
Chapter 1
Energetically optimal flapping wing motions via adjoint-based
optimization and high-order discretizations

Matthew J. Zahr and Per-Olof Persson

Abstract
A globally high-order numerical discretization of time-dependent conservation laws on deforming domains, and

the corresponding fully discrete adjoint method, is reviewed and applied to determine energetically optimal flapping
wing motions subject to aerodynamic constraints using a reduced space PDE-constrained optimization framework. The
conservation law on a deforming domain is transformed to one on a fixed domain and discretized in space using a high-
order discontinuous Galerkin method. An efficient, high-order temporal discretization is achieved using diagonally
implicit Runge-Kutta schemes. Quantities of interest, such as the total energy required to complete a flapping cycle
and the integrated forces produced on the wing, are discretized in a solver-consistent way, that is, via the same spatio-
temporal discretization used for the conservation law. The fully discrete adjoint method is used to compute discretely
consistent gradients of the quantities of interest and passed to a black-box, gradient-based nonlinear optimization
solver. This framework successfully determines an energetically optimal flapping trajectory such that the net thrust of
the wing is zero to within 9 digits after only 12 optimization iterations.

1.1 Introduction

Flapping flight has been a subject of intense interest and research over the past several decades due to its relevance in
designing Micro Aerial Vehicles (MAVs) – unmanned aerial vehicles measuring no more than 15 cm in any dimension,
envisioned in a number of civilian and military applications, including surveillance and reconnaissance [32, 43] –
and in the understanding of biological systems. The basic goal of any system, whether biological or manmade, that
relies on flapping propulsion is to adjust the kinematics of the flapping wing, and possibly its shape, to minimize
the energy required to complete a given mission. The problem of determining the flapping kinematics that lead to an
energetically optimal motion, while satisfying various mission constraints, leads to a nonlinearly constrained PDE-
constrained optimization problem
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minimize
UUU , µµµ

J(UUU , µµµ) :=
1
T

∫ T

0

∫
ΓΓΓ

j(UUU(xxx, t), µµµ, t)dSdt

subject to C(UUU , µµµ) :=
1
T

∫ T

0

∫
ΓΓΓ

c(UUU(xxx, t), µµµ, t)dSdt ≤ 0

∂UUU
∂ t

+∇ ·FFF(UUU , ∇UUU) = 0 in v(µµµ, t),

(1.1)

where UUU(xxx, t)∈RNUUU is the spatio-temporal solution of the conservation law, i.e., the last constraint in the optimization
problem, in the domain xxx ∈ v(µµµ, t), t ∈ (0, T ], µµµ ∈ RNµµµ is a vector of parameters controlling the kinematics of the
wing, T is the period of the flapping motion, j(UUU , µµµ, t) is the pointwise (in space and time) contribution to energy
added to the flow and J(UUU , µµµ) is the corresponding quantity integrated over space and time, i.e., the time-averaged
work done by the surface ΓΓΓ (µµµ, t) on the flow, and ccc(UUU , µµµ, t) and C(UUU , µµµ) are pointwise and integrated, respectively,
mission-specific constraints. In the context of MAV design, the constraints will likely correspond to bounds on the
thrust, lift, and stability of the vehicle [49, 19].

Due to the unsteady governing equations, most attempts to solve the PDE-constrained optimization problem in
(1.1) in the context of flapping flight utilize a reduced space approach, also known as nested analysis and design,
whereby the state variable UUU is treated as an implicit function of the parameters µµµ , i.e., UUU(µµµ) is obtained by solving
the (discretized) conservation law. This removes the state variable from the set of optimization variables and eliminates
the PDE constraint to reduce the optimization problem in (1.1) to

minimize
µµµ

J (µµµ) := J(UUU(µµµ), µµµ)

subject to CCC(µµµ) := C(UUU(µµµ), µµµ)≤ 0.
(1.2)

Due to the relatively large expense of high-fidelity methods that model the flow using the Navier-Stokes equations, a
number of low- and multi-fidelity methods have been proposed to approximately solve the optimization problem in
(1.2) or gain insight into the physics of flapping. Among these low-fidelity methods include: potential flow methods
that assume the flow is irrotational, inviscid, and incompressible such as wake only and panel methods [56], lifting
line methods, and unsteady vortex-lattice methods [46, 20] that assume the flow is inviscid and incompressible and
use global vorticity circulation balance and the Biot-Savart law to construct a 3D velocity field.

While low- and multi-fidelity methods have been popular in the study of flapping flight [24, 7, 46, 9, 20, 19, 56], the
need for high-fidelity computational tools has been recognized [43] due to the complex flow features that occur, and are
critical for performance, in low Reynolds number flapping. In particular, these flows are highly vortical and subject to
separation [22, 44, 2, 6] that will violate many of the critical assumptions of low-fidelity methods [56]. The generation
and shedding of a leading-edge vortex, possibly through rapid changes in angle of attack (dynamic stall), have been
shown to be important to efficient lift generation [7, 44, 42, 6] and a computational method should possess minimal
dissipation to ensure these critical structures are preserved. Furthermore, a realistic study of flapping at scales relevant
to the design of MAVs should be performed in three-dimensions due to the importance of three-dimensional effects
such as stabilization of the leading-edge vortex [13, 50, 5, 27, 7, 6] and to include out-of-plane flapping kinematics
that are relevant to thrust production and control [4].

