00083 00084 // Now compute the fractional position of the particle within its 00085 // region and store it in (fx,fy,fz). We use this to compute an index 00086 // (di,dj,dk) of which subregion the particle is within. 00087 unsigned int m1,m2; 00088 con.frac_pos(x,y,z,ci,cj,ck,fx,fy,fz); 00089 di=int(fx*xsp*wl_fgrid);dj=int(fy*ysp*wl_fgrid);dk=int(fz*zsp*wl_fgrid); 00090 00091 // The indices (di,dj,dk) tell us which worklist to use, to test the 00092 // blocks in the optimal order. But we only store worklists for the 00093 // eighth of the region where di, dj, and dk are all less than half the 00094 // full grid. The rest of the cases are handled by symmetry. In this 00095 // section, we detect for these cases, by reflecting high values of di, 00096 // dj, and dk. For these cases, a mask is constructed in m1 and m2 00097 // which is used to flip the worklist information when it is loaded. 00098 if(di>=wl_hgrid) { 00099 mxs=boxx-fx; 00100 m1=127+(3<<21);m2=1+(1<<21);di=wl_fgrid-1-di;if(di<0) di=0; 00101 } else {m1=m2=0;mxs=fx;} 00102 if(dj>=wl_hgrid) { 00103 mys=boxy-fy; 00104 m1|=(127<<7)+(3<<24);m2|=(1<<7)+(1<<24);dj=wl_fgrid-1-dj;if(dj<0) dj=0; 00105 } else mys=fy; 00106 if(dk>=wl_hgrid) { 00107 mzs=boxz-fz; 00108 m1|=(127<<14)+(3<<27);m2|=(1<<14)+(1<<27);dk=wl_fgrid-1-dk;if(dk<0) dk=0; 00109 } else mzs=fz; 00110 00111 // Do a quick test to account for the case when the minimum radius is 00112 // small enought that no other blocks need to be considered 00113 rs=con.r_max_add(mrs); 00114 if(mxs*mxs>rs&&mys*mys>rs&&mzs*mzs>rs) return; 00115 00116 // Now compute which worklist we are going to use, and set radp and e to 00117 // point at the right offsets 00118 ijk=di+wl_hgrid*(dj+wl_hgrid*dk); 00119 radp=mrad+ijk*wl_seq_length; 00120 e=(const_cast<unsigned int*> (wl))+ijk*wl_seq_length; 00121 00122 // Read in how many items in the worklist can be tested without having to 00123 // worry about writing to the mask 00124 f=e[0];g=0; 00125 do { 00126 00127 // If mrs is less than the minimum distance to any untested 00128 // block, then we are done 00129 if(con.r_max_add(mrs)<radp[g]) return; 00130 g++; 00131 00132 // Load in a block off the worklist, permute it with the 00133 // symmetry mask, and decode its position. These are all 00134 // integer bit operations so they should run very fast. 00135 q=e[g];q^=m1;q+=m2; 00136 di=q&127;di-=64; 00137 dj=(q>>7)&127;dj-=64; 00138 dk=(q>>14)&127;dk-=64; 00139 00140 // Check that the worklist position is in range 00141 ei=di+i;if(ei<0||ei>=hx) continue; 00142 ej=dj+j;if(ej<0||ej>=hy) continue; 00143 ek=dk+k;if(ek<0||ek>=hz) continue; 00144 00145 // Call the compute_min_max_radius() function. This returns 00146 // true if the minimum distance to the block is bigger than the 00147 // current mrs, in which case we skip this block and move on. 00148 // Otherwise, it computes the maximum distance to the block and 00149 // returns it in crs. 00150 if(compute_min_radius(di,dj,dk,fx,fy,fz,mrs)) continue; 00151 00152 // Now compute which region we are going to loop over, adding a 00153 // displacement for the periodic cases 00154 ijk=con.region_index(ci,cj,ck,ei,ej,ek,qx,qy,qz,disp); 00155 00156 // If mrs is bigger than the maximum distance to the block, 00157 // then we have to test all particles in the block for 00158 // intersections. Otherwise, we do additional checks and skip 00159 // those particles which can't possibly intersect the block. 00160 scan_all(ijk,x-qx,y-qy,z-qz,di,dj,dk,w,mrs); 00161 } while(g<f); 00162 00163 // Update mask value and initialize queue 00164 mv++; 00165 if(mv==0) {reset_mask();mv=1;} 00166 int *qu_s=qu,*qu_e=qu; 00167 00168 while(g<wl_seq_length-1) { 00169 00170 // If mrs is less than the minimum distance to any untested 00171 // block, then we are done 00172 if(con.r_max_add(mrs)<radp[g]) return; 00173 g++; 00174 00175 // Load in a block off the worklist, permute it with the 00176 // symmetry mask, and decode its position. These are all 00177 // integer bit operations so they should run very fast. 00178 q=e[g];q^=m1;q+=m2; 00179 di=q&127;di-=64; 00180 dj=(q>>7)&127;dj-=64; 00181 dk=(q>>14)&127;dk-=64; 00182 00183 // Compute the position in the mask of the current block. If 00184 // this lies outside the mask, then skip it. Otherwise, mark 00185 // it. 00186 ei=di+i;if(ei<0||ei>=hx) continue; 00187 ej=dj+j;if(ej<0||ej>=hy) continue; 00188 ek=dk+k;if(ek<0||ek>=hz) continue; 00189 mijk=mask+ei+hx*(ej+hy*ek); 00190 *mijk=mv; 00191 00192 // Skip this block if it is further away than the current 00193 // minimum radius 00194 if(compute_min_radius(di,dj,dk,fx,fy,fz,mrs)) continue; 00195 00196 // Now compute which region we are going to loop over, adding a 00197 // displacement for the periodic cases 00198 ijk=con.region_index(ci,cj,ck,ei,ej,ek,qx,qy,qz,disp); 00199 scan_all(ijk,x-qx,y-qy,z-qz,di,dj,dk,w,mrs); 00200 00201 if(qu_e>qu_l-18) add_list_memory(qu_s,qu_e); 00202 scan_bits_mask_add(q,mijk,ei,ej,ek,qu_e); 00203 } 00204 00205 // Do a check to see if we've reached the radius cutoff 00206 if(con.r_max_add(mrs)<radp[g]) return; 00207 00208 // We were unable to completely compute the cell based on the blocks in 00209 // the worklist, so now we have to go block by block, reading in items 00210 // off the list 00211 while(qu_s!=qu_e) { 00212 00213 // Read the next entry of the queue 00214 if(qu_s==qu_l) qu_s=qu; 00215 ei=*(qu_s++);ej=*(qu_s++);ek=*(qu_s++); 00216 di=ei-i;dj=ej-j;dk=ek-k; 00217 if(compute_min_radius(di,dj,dk,fx,fy,fz,mrs)) continue; 00218 00219 ijk=con.region_index(ci,cj,ck,ei,ej,ek,qx,qy,qz,disp); 00220 scan_all(ijk,x-qx,y-qy,z-qz,di,dj,dk,w,mrs); 00221 00222 // Test the neighbors of the current block, and add them to the 00223 // block list if they haven't already been tested 00224 if((qu_s<=qu_e?(qu_l-qu_e)+(qu_s-qu):qu_s-qu_e)<18) add_list_memory(qu_s,qu_e); 00225 add_to_mask(ei,ej,ek,qu_e); 00226 } 00227 } 00228 00229 /** Scans the six orthogonal neighbors of a given block and adds them to the 00230 * queue if they haven't been considered already. It assumes that the queue 00231 * will definitely have enough memory to add six entries at the end. 00232 * \param[in] (ei,ej,ek) the block to consider. 00233 * \param[in,out] qu_e a pointer to the end of the queue. */ 00234 template<class c_class> 00235 inline void voro_compute<c_class>::add_to_mask(int ei,int ej,int ek,int *&qu_e) { 00236 unsigned int *mijk=mask+ei+hx*(ej+hy*ek); 00237 if(ek>0) if(*(mijk-hxy)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mijk-hxy)=mv;*(qu_e++)=ei;*(qu_e++)=ej;*(qu_e++)=ek-1;} 00238 if(ej>0) if(*(mijk-hx)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mijk-hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej-1;*(qu_e++)=ek;} 00239 if(ei>0) if(*(mijk-1)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mijk-1)=mv;*(qu_e++)=ei-1;*(qu_e++)=ej;*(qu_e++)=ek;} 00240 if(ei<hx-1) if(*(mijk+1)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mijk+1)=mv;*(qu_e++)=ei+1;*(qu_e++)=ej;*(qu_e++)=ek;} 00241 if(ej<hy-1) if(*(mijk+hx)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mijk+hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej+1;*(qu_e++)=ek;} 00242 if(ek<hz-1) if(*(mijk+hxy)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mijk+hxy)=mv;*(qu_e++)=ei;*(qu_e++)=ej;*(qu_e++)=ek+1;} 00243 } 00244 00245 /** Scans a worklist entry and adds any blocks to the queue 00246 * \param[in] (ei,ej,ek) the block to consider. 00247 * \param[in,out] qu_e a pointer to the end of the queue. */ 00248 template<class c_class> 00249 inline void voro_compute<c_class>::scan_bits_mask_add(unsigned int q,unsigned int *mijk,int ei,int ej,int ek,int *&qu_e) { 00250 const unsigned int b1=1<<21,b2=1<<22,b3=1<<24,b4=1<<25,b5=1<<27,b6=1<<28; 00251 if((q&b2)==b2) { 00252 if(ei>0) {*(mijk-1)=mv;*(qu_e++)=ei-1;*(qu_e++)=ej;*(qu_e++)=ek;} 00253 if((q&b1)==0&&ei<hx-1) {*(mijk+1)=mv;*(qu_e++)=ei+1;*(qu_e++)=ej;*(qu_e++)=ek;} 00254 } else if((q&b1)==b1&&ei<hx-1) {*(mijk+1)=mv;*(qu_e++)=ei+1;*(qu_e++)=ej;*(qu_e++)=ek;} 00255 if((q&b4)==b4) { 00256 if(ej>0) {*(mijk-hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej-1;*(qu_e++)=ek;} 00257 if((q&b3)==0&&ej<hy-1) {*(mijk+hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej+1;*(qu_e++)=ek;} 00258 } else if((q&b3)==b3&&ej<hy-1) {*(mijk+hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej+1;*(qu_e++)=ek;} 00259 if((q&b6)==b6) { 00260 if(ek>0) {*(mijk-hxy)=mv;*(qu_e++)=ei;*(qu_e++)=ej;*(qu_e++)=ek-1;} 00261 if((q&b5)==0&&ek<hz-1) {*(mijk+hxy)=mv;*(qu_e++)=ei;*(qu_e++)=ej;*(qu_e++)=ek+1;} 00262 } else if((q&b5)==b5&&ek<hz-1) {*(mijk+hxy)=mv;*(qu_e++)=ei;*(qu_e++)=ej;*(qu_e++)=ek+1;} 00263 } 00264 00265 /** This routine computes a Voronoi cell for a single particle in the 00266 * container. It can be called by the user, but is also forms the core part of 00267 * several of the main functions, such as store_cell_volumes(), print_all(), 00268 * and the drawing routines. The algorithm constructs the cell by testing over 00269 * the neighbors of the particle, working outwards until it reaches those 00270 * particles which could not possibly intersect the cell. For maximum 00271 * efficiency, this algorithm is divided into three parts. In the first 00272 * section, the algorithm tests over the blocks which are in the immediate 00273 * vicinity of the particle, by making use of one of the precomputed worklists. 00274 * The code then continues to test blocks on the worklist, but also begins to 00275 * construct a list of neighboring blocks outside the worklist which may need 00276 * to be test. In the third section, the routine starts testing these 00277 * neighboring blocks, evaluating whether or not a particle in them could 00278 * possibly intersect the cell. For blocks that intersect the cell, it tests 00279 * the particles in that block, and then adds the block neighbors to the list 00280 * of potential places to consider. 00281 * \param[in,out] c a reference to a voronoicell object. 00282 * \param[in] ijk the index of the block that the test particle is in. 00283 * \param[in] s the index of the particle within the test block. 00284 * \param[in] (ci,cj,ck) the coordinates of the block that the test particle is 00285 * in relative to the container data structure. 