In this work, we extend the globally high-order method and corresponding fully discrete adjoint method presented in
[63] for the discretization and optimization of general nonlinear, unsteady conservation laws to address the challenges
of three-dimensional flapping, such as the parametrization of three-dimensional flapping and robust deformation of
the three-dimensional geometry. The conservation law on a parametrized, deforming domain is transformed to a fixed
domain using an Arbitrary Lagrangian-Eulerian (ALE) formulation and the resulting equations are discretized in space
and time using a discontinuous Galerkin method and diagonally implicit Runge-Kutta scheme, respectively. Relevant
details are provided on using the ALE formulation to move a curved mesh, whereby the reference mesh is taken as
straight-sided and the ALE mapping encapsulates the curving as well as the domain deformation. In contrast to most
computational approaches that only integrate Quantities of Interest (QoIs), that will eventually define the objective
and constraints of the flapping optimization problem, to second-order using the trapezoidal rule, this work discretizes
the QoI to exactly the same order as the governing equation using the solver-consistent approach of [63]. High-order
methods are an emphasis of this work since they are well-suited to model the highly vortical flow around a flapping
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wing due to the small amount of numerical dissipation they introduce [35]. An alternative to high-order methods that
has been proposed and demonstrated in the context of flapping to limit numerical dissipation associated with low-order
methods is a kinetic energy preserving finite volume scheme [2, 11]. However, we also commit to high-order methods
because they have been shown to require fewer spatial degrees of freedom [54, 63] and time steps [30, 61] compared
to low-order counterparts.

Given the large computational cost of objective and constraint queries that require high-order Computational
Fluid Dynamics (CFD) simulations, and the high-dimensional design space required to sufficiently parametrize three-
dimensional flapping, which may include parameters for the flapping kinematics, fixed or actively morphed [20, 63]
shape, flexibility of the wing [43, 22, 65, 48, 42, 47], gradient-based optimization methods are used to solve the opti-
mization problem in (1.2) due to their fast convergence properties. Also, since the optimization problems considered
in this work involve more parameters than constraints, the gradients of the optimization functionals are computed via
the adjoint method since the cost scales very weakly with the number of parameters. Since a black-box optimizer is
used to solve the constrained optimization problem in (1.2) with the underlying high-order discretization, the fully
discrete variant of the adjoint method is used to ensure the computed gradients are consistent with the functionals to
which they correspond.

The proposed numerical method for simulation and optimization of conservation laws on parametrized, deforming
domains is used to determine energetically optimal flapping subject to a thrust constraint. The chosen optimization
formulation is similar to that studied in [19], which differs from the unconstrained thrust or propulsive efficiency max-
imization problem that is usually chosen to study optimal flapping [40, 49, 55]. The optimization problem considered
in this work is closer to the optimization problem instinctively solved in-flight by biological systems [43] and relevant
in the design of MAVs.

The remainder of this document is organized as follows. Section 1.2 introduces the governing conservation law
considered in this work, the isentropic Navier-Stokes equations, and an Arbitrary Lagrangian-Eulerian method that
transforms it from a deforming, parametrized domain to a fixed one. Section 1.3 introduces the high-order discretiza-
tion of the conservation law and its quantities of interest, with special attention paid to high-order representation of
the geometry in the ALE framework and Section 1.4 introduces the fully discrete adjoint method that was derived
in [63]. Finally, Section 1.5 applies this high-order simulation and optimization framework to energetically optimal,
three-dimensional flapping flight under lift and thrust constraints and Section 1.6 offers conclusions.

1.2 Governing equations

This section presents a formulation of general conservation laws on a parametrized, deforming domain using an Arbi-
trary Lagrangian-Eulerian (ALE) formulation, which summarizes the work in [38]. Given that this work is concerned
with energetically optimal flapping flight, the compressible Navier-Stokes equations are taken as the governing equa-
tions; however, the primal and adjoint numerical scheme is presented for the case of a general, nonlinear, vector-valued
conservation law.

1.2.1 Compressible Navier-Stokes equations

The compressible Navier-Stokes equations are written as:

∂ρ

∂ t
+

∂

∂xi
(ρui) = 0, (1.3)

∂

∂ t
(ρui)+

∂

∂xi
(ρuiu j + p) =

∂τi j

∂x j
for i = 1,2,3, (1.4)

∂

∂ t
(ρE)+

∂

∂x j
(u j(ρE + p)) =−

∂q j

∂x j
+

∂

∂x j
(uiτi j), (1.5)
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Fig. 1.1: Time-dependent mapping between reference and physical domains.

where ρ is the fluid density, u1,u2,u3 are the velocity components, and E is the total energy. The viscous stress tensor
and heat flux are given by

τi j = µ

(
∂ui

∂x j
+

∂u j

∂xi
− 2

3
∂uk

∂xk
δi j

)
and q j =−

µ

Pr
∂

∂x j

(
E +

p
ρ
− 1

2
ukuk

)
. (1.6)

Here, µ is the viscosity coefficient and Pr = 0.72 is the Prandtl number which we assume to be constant. For an ideal
gas, the pressure p has the form

p = (γ−1)ρ
(

E− 1
2

ukuk

)
, (1.7)

where γ is the adiabatic gas constant. In this work, the entropy is assumed constant, that is to say the flow is adiabatic
and reversible. This makes the energy equation redundant and effectively reduces the square system of PDEs of size
nsd +2 to one of size nsd +1, where nsd is the number of spatial dimensions. It can be shown, under suitable assump-
tions, that the solution of the isentropic approximation of the Navier-Stokes equations converges to the solution of the
incompressible Navier-Stokes equations as the Mach number goes to 0 [29, 12, 17].

1.2.2 Arbitrary Lagrangian-Eulerian formulation of conservation laws

Consider a general system of conservation laws, defined on a parametrized, deforming domain, v(µµµ, t),

∂UUU
∂ t

+∇ ·FFF(UUU , ∇UUU) = 0 in v(µµµ, t) (1.8)

where the physical flux is decomposed into an inviscid and a viscous part FFF(UUU , ∇UUU) = FFF inv(UUU) +FFFvis(UUU , ∇UUU),
UUU(xxx,µµµ, t) is the solution of the system of conservation laws, t ∈ (0,T ] represents time, and µµµ ∈ RNµµµ is a vector of
parameters. This work will focus on the case where the domain is parametrized by µµµ .

The conservation law on the physical, deforming domain v(µµµ, t)⊂Rnsd is transformed into one on a fixed reference
domain V ⊂ Rnsd through the introduction of a time-dependent diffeomorphism between the physical and reference
domains: xxx(XXX ,µµµ, t) = G (XXX ,µµµ, t). In this setting, nsd is the number of spatial dimensions, XXX ∈ V is a point in the
reference domain and xxx(XXX ,µµµ, t) ∈ v(µµµ, t) is the corresponding point in the physical domain at time t and parameter
configuration µµµ . The transformed system of conservation laws takes the form

∂UUUXXX

∂ t

∣∣∣∣
XXX
+∇XXX ·FFFXXX (UUUXXX , ∇XXXUUUXXX ) = 0 in V (1.9)
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where ∇XXX denotes spatial derivatives with respect to the reference variables, XXX . The transformed state vector, UUUXXX , and
its corresponding spatial gradient with respect to the reference configuration take the form

UUUXXX = gUUU , ∇XXXUUUXXX = g−1UUUXXX
∂g
∂XXX

+g∇UUU ·GGG, (1.10)

where GGG = ∇XXXG , g = det(GGG), vvvGGG =
∂xxx
∂ t

=
∂G

∂ t
. The transformed fluxes are

FFFXXX (UUUXXX ,∇XXXUUUXXX ) = FFF inv
XXX (UUUXXX )+FFFvis

XXX (UUUXXX ,∇XXXUUUXXX ),

FFF inv
XXX (UUUXXX ) = gFFF inv(g−1UUUXXX )GGG−T −UUUXXX ⊗GGG−1vvvGGG,

FFFvis
XXX (UUUXXX ,∇XXXUUUXXX ) = gFFFvis

(
g−1UUUXXX ,g−1

[
∇XXXUUUXXX −g−1UUUXXX

∂g
∂XXX

]
GGG−1

)
GGG−T .

(1.11)

For details regarding the derivation of the transformed equations, the reader is referred to [38].
When integrated using inexact numerical schemes, this ALE formulation does not satisfy the Geometric Conserva-

tion Law (GCL) [15, 38]. This is overcome by introduction of an auxiliary variable ḡ, defined as the solution of

∂ ḡ
∂ t
−∇XXX ·

(
gGGG−1vvvGGG

)
= 0. (1.12)

The auxiliary variable, ḡ is used to modify the transformed conservation law according to

∂UUU X̄XX
∂ t

∣∣∣∣
XXX
+∇XXX ·FFF X̄XX (UUU X̄XX , ∇XXXUUU X̄XX ) = 0 (1.13)

where the GCL-transformed state variables are

UUU X̄XX = ḡUUU , ∇XXXUUU X̄XX = ḡ−1UUU X̄XX
∂ ḡ
∂XXX

+ ḡ∇UUU ·GGG (1.14)

and the corresponding fluxes

FFF X̄XX (UUU X̄XX ,∇XXXUUU X̄XX ) = FFF inv
X̄XX (UUU X̄XX )+FFFvis

X̄XX (UUU X̄XX ,∇XXXUUU X̄XX ),

FFF inv
X̄XX (UUU X̄XX ) = gFFF inv(ḡ−1UUU X̄XX )GGG

−T −UUU X̄XX ⊗GGG−1vvvGGG,

FFFvis
X̄XX (UUU X̄XX ,∇XXXUUU X̄XX ) = gFFFvis

(
ḡ−1UUU X̄XX , ḡ

−1
[

∇XXXUUU X̄XX − ḡ−1UUU X̄XX
∂ ḡ
∂XXX

]
GGG−1

)
GGG−T .

(1.15)

It was shown in [38] that the transformed equations (1.13) satisfy the GCL.

1.2.3 Uniform flow initial condition

A number of initial conditions can be used to initialize an unsteady CFD simulation, including uniform flow [23,
21], the steady state solution [28, 26, 63], and the state that leads to periodic flow [64]. In this work, the unsteady
simulation is initialized from uniform flow for the sake of simplicity. Non-physical transients that result from using an
initial condition that is incompatible with the boundary conditions will be dissipated by simulating multiple periods
of the flapping motion and only integrating the quantity of interest over the final period. The ALE-transformed state
corresponding to uniform flow takes the form

UUU X̄XX (XXX , µµµ, 0) = g0(XXX , µµµ)ŪUU(XXX)

ḡ(XXX , µµµ, 0) = g0(XXX , µµµ)
(1.16)
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where ŪUU(XXX) defines the desired uniform initial condition on the reference domain and g0(XXX , µµµ) := g(XXX , µµµ, 0) is the
determinant of the deformation gradient at time t = 0.

1.3 High-order numerical discretization

This section discusses a globally high-order numerical discretization of the governing equations presented in the
previous section. It summarizes the work in [1, 3, 63].