00286 * \return False if the Voronoi cell was completely removed during the 00287 * computation and has zero volume, true otherwise. */ 00288 template<class c_class> 00289 template<class v_cell> 00290 bool voro_compute<c_class>::compute_cell(v_cell &c,int ijk,int s,int ci,int cj,int ck) { 00291 static const int count_list[8]={7,11,15,19,26,35,45,59},*count_e=count_list+8; 00292 double x,y,z,x1,y1,z1,qx=0,qy=0,qz=0; 00293 double xlo,ylo,zlo,xhi,yhi,zhi,x2,y2,z2,rs; 00294 int i,j,k,di,dj,dk,ei,ej,ek,f,g,l,disp; 00295 double fx,fy,fz,gxs,gys,gzs,*radp; 00296 unsigned int q,*e,*mijk; 00297 00298 if(!con.initialize_voronoicell(c,ijk,s,ci,cj,ck,i,j,k,x,y,z,disp)) return false; 00299 con.r_init(ijk,s); 00300 00301 // Initialize the Voronoi cell to fill the entire container 00302 double crs,mrs; 00303 00304 int next_count=3,*count_p=(const_cast<int*> (count_list)); 00305 00306 // Test all particles in the particle's local region first 00307 for(l=0;l<s;l++) { 00308 x1=p[ijk][ps*l]-x; 00309 y1=p[ijk][ps*l+1]-y; 00310 z1=p[ijk][ps*l+2]-z; 00311 rs=con.r_scale(x1*x1+y1*y1+z1*z1,ijk,l); 00312 if(!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false; 00313 } 00314 l++; 00315 while(l<co[ijk]) { 00316 x1=p[ijk][ps*l]-x; 00317 y1=p[ijk][ps*l+1]-y; 00318 z1=p[ijk][ps*l+2]-z; 00319 rs=con.r_scale(x1*x1+y1*y1+z1*z1,ijk,l); 00320 if(!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false; 00321 l++; 00322 } 00323 00324 // Now compute the maximum distance squared from the cell center to a 00325 // vertex. This is used to cut off the calculation since we only need 00326 // to test out to twice this range. 00327 mrs=c.max_radius_squared(); 00328 00329 // Now compute the fractional position of the particle within its 00330 // region and store it in (fx,fy,fz). We use this to compute an index 00331 // (di,dj,dk) of which subregion the particle is within. 00332 unsigned int m1,m2; 00333 con.frac_pos(x,y,z,ci,cj,ck,fx,fy,fz); 00334 di=int(fx*xsp*wl_fgrid);dj=int(fy*ysp*wl_fgrid);dk=int(fz*zsp*wl_fgrid); 00335 00336 // The indices (di,dj,dk) tell us which worklist to use, to test the 00337 // blocks in the optimal order. But we only store worklists for the 00338 // eighth of the region where di, dj, and dk are all less than half the 00339 // full grid. The rest of the cases are handled by symmetry. In this 00340 // section, we detect for these cases, by reflecting high values of di, 00341 // dj, and dk. For these cases, a mask is constructed in m1 and m2 00342 // which is used to flip the worklist information when it is loaded. 00343 if(di>=wl_hgrid) { 00344 gxs=fx; 00345 m1=127+(3<<21);m2=1+(1<<21);di=wl_fgrid-1-di;if(di<0) di=0; 00346 } else {m1=m2=0;gxs=boxx-fx;} 00347 if(dj>=wl_hgrid) { 00348 gys=fy; 00349 m1|=(127<<7)+(3<<24);m2|=(1<<7)+(1<<24);dj=wl_fgrid-1-dj;if(dj<0) dj=0; 00350 } else gys=boxy-fy; 00351 if(dk>=wl_hgrid) { 00352 gzs=fz; 00353 m1|=(127<<14)+(3<<27);m2|=(1<<14)+(1<<27);dk=wl_fgrid-1-dk;if(dk<0) dk=0; 00354 } else gzs=boxz-fz; 00355 gxs*=gxs;gys*=gys;gzs*=gzs; 00356 00357 // Now compute which worklist we are going to use, and set radp and e to 00358 // point at the right offsets 00359 ijk=di+wl_hgrid*(dj+wl_hgrid*dk); 00360 radp=mrad+ijk*wl_seq_length; 00361 e=(const_cast<unsigned int*> (wl))+ijk*wl_seq_length; 00362 00363 // Read in how many items in the worklist can be tested without having to 00364 // worry about writing to the mask 00365 f=e[0];g=0; 00366 do { 00367 00368 // At the intervals specified by count_list, we recompute the 00369 // maximum radius squared 00370 if(g==next_count) { 00371 mrs=c.max_radius_squared(); 00372 if(count_p!=count_e) next_count=*(count_p++); 00373 } 00374 00375 // If mrs is less than the minimum distance to any untested 00376 // block, then we are done 00377 if(con.r_ctest(radp[g],mrs)) return true; 00378 g++; 00379 00380 // Load in a block off the worklist, permute it with the 00381 // symmetry mask, and decode its position. These are all 00382 // integer bit operations so they should run very fast. 00383 q=e[g];q^=m1;q+=m2; 00384 di=q&127;di-=64; 00385 dj=(q>>7)&127;dj-=64; 00386 dk=(q>>14)&127;dk-=64; 00387 00388 // Check that the worklist position is in range 00389 ei=di+i;if(ei<0||ei>=hx) continue; 00390 ej=dj+j;if(ej<0||ej>=hy) continue; 00391 ek=dk+k;if(ek<0||ek>=hz) continue; 00392 00393 // Call the compute_min_max_radius() function. This returns 00394 // true if the minimum distance to the block is bigger than the 00395 // current mrs, in which case we skip this block and move on. 00396 // Otherwise, it computes the maximum distance to the block and 00397 // returns it in crs. 00398 if(compute_min_max_radius(di,dj,dk,fx,fy,fz,gxs,gys,gzs,crs,mrs)) continue; 00399 00400 // Now compute which region we are going to loop over, adding a 00401 // displacement for the periodic cases 00402 ijk=con.region_index(ci,cj,ck,ei,ej,ek,qx,qy,qz,disp); 00403 00404 // If mrs is bigger than the maximum distance to the block, 00405 // then we have to test all particles in the block for 00406 // intersections. Otherwise, we do additional checks and skip 00407 // those particles which can't possibly intersect the block. 00408 if(co[ijk]>0) { 00409 l=0;x2=x-qx;y2=y-qy;z2=z-qz; 00410 if(!con.r_ctest(crs,mrs)) { 00411 do { 00412 x1=p[ijk][ps*l]-x2; 00413 y1=p[ijk][ps*l+1]-y2; 00414 z1=p[ijk][ps*l+2]-z2; 00415 rs=con.r_scale(x1*x1+y1*y1+z1*z1,ijk,l); 00416 if(!