1.3.1 Spatial discretization: discontinuous Galerkin method

To proceed, the second-order system of partial differential equations in (1.12)-(1.13) is converted to first-order form

∂ ḡ
∂ t

∣∣∣∣
XXX
+∇XXX ·

(
gGGG−1vvvGGG

)
= 0

∂UUU X̄XX
∂ t

∣∣∣∣
XXX
+∇XXX ·FFF X̄XX (UUU X̄XX , QQQX̄XX ) = 0

QQQX̄XX −∇XXXUUU X̄XX = 0,

(1.17)

where QQQX̄XX is introduced as an auxiliary variable to represent the spatial gradient of the UUU X̄XX . Equation (1.17) is dis-
cretized using a standard nodal discontinuous Galerkin finite element method [10, 3], which, after local elimination of
the auxiliary variables QQQX̄XX , leads to the following system of ODEs

MMM
∂uuu
∂ t

= rrr(uuu, µµµ, t), (1.18)

where MMM is the block-diagonal, symmetric, fixed mass matrix (state- and parameter-independent), uuu is the vectorization
of
[
UUUT

X̄XX ḡ
]T at all nodes in the mesh, and rrr is the nonlinear function defining the DG discretization of the inviscid and

viscous fluxes. See [63] for an efficient treatment of ḡ that does not lead to an enlarged system of ODEs.
To achieve high-order accuracy, the geometry must be represented to high-order, which calls for a curved mesh.

Since a curved mesh is usually defined as a nonlinear mapping, e.g., based on nonlinear elasticity or some optimality
criteria, applied to an underlying linear or straight-sided mesh, two options exist for defining the ALE mapping. First,
the curved mesh can be taken as the reference domain and the ALE mapping must only account for the mapping
between the curved mesh and the physical domain. In this case, the ALE mapping takes the form

xxx(XXX , µµµ, t) = ϕϕϕ(XXX , µµµ, t) (1.19)

where XXX are coordinates in the domain defined by the curved mesh and ϕϕϕ maps the curved mesh into the physical
domain. Alternatively, the straight-sided mesh can be taken as the reference mesh and the ALE mapping constructed
as a composition of maps that takes the straight-sided mesh into the physical domain with curved boundaries to
represent the geometry to high-order. In this case, the ALE mapping takes the form

xxx(XXX , µµµ, t) = ϕϕϕ(φφφ(XXX), µµµ, t) (1.20)

where XXX are coordinates in the domain defined by the linear mesh, φφφ maps the linear mesh to the curved mesh, and ϕϕϕ

maps the curved mesh into the physical domain. Even though these options are mathematically equivalent, the latter
option is chosen in this work as it leads to a simpler implementation, particularly in the definition of derivative terms
required for the adjoint method, but also because all integrals are calculated on straight-sided elements.
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This section closes with a discussion of how the domain deformation terms that arise in the ALE formulation will
be defined at the semi-discrete level. If the mapping from the reference to physical domain is known analytically, all
domain deformation terms, i.e., xxx, ẋxx, GGG, g, can be computed exactly and used in (1.15). However, there are many cases
where this is not the case, e.g., the domain deformation is the result of a numerical procedure [14, 58, 39, 16]. An
alternative that closely aligns with finite element ideology is to interpolate the ALE mapping onto the finite element
shape functions and compute spatial gradients by differentiating the shape functions. In this setting, the action of the
mapping and its time derivative are computed on the nodal coordinates of the reference mesh, i.e.,

xxxe(XXX , µµµ, t) := xxx(XXX , µµµ, t)|XXX∈Ee
= ∑

i∈N (e)
Ni(XXX)xxxi(µµµ, t)

ẋxxe(XXX , µµµ, t) := ẋxx(XXX , µµµ, t)|XXX∈Ee
= ∑

i∈N (e)
Ni(XXX)ẋxxi(µµµ, t),

(1.21)

where Ee is element e in the reference mesh, N (e) are the nodes associated with element e, Ni(XXX) are the DG
shape functions on the reference mesh, and xxxe are the coordinates of the nodes of element e in the physical domain.
An implication of defining the ALE mapping with the DG shape function is the mapping is discontinuous between
elements, which does not present a problem for the DG method. The expression for the mapping in (1.21) implies that
the deformation gradient and its determinant can be easily computed as

GGGe(XXX , µµµ, t) := GGG(XXX , µµµ, t)|Ee
= ∑

i∈N (e)
xxxi(µµµ, t)

∂Ni

∂XXX
(XXX), ge(XXX , µµµ, t) = detGGGe(XXX , µµµ, t). (1.22)

Therefore, once the nodal coordinates of the mapping and its time derivatives are known, all the remaining terms
directly follow. The implications of such a dependence in the implementation of the adjoint method were discussed in
[63] and will be further detailed in Section 1.5.1.

1.3.2 Temporal discretization: diagonally implicit Runge-Kutta

The system of ODEs in (1.18) are discretized in time using Diagonally Implicit Runge-Kutta (DIRK) schemes. These
schemes are capable of achieving high-order accuracy with the desired stability properties (unlike high-order multistep
schemes that are only stable up to second order), without requiring the solution of an enlarged system of equations
like general Implicit Runge-Kutta (IRK) schemes (see [36] for an efficient solver for DG-IRK discretizations). DIRK
schemes are defined by a lower triangular Butcher tableau (Table 1.1) and take the following form when applied to
(1.18)

uuu0 = ūuu(µµµ)

uuun = uuun−1 +
s

∑
i=1

bikkkn,i

MMMkkkn,i = ∆ tnrrr (uuun,i, µµµ, tn−1 + ci∆ tn) ,

(1.23)

for n = 1, . . . ,Nt and i = 1, . . . ,s, where Nt are the number of time steps in the temporal discretization and s is the
number of stages in the DIRK scheme. The initial condition, ūuu(µµµ), corresponds to the vectorization of the ALE-
transformed uniform flow state in (1.16). The temporal domain, (0, T ] is discretized into Nt segments with endpoints
{t0, t1, . . . , tNt}, with the nth segment having length ∆ tn = tn− tn−1 for n = 1, . . . ,Nt . Additionally, in (1.23), uuun,i is used
to denote the approximation of uuun at the ith stage of time step n

uuun,i = uuun,i(uuun−1, kkkn,1, . . . , kkkn,s) = uuun−1 +
i

∑
j=1

ai jkkkn, j. (1.24)

From (1.23), a complete time step requires the solution of a sequence of s nonlinear systems of equation of size Nuuu.
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c1 a11
c2 a21 a22
...

...
...

. . .
cs as1 as2 · · · ass

b1 b2 · · · bs

Table 1.1: Butcher Tableau for s-stage diagonally implicit Runge-Kutta scheme

1.3.3 Solver-consistent discretization of quantities of interest

In this work, quantities of interest that take the form of space-time integrals of nonlinear functions that depends on
the solution of the conservation law are discretized in a solver-consistent manner [63], i.e., using the same spatial and
temporal discretization used for the conservation law. This ensures the truncation error of the quantities of interest
exactly match that of the governing equations.

Consider a quantity of interest of the form

F (UUU ,µµµ, t) =
∫ t

0

∫
ΓΓΓ

w(xxx,τ) f (UUU(xxx, τ),µµµ,τ) dS dτ. (1.25)

In the context of the optimization problem in (1.1), F corresponds to either the objective or a constraint function.

Define f h as the approximation of
∫

ΓΓΓ

w(xxx, t) f (UUU(xxx, t),µµµ, t) dS using the DG shape functions from the spatial dis-

cretization of the governing equations. The solver-consistent spatial discretization of (1.25) becomes

F h(uuu,µµµ, t) =
∫ t

0
f h(uuu,µµµ,τ) dτ, (1.26)

which ensures the spatial integration error in the quantity of interest exactly matches that of the governing equations.
Solver-consistent temporal discretization requires the semi-discrete functional in (1.26) be converted to an ODE, which
is accomplished via differentiation of (1.26) with respect to t

Ḟ h(uuu,µµµ, t) = f h(uuu,µµµ, t). (1.27)

Augmenting the semi-discrete governing equations with this ODE (1.27) yields the system of ODEs[
MMM 0
0 1

][
u̇uu

Ḟ h

]
=

[
rrr(uuu,µµµ, t)
f h(uuu,µµµ, t)

]
. (1.28)

Application of the DIRK temporal discretization introduced in Section 1.3.2 yields the fully discrete governing equa-
tions and corresponding solver-consistent discretization of the quantity of interest (1.25)

uuun = uuun−1 +
s

∑
i=1

bikkkn,i

F h
n = F h

n−1 +∆ tn
s

∑
i=1

bi f h (uuun,i, µµµ, tn−1 + ci∆ tn)

MMMkkkn,i = ∆ tnrrr (uuun,i, µµµ, tn−1 + ci∆ tn) ,

(1.29)

for n = 1, . . . ,Nt , i = 1, . . . ,s, and uuun,i is defined in (1.24). Finally, the functional in (1.25) is evaluated at time t = T to
yield the solver-consistent approximation of F (uuu,µµµ,T )

F(uuu0, . . . ,uuuNt ,kkk1,1, . . . ,kkkNt ,s) := F h
Nt ≈F (uuu,µµµ,T ). (1.30)
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Unlike most methods used in the literature for integrating quantities of interest in time, e.g., trapezoidal rule [33, 57,
34, 25, 51], the proposed method relies on the low-order, intermediate RK stages. These stages are combined in such
a way that the temporal integral in (1.26) is approximated to high-order. The dependence of the quantity of interest on
these stages must be accounted for in the adjoint equations [63, 64], which will be seen in Section 1.4.1.

1.4 Fully discrete adjoint method

1.4.1 Fully Discrete, Time-Dependent Adjoint Equations

This section summarizes the work in [63] and begins by posing the adjoint equations corresponding to the fully discrete
system of conservation laws in (1.23) and the adjoint method for computing the total derivative of the fully discrete

quantity of interest without requiring solution sensitivities,
∂uuun

∂ µµµ
and

∂kkkn,i

∂ µµµ
. Each of the Nµµµ solution sensitivities is the

solution of the following linear evolution equations

∂uuu0

∂ µµµ
=

∂ ūuu
∂ µµµ

(µµµ)

∂uuun

∂ µµµ
=

∂uuun−1

∂ µµµ
+

s

∑
i=1

bi
∂kkkn,i

∂ µµµ

∂uuun,i

∂ µµµ
=

∂uuun−1

∂ µµµ
+

i

∑
j=1

ai j
∂kkkn,i

∂ µµµ

MMM
∂kkkn,i

∂ µµµ
= ∆ tn

∂ rrr
∂uuu

(uuun,i, µµµ, tn−1 + ci∆ tn)
∂uuun,i

∂ µµµ
+

∂ rrr
∂ µµµ

(uuun,i, µµµ, tn−1 + ci∆ tn)

(1.31)

for n = 1, . . . ,Nt and i = 1, . . . ,s. These equations are solved forward-in-time and therefore the sensitivity simulation
can be performed simultaneously with the primal simulation, which eliminates the need to store the primal solution.
However, when Nµµµ is large, this approach becomes intractable due to the large number of linear evolution equations
that must be solved. To avoid the computational burden of computing the state sensitivities, the adjoint equations
corresponding to the functional F and the corresponding dual variables are introduced to eliminate the state sensitivities
from the expression for the total derivative of F with respect to the parameters, µµµ . From the derivation of the adjoint
equations, an expression for the reconstruction of the gradient of F , independent of the state variables sensitivities,
follows naturally. At this point, it is emphasized that F represents any quantity of interest whose gradient is desired,
such as the optimization objective function or a constraint.