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false; 00417 l++; 00418 } while (l<co[ijk]); 00419 } else { 00420 do { 00421 x1=p[ijk][ps*l]-x2; 00422 y1=p[ijk][ps*l+1]-y2; 00423 z1=p[ijk][ps*l+2]-z2; 00424 rs=x1*x1+y1*y1+z1*z1; 00425 if(con.r_scale_check(rs,mrs,ijk,l)&&!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false; 00426 l++; 00427 } while (l<co[ijk]); 00428 } 00429 } 00430 } while(g<f); 00431 00432 // If we reach here, we were unable to compute the entire cell using 00433 // the first part of the worklist. This section of the algorithm 00434 // continues the worklist, but it now starts preparing the mask that we 00435 // need if we end up going block by block. We do the same as before, 00436 // but we put a mark down on the mask for every block that's tested. 00437 // The worklist also contains information about which neighbors of each 00438 // block are not also on the worklist, and we start storing those 00439 // points in a list in case we have to go block by block. Update the 00440 // mask counter, and if it wraps around then reset the whole mask; that 00441 // will only happen once every 2^32 tries. 00442 mv++; 00443 if(mv==0) {reset_mask();mv=1;} 00444 00445 // Set the queue pointers 00446 int *qu_s=qu,*qu_e=qu; 00447 00448 while(g<wl_seq_length-1) { 00449 00450 // At the intervals specified by count_list, we recompute the 00451 // maximum radius squared 00452 if(g==next_count) { 00453 mrs=c.max_radius_squared(); 00454 if(count_p!=count_e) next_count=*(count_p++); 00455 } 00456 00457 // If mrs is less than the minimum distance to any untested 00458 // block, then we are done 00459 if(con.r_ctest(radp[g],mrs)) return true; 00460 g++; 00461 00462 // Load in a block off the worklist, permute it with the 00463 // symmetry mask, and decode its position. These are all 00464 // integer bit operations so they should run very fast. 00465 q=e[g];q^=m1;q+=m2; 00466 di=q&127;di-=64; 00467 dj=(q>>7)&127;dj-=64; 00468 dk=(q>>14)&127;dk-=64; 00469 00470 // Compute the position in the mask of the current block. If 00471 // this lies outside the mask, then skip it. Otherwise, mark 00472 // it. 00473 ei=di+i;if(ei<0||ei>=hx) continue; 00474 ej=dj+j;if(ej<0||ej>=hy) continue; 00475 ek=dk+k;if(ek<0||ek>=hz) continue; 00476 mijk=mask+ei+hx*(ej+hy*ek); 00477 *mijk=mv; 00478 00479 // Call the compute_min_max_radius() function. This returns 00480 // true if the minimum distance to the block is bigger than the 00481 // current mrs, in which case we skip this block and move on. 00482 // Otherwise, it computes the maximum distance to the block and 00483 // returns it in crs. 00484 if(compute_min_max_radius(di,dj,dk,fx,fy,fz,gxs,gys,gzs,crs,mrs)) continue; 00485 00486 // Now compute which region we are going to loop over, adding a 00487 // displacement for the periodic cases 00488 ijk=con.region_index(ci,cj,ck,ei,ej,ek,qx,qy,qz,disp); 00489 00490 // If mrs is bigger than the maximum distance to the block, 00491 // then we have to test all particles in the block for 00492 // intersections. Otherwise, we do additional checks and skip 00493 // those particles which can't possibly intersect the block. 00494 if(co[ijk]>0) { 00495 l=0;x2=x-qx;y2=y-qy;z2=z-qz; 00496 if(!con.r_ctest(crs,mrs)) { 00497 do { 00498 x1=p[ijk][ps*l]-x2; 00499 y1=p[ijk][ps*l+1]-y2; 00500 z1=p[ijk][ps*l+2]-z2; 00501 rs=con.r_scale(x1*x1+y1*y1+z1*z1,ijk,l); 00502 if(!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false; 00503 l++; 00504 } while (l<co[ijk]); 00505 } else { 00506 do { 00507 x1=p[ijk][ps*l]-x2; 00508 y1=p[ijk][ps*l+1]-y2; 00509 z1=p[ijk][ps*l+2]-z2; 00510 rs=x1*x1+y1*y1+z1*z1; 00511 if(con.r_scale_check(rs,mrs,ijk,l)&&!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false; 00512 l++; 00513 } while (l<co[ijk]); 00514 } 00515 } 00516 00517 // If there might not be enough memory on the list for these 00518 // additions, then add more 00519 if(qu_e>qu_l-18) add_list_memory(qu_s,qu_e); 00520 00521 // Test the parts of the worklist element which tell us what 00522 // neighbors of this block are not on the worklist. Store them 00523 // on the block list, and mark the mask. 00524 scan_bits_mask_add(q,mijk,ei,ej,ek,qu_e); 00525 } 00526 00527 // Do a check to see if we've reached the radius cutoff 00528 if(con.r_ctest(radp[g],mrs)) return true; 00529 00530 // We were unable to completely compute the cell based on the blocks in 00531 // the worklist, so now we have to go block by block, reading in items 00532 // off the list 00533 while(qu_s!=qu_e) { 00534 00535 // If we reached the end of the list memory loop back to the 00536 // start 00537 if(qu_s==qu_l) qu_s=qu; 00538 00539 // Read in a block off the list, and compute the upper and lower 00540 // coordinates in each of the three dimensions 00541 ei=*(qu_s++);ej=*(qu_s++);ek=*(qu_s++); 00542 xlo=(ei-i)*boxx-fx;xhi=xlo+boxx; 00543 ylo=(ej-j)*boxy-fy;yhi=ylo+boxy; 00544 zlo=(ek-k)*boxz-fz;zhi=zlo+boxz; 00545 00546 // Carry out plane tests to see if any particle in this block 00547 // could possibly intersect the cell 00548 if(ei>i) { 00549 if(ej>j) { 00550 if(ek>k) {if(corner_test(c,xlo,ylo,zlo,xhi,yhi,zhi)) continue;} 00551 else if(ek<k) {if(corner_test(c,xlo,ylo,zhi,xhi,yhi,zlo)) continue;} 00552 else {if(edge_z_test(c,xlo,ylo,zlo,xhi,yhi,zhi)) continue;} 00553 } else if(ej<j) { 00554 