Let λλλ n for n = 0, . . . , Nt be the adjoint variables corresponding to the state update equation in (1.23) and let κκκn,i for
n = 1, . . . , Nt and i = 1, . . . , s be those corresponding to the stage update equations in (1.23). The adjoint equations are

λλλ Nt =
∂F

∂uuuNt

T

λλλ n−1 = λλλ n +
∂F

∂uuun−1

T

+
s

∑
i=1

∆ tn
∂ rrr
∂uuu

(uuun,i, µµµ, tn−1 + ci∆ tn)
T

κκκn,i

MMMT
κκκn,i =

∂F
∂kkkn,i

T

+biλλλ n +
s

∑
j=i

a ji∆ tn
∂ rrr
∂uuu

(uuun, j, µµµ, tn−1 + c j∆ tn)
T

κκκn, j

(1.32)

for n = 1, . . . ,Nt and i = 1, . . . ,s and the expression for dF/dµµµ , independent of state sensitivities, is

dF
dµµµ

=
∂F
∂ µµµ

+λλλ 0
T ∂ ūuu

∂ µµµ
+

Nt

∑
n=1

∆ tn
s

∑
i=1

κκκn,i
T ∂ rrr

∂ µµµ
(uuun,i, µµµ, tn−1 + ci∆ tn). (1.33)
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Unlike the sensitivity equations in (1.31), the adjoint equations must be solved backward-in-time and the adjoint
simulation cannot begin until the primal simulation completes. This implies the entire primal time history, including
intermediate stages, must be stored. In our setting, this I/O cost is negligible in comparison to the cost of a linear
solve with the Jacobian matrix. Futhermore, in contrast to the sensitivity equations, the derivative of the quantity of
interest with respect to the state variable appears as a forcing term in (1.32), which requires a separate set of adjoint
variables for each quantity of interest whose derivative is sought. In an gradient-based optimization setting, this implies
Nc +1, where Nc is the number of state-dependent constraints, adjoint solves are required to compute the gradient of
the objective function and all constraint functions. While the number of adjoint solves depends on the number of
functionals to differentiate, it is independent of the number of parameters. Since the application in this work is in the
regime where Nµµµ > Nc +1, the adjoint method is more desirable.

For the derivation of equations (1.32)-(1.33), the reader is referred to [62, 63]. For the adjoint equations that explic-
itly enforce time-periodicity of the solution of the partial differential equation, see [64]. From inspection of (1.33), it

is clear that the initial condition sensitivity
∂ ūuu
∂ µµµ

is the only sensitivity term required to reconstruct
dF
dµµµ

. The derivation

of this term for the uniform flow initial condition introduced in Section 1.2.3 is provided in the next section. From the
expression for the fully discrete quantity of interest in (1.30), it is clear that F is independent of uuuNt , which implies

λλλ Nt =
∂F

∂uuuNt

T

= 0. (1.34)

Furthermore, the partial derivatives of the fully discrete quantities of interest are

∂F
∂uuun

= ∆ tn
s

∑
i=1

bi
∂ f h

∂uuu
(uuun,i, µµµ, tn−1 + ci∆ tn) n = 0, . . . ,Nt −1

∂F
∂kkkn, j

= ∆ tn
s

∑
i= j

ai jbi
∂ f h

∂uuu
(uuun,i, µµµ, tn−1 + ci∆ tn) n = 1, . . . , Nt , j = 1, . . . , s

(1.35)

See [63] for a discussion of the benefits of the fully discrete adjoint framework over the continuous or semi-discrete
ones in the context of optimization or when a Runge-Kutta temporal discretization is used.

1.4.2 Parametrization of the initial condition

Recall the form of the ALE-transformed uniform flow initial condition in (1.16). Since the physical uniform flow
state ŪUU(XXX) is parameter-independent the sensitivity of the initial condition will be due solely to the sensitivity of the
determinant of the deformation gradient. That is,

∂UUU X̄XX
∂ µµµ

(XXX , µµµ, 0) = ŪUU(XXX)
∂g0

∂ µµµ
(XXX , µµµ)

∂ ḡ
∂ µµµ

(XXX , µµµ, 0) =
∂g0

∂ µµµ
(XXX , µµµ)

(1.36)

The initial condition sensitivity at the semi-discrete or fully discrete level is then the appropriate vectorization of this
quantity over the DG mesh.

10



Fig. 1.2: Surface mesh of the wing and the symmetry plane, and some of the tetrahedral elements in the wake. All elements are curved by
polynomials of degree p = 3.

1.4.3 Parametrization of the residual and quantities of interest

In addition to the initial condition sensitivity, the equation to reconstruct the total derivative of F with respect to
µµµ requires the partial derivatives of the residual and quantity of interest with respect to the µµµ . For this purpose, we
assume the parameter vector µµµ purely controls the domain deformation, e.g., it does not affect the boundary conditions
or material properties. Then, given the discussion in Section 1.3.1 that completely defines the ALE map based on its
action and the action of its time derivative on the nodes of the mesh, the parameter dependence of the residual and
quantity of interest can be written in terms of xxx(µµµ) and ẋxx(µµµ). That is,

∂ rrr
∂ µµµ

=
∂ rrr
∂xxx

∂xxx
∂ µµµ

+
∂ rrr
∂ ẋxx

∂ ẋxx
∂ µµµ

∂ f h

∂ µµµ
=

∂ f h

∂xxx
∂xxx
∂ µµµ

+
∂ f h

∂ ẋxx
∂ ẋxx
∂ µµµ

(1.37)

The form of the ALE map, i.e., xxx(µµµ) and ẋxx(µµµ), will be described in the next section. Our implementation uses the
Maple software [31] to compute all required partial derivatives.

1.5 Application to energetically optimal flapping flight

In this section, the high-order numerical discretization of the isentropic, compressible Navier-Stokes equations and cor-
responding adjoint method are applied to determine the energetically optimal flapping motion of a three-dimensional
wing geometry using gradient-based optimization in the low Reynolds number regime of Re = 1000. For a physically
relevant mission, a requirement is placed on the time-averaged thrust, which leads to an optimization problem with a
nonlinear constraint. As a result, two adjoint equations must be solved at each optimization iteration to compute the
gradient of the objective function and the nonlinear constraint.
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Fig. 1.3: Left: Radial blending bxz(XXX) corresponding to r1 = 0.6, r2 = 5. Right: Unidirectional blending by(XXX) corresponding to y1 = 2.6,
y2 = 5.

1.5.1 Flapping wing geometry and kinematics

The wing geometry considered in this work is an extruded NACA0012 airfoil with a rounded tip to accurately capture
three-dimensional effects. In the reference configuration, the NACA0012 airfoil is contained in the X1 −X3 plane
corresponding to X2 = 0, facing the −X1 direction (flow in the +X1 direction), and extruded in the +X2 direction for
the span-to-chord ratio of 2. A symmetry plane is included to consider an isolated wing without a fuselage. The fluid
domain is discretized using a curved mesh with tetrahedral elements of degree p = 3. Fig. 1.2 visualizes the mesh and
the corresponding geometry is taken as the reference domain in ALE setting.

The flapping motion is parametrized using three angles: the flapping angle θ(µµµ, t) (rotation about the X1-axis), the
pitching angle α(µµµ, t) (rotation about the X2-axis), and the sweeping angle β (µµµ, t) (rotation about the X3-axis). The
origin of the flapping angle is taken as the intersection of the X2 = s1 and X3 = 0 planes, where s1 > 0 is a parameter
that defines a shoulder away from the symmetry plane. The origin of the pitching and sweeping angles are taken as the
intersection of the X1 = 0, X3 = 0, and X1 = 0, X2 = 0 planes, respectively. The combination of these motions takes
the form

x′1(XXX , µµµ, t) = X1 cos(α(µµµ, t))+(X2− s1)sin(β (µµµ, t))−X3 sin(α(µµµ, t))

x′2(XXX , µµµ, t) = s1 +X2 cos(θ(µµµ, t))cos(β (µµµ, t))−X3 sin(θ(µµµ, t))−X1 sin(β (µµµ, t))

x′3(XXX , µµµ, t) = X3 cos(θ(µµµ, t))cos(α(µµµ, t))+(X2− s1)sin(θ(µµµ, t))+X1 sin(α(µµµ, t)),
(1.38)

where we set the parameter s1 = 0.5. While this kinematic description encodes exactly the desired motion of the wing
itself, it cannot be applied to the entire fluid domain as it will not preserve the symmetry plane and the rotations will
lead to large velocities at the farfield. To avoid these issues, the domain deformation is smoothly blended to zero near
the symmetry plane and away from the wing, following the work in [38, 63].

The deformation blending away from the wing is defined as a composition of a radial blending, bxz(XXX), in the
X1−X3 plane and a unidirectional blending, by(XXX), in the +X2 direction. These blendings take the form

bxz(XXX) =


0 d(XXX)≤ r1

1 d(XXX)≥ r1 + r2

q
(

d(XXX)−r1
r2

)
otherwise

, by(XXX) =


0 X2 ≤ y1

1 X2 ≥ y1 + y2

q
(

X2−y1
y2

)
otherwise

, (1.39)

where d(XXX) =
√

X2
1 +X2

3 is the radial distance from the X2 axis (the axis through the center of the wing in the spanwise

direction) and q(s) = 3s2− 2s3 is the cubic blending introduced in [38]. For smoother spatial blendings, the quintic
expression q(s) = 10s3− 15s4 + 6s5 could be used instead. See Fig. 1.3 for the blendings bxz(XXX) and by(XXX) with the
values of the blending parameters used in this work: r1 = 0.6, r2 = 5, y1 = 2.6, y2 = 5.
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Suppose we want to compose two blendings, b1(XXX) and b2(XXX), in serial, that is, blend a deformed domain xxx′ with
an undeformed domain XXX via b1(XXX) and blend the result with the undeformed domain via b2(XXX) as follows

xxx′′ = (1−b1(XXX))xxx′+b1(XXX)XXX

xxx = (1−b2(XXX))xxx′′+b2(XXX)XXX .
(1.40)

This can be compactly expressed as a single blending b12(XXX) as xxx = (1−b12(XXX))xxx′+b12(XXX)XXX , where

b12(XXX) = b1(XXX)+b2(XXX)−b1(XXX)b2(XXX). (1.41)

Therefore, the composition of the radial and unidirectional blending in (1.39) leads to a cylindrical blending that takes
the form

bcyl(XXX) = bxz(XXX)+by(XXX)−bxz(XXX)by(XXX). (1.42)

To ensure the symmetry plane remains motionless, the mapping in (1.38) must smoothly blended to 0 at the X2 = 0
plane. The blending at the symmetry plane, bsym(XXX), is chosen to be infinitely smooth and the rate of decay decreases
with increasing radial distance from the X2 axis to prevent mesh entanglement, i.e.,

bsym(XXX) = e−(X2/(s2+s3d(XXX)))2
. (1.43)

The blending parameter s2 is set to 1 for geometrical considerations since this affects the geometry of the wing during
the flapping motion. The blending parameter s3 is free in the sense that it has little effect on the wing itself and is solely
used to improve mesh quality in the fluid domain. A brute force, unidimensional search is performed to determine the
value of s3 = 0.3 that maximizes the mesh quality. See Fig. 1.4 for a plot of bsym(XXX) with these blending parameters
at various radial positions.