if(ek>k) {if(corner_test(c,xlo,yhi,zlo,xhi,ylo,zhi)) continue;} 00555 else if(ek<k) {if(corner_test(c,xlo,yhi,zhi,xhi,ylo,zlo)) continue;} 00556 else {if(edge_z_test(c,xlo,yhi,zlo,xhi,ylo,zhi)) continue;} 00557 } else { 00558 if(ek>k) {if(edge_y_test(c,xlo,ylo,zlo,xhi,yhi,zhi)) continue;} 00559 else if(ek<k) {if(edge_y_test(c,xlo,ylo,zhi,xhi,yhi,zlo)) continue;} 00560 else {if(face_x_test(c,xlo,ylo,zlo,yhi,zhi)) continue;} 00561 } 00562 } else if(ei<i) { 00563 if(ej>j) { 00564 if(ek>k) {if(corner_test(c,xhi,ylo,zlo,xlo,yhi,zhi)) continue;} 00565 else if(ek<k) {if(corner_test(c,xhi,ylo,zhi,xlo,yhi,zlo)) continue;} 00566 else {if(edge_z_test(c,xhi,ylo,zlo,xlo,yhi,zhi)) continue;} 00567 } else if(ej<j) { 00568 if(ek>k) {if(corner_test(c,xhi,yhi,zlo,xlo,ylo,zhi)) continue;} 00569 else if(ek<k) {if(corner_test(c,xhi,yhi,zhi,xlo,ylo,zlo)) continue;} 00570 else {if(edge_z_test(c,xhi,yhi,zlo,xlo,ylo,zhi)) continue;} 00571 } else { 00572 if(ek>k) {if(edge_y_test(c,xhi,ylo,zlo,xlo,yhi,zhi)) continue;} 00573 else if(ek<k) {if(edge_y_test(c,xhi,ylo,zhi,xlo,yhi,zlo)) continue;} 00574 else {if(face_x_test(c,xhi,ylo,zlo,yhi,zhi)) continue;} 00575 } 00576 } else { 00577 if(ej>j) { 00578 if(ek>k) {if(edge_x_test(c,xlo,ylo,zlo,xhi,yhi,zhi)) continue;} 00579 else if(ek<k) {if(edge_x_test(c,xlo,ylo,zhi,xhi,yhi,zlo)) continue;} 00580 else {if(face_y_test(c,xlo,ylo,zlo,xhi,zhi)) continue;} 00581 } else if(ej<j) { 00582 if(ek>k) {if(edge_x_test(c,xlo,yhi,zlo,xhi,ylo,zhi)) continue;} 00583 else if(ek<k) {if(edge_x_test(c,xlo,yhi,zhi,xhi,ylo,zlo)) continue;} 00584 else {if(face_y_test(c,xlo,yhi,zlo,xhi,zhi)) continue;} 00585 } else { 00586 if(ek>k) {if(face_z_test(c,xlo,ylo,zlo,xhi,yhi)) continue;} 00587 else if(ek<k) {if(face_z_test(c,xlo,ylo,zhi,xhi,yhi)) continue;} 00588 else voro_fatal_error("Compute cell routine revisiting central block, which should never\nhappen.",VOROPP_INTERNAL_ERROR); 00589 } 00590 } 00591 00592 // Now compute the region that we are going to test over, and 00593 // set a displacement vector for the periodic cases 00594 ijk=con.region_index(ci,cj,ck,ei,ej,ek,qx,qy,qz,disp); 00595 00596 // Loop over all the elements in the block to test for cuts. It 00597 // would be possible to exclude some of these cases by testing 00598 // against mrs, but this will probably not save time. 00599 if(co[ijk]>0) { 00600 l=0;x2=x-qx;y2=y-qy;z2=z-qz; 00601 do { 00602 x1=p[ijk][ps*l]-x2; 00603 y1=p[ijk][ps*l+1]-y2; 00604 z1=p[ijk][ps*l+2]-z2; 00605 rs=con.r_scale(x1*x1+y1*y1+z1*z1,ijk,l); 00606 if(!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false; 00607 l++; 00608 } while (l<co[ijk]); 00609 } 00610 00611 // If there's not much memory on the block list then add more 00612 if((qu_s<=qu_e?(qu_l-qu_e)+(qu_s-qu):qu_s-qu_e)<18) add_list_memory(qu_s,qu_e); 00613 00614 // Test the neighbors of the current block, and add them to the 00615 // block list if they haven't already been tested 00616 add_to_mask(ei,ej,ek,qu_e); 00617 } 00618 00619 return true; 00620 } 00621 00622 /** This function checks to see whether a particular block can possibly have 00623 * any intersection with a Voronoi cell, for the case when the closest point 00624 * from the cell center to the block is at a corner. 00625 * \param[in,out] c a reference to a Voronoi cell. 00626 * \param[in] (xl,yl,zl) the relative coordinates of the corner of the block 00627 * closest to the cell center. 00628 * \param[in] (xh,yh,zh) the relative coordinates of the corner of the block 00629 * furthest away from the cell center. 00630 * \return False if the block may intersect, true if does not. */ 00631 template<class c_class> 00632 template<class v_cell> 00633 bool voro_compute<c_class>::corner_test(v_cell &c,double xl,double yl,double zl,double xh,double yh,double zh) { 00634 con.r_prime(xl*xl+yl*yl+zl*zl); 00635 if(c.plane_intersects_guess(xh,yl,zl,con.r_cutoff(xl*xh+yl*yl+zl*zl))) return false; 00636 if(c.plane_intersects(xh,yh,zl,con.r_cutoff(xl*xh+yl*yh+zl*zl))) return false; 00637 if(c.plane_intersects(xl,yh,zl,con.r_cutoff(xl*xl+yl*yh+zl*zl))) return false; 00638 if(c.plane_intersects(xl,yh,zh,con.r_cutoff(xl*xl+yl*yh+zl*zh))) return false; 00639 if(c.plane_intersects(xl,yl,zh,con.r_cutoff(xl*xl+yl*yl+zl*zh))) return false; 00640 if(c.plane_intersects(xh,yl,zh,con.r_cutoff(xl*xh+yl*yl+zl*zh))) return false; 00641 return true; 00642 } 00643 00644 /** This function checks to see whether a particular block can possibly have 00645 * any intersection with a Voronoi cell, for the case when the closest point 00646 * from the cell center to the block is on an edge which points along the x 00647 * direction. 00648 * \param[in,out] c a reference to a Voronoi cell. 00649 * \param[in] (x0,x1) the minimum and maximum relative x coordinates of the 00650 * block. 00651 * \param[in] (yl,zl) the relative y and z coordinates of the corner of the 00652 * block closest to the cell center. 00653 * \param[in] (yh,zh) the relative y and z coordinates of the corner of the 00654 * block furthest away from the cell center. 00655 * \return False if the block may intersect, true if does not. */ 00656 template<class c_class> 00657 template<class v_cell> 00658 inline bool voro_compute<c_class>::edge_x_test(v_cell &c,double x0,double yl,double zl,double x1,double yh,double zh) { 00659 con.r_prime(yl*yl+zl*zl); 00660 if(c.plane_intersects_guess(x0,yl,zh,con.r_cutoff(yl*yl+zl*zh))) return false; 00661 if(c.plane_intersects(x1,yl,zh,con.r_cutoff(yl*yl+zl*zh))) return false; 00662 if(c.plane_intersects(x1,yl,zl,con.r_cutoff(yl*yl+zl*zl))) return false; 00663 if(c.plane_intersects(x0,yl,zl,con.r_cutoff(yl*yl+zl*zl))) return false; 00664 if(c.plane_intersects(x0,yh,zl,con.r_cutoff(yl*yh+zl*zl))) return false; 00665 if(c.plane_intersects(x1,yh,zl,con.r_cutoff(yl*yh+zl*zl))) return false; 00666 return true; 00667 } 00668 00669 /** This function checks to see whether a particular block can possibly have 00670 * any intersection with a Voronoi cell, for the case when the closest point 00671 * from the cell center to the block is on an edge which points along the y 00672 * direction. 00673 * \param[in,out] c a reference to a Voronoi cell. 00674 * \param[in] (y0,y1) the minimum and maximum relative y coordinates of the 00675 * block. 00676 * \param[in] (xl,zl) the relative x and z coordinates of the corner of the 00677 * block closest to the cell center. 00678 * \param[in] (xh,zh) the relative x and z coordinates of the corner of the 00679 * block furthest away from the cell center. 00680 * \return False if the block may intersect, true if does not. */ 00681 template<class c_class> 00682 template<class v_cell> 00683 inline bool voro_compute<c_class>::edge_y_test(v_cell &c,double xl,double y0,double zl,double xh,double y1,double zh) { 00684 con.r_prime(xl*xl+zl*zl); 00685 if(c.plane_intersects_guess(xl,y0,zh,con.r_cutoff(xl*xl+zl*zh))) return false; 00686 if(c.plane_intersects(xl,y1,zh,con.r_cutoff(xl*xl+zl*zh))) return false; 00687 if(c.plane_intersects(xl,y1,zl,con.r_cutoff(xl*xl+zl*zl))) return false; 00688 if(c.plane_intersects(xl,y0,zl,con.r_cutoff(xl*xl+zl*zl))) return false; 00689 if(c.plane_intersects(xh,y0,zl,con.r_cutoff(xl*xh+zl*zl))) return false; 00690 if(c.plane_intersects(xh,y1,zl,con.r_cutoff(xl*xh+zl*zl))) return false; 00691 return true; 00692 } 00693 00694 /** This function checks to see whether a particular block can possibly have 00695 * any intersection with a Voronoi cell, for the case when the closest point 00696 * from the cell center to the block is on an edge which points along the z 00697 * direction. 00698 * \param[in,out] c a reference to a Voronoi cell. 00699 * \param[in] (z0,z1) the minimum and maximum relative z coordinates of the block. 00700 * \param[in] (xl,yl) the relative x and y coordinates of the corner of the 00701 * block closest to the cell center. 00702 * \param[in] (xh,yh) the relative x and y coordinates of the corner of the 00703 * block furthest away from the cell center. 00704 * \return False if the block may intersect, true if does not. */ 00705 template<class c_class> 00706 template<class v_cell> 00707 inline bool voro_compute<c_class>::edge_z_test(v_cell &c,double xl,double yl,double z0,double xh,double yh,double z1) { 00708 con.r_prime(xl*xl+yl*yl); 00709 if(c.plane_intersects_guess(xl,yh,z0,con.r_cutoff(xl*xl+yl*yh))) return false; 00710 if(c.plane_intersects(xl,yh,z1,con.r_cutoff(xl*xl+yl*yh))) return false; 00711 if(c.plane_intersects(xl,yl,z1,con.r_cutoff(xl*xl+yl*yl))) return false; 00712 if(c.plane_intersects(xl,yl,z0,con.r_cutoff(xl*xl+yl*yl))) return false; 00713 if(c.plane_intersects(xh,yl,z0,con.r_cutoff(xl*xh+yl*yl))) return false; 00714 if(c.plane_intersects(xh,yl,z1,con.r_cutoff(xl*xh+yl*yl))) return false; 00715 return true; 00716 } 00717 00718 /** This function checks to see whether a particular block can possibly have 00719 * any intersection with a Voronoi cell, for the case when the closest point 00720 * from the cell center to the block is on a face aligned with the x direction. 00721 * \param[in,out] c a reference to a Voronoi cell. 00722 * \param[in] xl the minimum distance from the cell center to the face. 00723 * \param[in] (y0,y1) the minimum and maximum relative y coordinates of the 00724 * block. 00725 * \param[in] (z0,z1) the minimum and maximum relative z coordinates of the 00726 * block. 00727 * \return False if the block may intersect, true if does not. */ 00728 template<class c_class> 00729 template<class v_cell> 00730 inline bool voro_compute<c_class>::face_x_test(v_cell &c,double xl,double y0,double z0,double y1,double z1) { 00731 con.r_prime(xl*xl); 00732 if(c.plane_intersects_guess(xl,y0,z0,con.r_cutoff(xl*xl))) return false; 00733 if(c.plane_intersects(xl,y0,z1,con.r_cutoff(xl*xl))) return false; 00734 if(c.plane_intersects(xl,y1,z1,con.r_cutoff(xl*xl))) return false; 00735 if(c.plane_intersects(xl,y1,z0,con.r_cutoff(xl*xl))) return false; 00736 return true; 00737 } 00738 00739 /** This function checks to see whether a particular block can possibly have 00740 * any intersection with a Voronoi cell, for the case when the closest point 00741 * from the cell center to the block is on a face aligned with the y direction. 00742 * \param[in,out] c a reference to a Voronoi cell. 00743 * \param[in] yl the minimum distance from the cell center to the face. 00744 * \param[in] (x0,x1) the minimum and maximum relative x coordinates of the 00745 * block. 00746 * \param[in] (z0,z1) the minimum and maximum relative z coordinates of the 00747 * block. 00748 * \return False if the block may intersect, true if does not. */ 00749 template<class c_class> 00750 template<class v_cell> 00751 inline bool voro_compute<c_class>::face_y_test(v_cell &c,double x0,double yl,double z0,double x1,double z1) { 00752 con.r_prime(yl*yl); 00753 if(c.plane_intersects_guess(x0,yl,z0,con.r_cutoff(yl*yl))) return false; 00754 if(c.plane_intersects(x0,yl,z1,con.r_cutoff(yl*yl))) return false; 00755 if(c.plane_intersects(x1,yl,z1,con.r_cutoff(yl*yl))) return false; 00756 if(c.plane_intersects(x1,yl,z0,con.r_cutoff(yl*yl))) return false; 00757 return true; 00758 } 00759 00760 /** This function checks to see whether a particular block can possibly have 00761 * any intersection with a Voronoi cell, for the case when the closest point 00762 * from the cell center to the block is on a face aligned with the z direction. 00763 * \param[in,out] c a reference to a Voronoi cell. 00764 * \param[in] zl the minimum distance from the cell center to the face. 00765 * \param[in] (x0,x1) the minimum and maximum relative x coordinates of the 00766 * block. 00767 * \param[in] (y0,y1) the minimum and maximum relative y coordinates of the 00768 * block. 00769 * \return False if the block may intersect, true if does not. */ 00770 template<class c_class> 00771 template<class v_cell> 00772 inline bool voro_compute<c_class>::face_z_test(v_cell &c,double x0,double y0,double zl,double x1,double y1) { 00773 con.r_prime(zl*zl); 00774 if(c.plane_intersects_guess(x0,y0,zl,con.r_cutoff(zl*zl))) return false; 00775 if(c.plane_intersects(x0,y1,zl,con.r_cutoff(zl*zl))) return false; 00776 if(c.plane_intersects(x1,y1,zl,con.r_cutoff(zl*zl))) return false; 00777 if(c.plane_intersects(x1,y0,zl,con.r_cutoff(zl*zl))) return false; 00778 return true; 00779 } 00780 00781 00782 /** This routine checks to see whether a point is within a particular distance 00783 * of a nearby region. If the point is within the distance of the region, then 00784 * the routine returns true, and computes the maximum distance from the point 00785 * to the region. Otherwise, the routine returns false. 00786 * \param[in] (di,dj,dk) the position of the nearby region to be tested, 00787 * relative to the region that the point is in. 00788 * \param[in] (fx,fy,fz) the displacement of the point within its region. 00789 * \param[in] (gxs,gys,gzs) the maximum squared distances from the point to the 00790 * sides of its region. 00791 * \param[out] crs a reference in which to return the maximum distance to the 00792 * region (only computed if the routine returns false). 00793 * \param[in] mrs the distance to be tested. 00794 * \return True if the region is further away than mrs, false if the region in 00795 * within mrs. */ 00796 template<class c_class> 00797 bool voro_compute<c_class>::compute_min_max_radius(int di,int dj,int dk,double fx,double fy,double fz,double gxs,double gys,double gzs,double &crs,double mrs) { 00798 double xlo,ylo,zlo; 00799 if(di>0) { 00800 xlo=di*boxx-fx; 00801 crs=xlo*xlo; 00802 if(dj>0) { 00803 ylo=dj*boxy-fy; 00804 crs+=ylo*ylo; 00805 if(dk>0) { 00806 zlo=dk*boxz-fz; 00807 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true; 00808 crs+=bxsq+2*(boxx*xlo+boxy*ylo+boxz*zlo); 00809 } else if(dk<0) { 00810 zlo=(dk+1)*boxz-fz; 00811 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true; 00812 crs+=bxsq+2*(boxx*xlo+boxy*ylo-boxz*zlo); 00813 } else { 00814 if(con.r_ctest(crs,mrs)) return true; 00815 crs+=boxx*(2*xlo+boxx)+boxy*(2*ylo+boxy)+gzs; 00816 } 00817 } else if(dj<0) { 00818 ylo=(dj+1)*boxy-fy; 00819 crs+=ylo*ylo; 00820 if(dk>0) { 00821 zlo=dk*boxz-fz; 00822 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true; 00823 crs+=bxsq+2*(boxx*xlo-boxy*ylo+boxz*zlo); 00824 } else if(dk<0) { 00825 zlo=(dk+1)*boxz-fz; 00826 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true; 00827 crs+=bxsq+2*(boxx*xlo-boxy*ylo-boxz*zlo); 00828 } else { 00829 if(con.r_ctest(crs,mrs)) return true; 00830 crs+=boxx*(2*xlo+boxx)+boxy*(-2*ylo+boxy)+gzs; 00831 } 00832 } else { 00833 if(dk>0) { 00834 zlo=dk*boxz-fz; 00835 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true; 00836 crs+=boxz*(2*zlo+boxz); 00837 } else if(dk<0) { 00838 zlo=(dk+1)*boxz-fz; 00839 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true; 00840 crs+=boxz*(-2*zlo+boxz); 00841 } else { 00842 if(con.r_ctest(crs,mrs)) return true; 00843 crs+=gzs; 00844 } 00845 crs+=gys+boxx*(2*xlo+boxx); 00846 } 00847 } else if(di<0) { 00848 xlo=(di+1)*boxx-fx; 00849 crs=xlo*xlo; 00850 if(dj>0) { 00851 ylo=dj*boxy-fy; 00852 crs+=ylo*ylo; 00853 if(dk>0) { 00854 zlo=dk*boxz-fz; 00855 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true; 00856 crs+=bxsq+2*(-boxx*xlo+boxy*ylo+boxz*zlo); 00857 } else if(dk<0) { 00858 zlo=(dk+1)*boxz-fz; 00859 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true; 00860 crs+=bxsq+2*(-boxx*xlo+boxy*ylo-boxz*zlo); 00861 } else { 00862 if(con.r_ctest(crs,mrs)) return true; 00863 crs+=boxx*(-2*xlo+boxx)+boxy*(2*ylo+boxy)+gzs; 00864 } 00865 } else if(dj<0) { 00866 ylo=(dj+1)*boxy-fy; 00867 crs+=ylo*ylo; 00868 if(dk>0) { 00869 zlo=dk*boxz-fz; 00870 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true; 00871 crs+=bxsq+2*(-boxx*xlo-boxy*ylo+boxz*zlo); 00872 } else if(dk<0) { 00873 zlo=(dk+1)*boxz-fz; 00874 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true; 00875 crs+=bxsq+2*(-boxx*xlo-boxy*ylo-boxz*zlo); 00876 } else { 00877 if(con.r_ctest(crs,mrs)) return true; 00878 crs+=boxx*(-2*xlo+boxx)+boxy*(-2*ylo+boxy)+gzs; 00879 } 00880 } else { 00881 if(dk>0) { 00882 zlo=dk*boxz-fz; 00883 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true; 00884 crs+=boxz*(2*zlo+boxz); 00885 } else if(dk<0) { 00886 zlo=(dk+1)*boxz-fz; 00887 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true; 00888 crs+=boxz*(-2*zlo+boxz); 00889 } else { 00890 if(con.r_ctest(crs,mrs)) return true; 00891 crs+=gzs; 00892 } 00893 crs+=gys+boxx*(-2*xlo+boxx); 00894 } 00895 } else { 00896 if(dj>0) { 00897 ylo=dj*boxy-fy; 00898 crs=ylo*ylo; 00899 if(dk>0) { 00900 zlo=dk*boxz-fz; 00901 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true; 00902 crs+=boxz*(2*zlo+boxz); 00903 } else if(dk<0) { 00904 zlo=(dk+1)*boxz-fz; 00905 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true; 00906 crs+=boxz*(-2*zlo+boxz); 00907 } else { 00908 if(con.r_ctest(crs,mrs)) return true; 00909 crs+=gzs; 00910 } 00911 crs+=boxy*(2*ylo+boxy); 00912 } else if(dj<0) { 00913 ylo=(dj+1)*boxy-fy; 00914 crs=ylo*ylo; 00915 if(dk>0) { 00916 zlo=dk*boxz-fz; 00917 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true; 00918 crs+=boxz*(2*zlo+boxz); 00919 } else if(dk<0) { 00920 zlo=(dk+1)*boxz-fz; 00921 crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true; 00922 crs+=boxz*(-2*zlo+boxz); 00923 } else { 00924 if(con.r_ctest(crs,mrs)) return true; 00925 crs+=gzs; 00926 } 00927 crs+=boxy*(-2*ylo+boxy); 00928 } else { 00929 if(dk>0) { 00930 zlo=dk*boxz-fz;crs=zlo*zlo;if(con.r_ctest(crs,mrs)) return true; 00931 crs+=boxz*(2*zlo+boxz); 00932 } else if(dk<0) { 00933 zlo=(dk+1)*boxz-fz;crs=zlo*zlo;if(con.r_ctest(crs,mrs)) return true; 00934 crs+=boxz*(-2*zlo+boxz); 00935 } else { 00936 crs=0; 00937 voro_fatal_error("Min/max radius function called for central block, which should never\nhappen.",VOROPP_INTERNAL_ERROR); 00938 } 00939 crs+=gys; 00940 } 00941 crs+=gxs; 00942 } 00943 return false; 00944 } 00945 00946 template<class c_class> 00947 bool voro_compute<c_class>::compute_min_radius(int di,int dj,int dk,double fx,double fy,double fz,double mrs) { 00948 double t,crs; 00949 00950 if(di>0) {t=di*boxx-fx;crs=t*t;} 00951 else if(di<0) {t=(di+1)*boxx-fx;crs=t*t;} 00952 else crs=0; 00953 00954 if(dj>0) {t=dj*boxy-fy;crs+=t*t;} 00955 else if(dj<0) {t=(dj+1)*boxy-fy;crs+=t*t;} 00956 00957 if(dk>0) {t=dk*boxz-fz;crs+=t*t;} 00958 else if(dk<0) {t=(dk+1)*boxz-fz;crs+=t*t;} 00959 00960 return crs>con.r_max_add(mrs); 00961 } 00962 00963 /** Adds memory to the queue. 00964 * \param[in,out] qu_s a reference to the queue start pointer. 00965 * \param[in,out] qu_e a reference to the queue end pointer. */ 00966 template<class c_class> 00967 inline void voro_compute<c_class>::add_list_memory(int*& qu_s,int*& qu_e) { 00968 qu_size<<=1; 00969 int *qu_n=new int[qu_size],*qu_c=qu_n; 00970 #if VOROPP_VERBOSE >=2 00971 fprintf(stderr,"List memory scaled up to %d\n",qu_size); 00972 #endif 00973 if(qu_s<=qu_e) { 00974 while(qu_s<qu_e) *(qu_c++)=*(qu_s++); 00975 } else { 00976 while(qu_s<qu_l) *(qu_c++)=*(qu_s++);qu_s=qu; 00977 while(qu_s<qu_e) *(qu_c++)=*(qu_s++); 00978 } 00979 delete [] qu; 00980 qu_s=qu=qu_n; 00981 qu_l=qu+qu_size; 00982 qu_e=qu_c; 00983 } 00984 00985 // Explicit template instantiation 00986 template voro_compute<container>::voro_compute(container&,int,int,int); 00987 template voro_compute<container_poly>::voro_compute(container_poly&,int,int,int); 00988 template bool voro_compute<container>::compute_cell(voronoicell&,int,int,int,int,int); 00989 template bool voro_compute<container>::compute_cell(voronoicell_neighbor&,int,int,int,int,int); 00990 template void voro_compute<container>::find_voronoi_cell(double,double,double,int,int,int,int,particle_record&,double&); 00991 template bool voro_compute<container_poly>::compute_cell(voronoicell&,int,int,int,int,int); 00992 template bool voro_compute<container_poly>::compute_cell(voronoicell_neighbor&,int,int,int,int,int); 00993 template void voro_compute<container_poly>::find_voronoi_cell(double,double,double,int,int,int,int,particle_record&,double&); 00994 00995 // Explicit template instantiation 00996 template voro_compute<container_periodic>::voro_compute(container_periodic&,int,int,int); 00997 template voro_compute<container_periodic_poly>::voro_compute(container_periodic_poly&,int,int,int); 00998 template bool voro_compute<container_periodic>::compute_cell(voronoicell&,int,int,int,int,int); 00999 template bool voro_compute<container_periodic>::compute_cell(voronoicell_neighbor&,int,int,int,int,int); 01000 template void voro_compute<container_periodic>::find_voronoi_cell(double,double,double,int,int,int,int,particle_record&,double&); 01001 template bool voro_compute<container_periodic_poly>::compute_cell(voronoicell&,int,int,int,int,int); 01002 template bool voro_compute<container_periodic_poly>::compute_cell(voronoicell_neighbor&,int,int,int,int,int); 01003 template void voro_compute<container_periodic_poly>::find_voronoi_cell(double,double,double,int,int,int,int,particle_record&,double&); 01004 01005 }