The composition of the cylindrical blending bcyl(XXX) and symmetry blending bsym(XXX) using the formula in (1.41)
leads to the final form of the spatial blending

b(XXX) = bcyl(XXX)+bsym(XXX)−bcyl(XXX)bsym(XXX) (1.44)

and the expression for the deformed domain

xxx′′(XXX , µµµ, t) = (1−b(φφφ(XXX)))xxx′(φφφ(XXX), µµµ, t)+b(φφφ(XXX))φφφ(XXX). (1.45)

The above expression uses φφφ(XXX), the coordinates in the domain with curved boundaries, in place of XXX , the coordinates
in the straight-sided domain, due to the choice discussed in Section 1.3.1 that incorporates the curving of the domain
boundaries in the ALE map. Spatial blending of this form ensures the desired physical motion of the body, xxx′(XXX , µµµ, t),
is exactly achieved near the surface of the wing, there is no deformation far from the surface or at the symmetry plane,
and the domain deformation smoothly varies between these extremes.

The expression for the deformed domain, xxx′(XXX , µµµ, t), in (1.38) will have a non-trivial deformation and velocity at
t = 0. This may cause difficulty in initializing the simulation from uniform flow as violent transients will result that
may prevent convergence of the nonlinear solvers. For this reason, following the work in [51, 63], the deformation is
smoothly blended to zero at t = 0 using the infinitely differentiable blending

bt(t) = e−(t/Tc)
2
. (1.46)

Temporal blendings have also been used in experimental studies involving flapping wings [18], where a quintic blend-
ing was used. The final form of the deformed domain is

xxx(XXX , µµµ, t) := (1−bt(t))xxx′′(φφφ(XXX), µµµ, t)+bt(t)φφφ(XXX) (1.47)

and the domain velocity ẋxx(XXX , µµµ, t) can be computed analytically. It can easily be verified that this temporal blend-
ing guarantees xxx(XXX , µµµ, 0) = φφφ(XXX) and ẋxx(XXX , µµµ, 0) = 0. In this work, Tc = T/5, where T is the period of the flapping
motion, to ensure xxx, ẋxx are effectively equal to xxx′′, ẋxx′′ (within 0.1%) by 1/2 a period (see Fig. 1.4). This blending
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Fig. 1.4: Left: Blending at symmetry plane bsym(XXX) corresponding to s2 = 1.0, s3 = 0.3 at radial position d(XXX) = 0 ( ), d(XXX) = 1
( ), d(XXX) = 5 ( ), d(XXX) = 8 ( ). Right: Temporal blending bt(t) corresponding to Tc = 1.

Fig. 1.5: Snapshots of the flapping motion in (1.47) with µ1 = µ4 = µ7 = µ9 = 0, µ3 =−µ6 =−π/3, µ2 = 60◦, µ5 =−µ8 =−25◦.

limits the transients that result from initializing the flow with incompatible boundary conditions at the viscous wall.
Another implication of this temporal blending is that the sensitivity of the initial condition is zero, i.e., ∂uuu0

∂ µµµ
= 0,

since xxx(XXX , µµµ, 0) = φφφ(XXX). Finally, as discussed in Section 1.3.1, once the ALE-mapped domain xxx(XXX , µµµ, t) and veloc-
ity ẋxx(XXX , µµµ, t) are computed, the remaining quantities required for the ALE formulation of the governing equations,
namely GGG(XXX , µµµ, t) and g(XXX , µµµ, t), can be computed through differentiation of the underlying shape functions, as in
(1.22).

Given this kinematic description of the flapping motion in (1.47), all that remains to completely specify the domain
deformation and its parametrization is the functional form of the pitching, sweeping, and flapping angles. In this work,
these angles are parametrized through a single harmonic function each as

α(µµµ, t) = µ1 +µ2 sin(2π f t +µ3)

β (µµµ, t) = µ4 +µ5 sin(2π f t +µ6)

θ(µµµ, t) = µ7 +µ8 sin(2π f t +µ9),

(1.48)

where f = 1/T is the flapping frequency. Even though the flapping frequency is an important design consideration, it
will not be taken as a parameter in this work as properly accounting for frequency perturbations in the fully discrete
adjoint framework is still a research issue [53] and will be the subject of future work. An example of a typical flapping
motion is shown in Fig. 1.5. The same flapping motion is shown in Fig. 1.5-1.8, where the various views of an
unstructured volumetric mesh with 10805 p = 3 elements are provided to show the impact of the blending and the
high-quality elements that are maintained.
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Fig. 1.6: Snapshots of a slice of the volumetric mesh in the X1−X3 and X2−X3 planes corresponding to the flapping motion in (1.47) with
µ1 = µ4 = µ7 = µ9 = 0, µ3 =−µ6 =−π/3, µ2 = 60◦, µ5 =−µ8 =−25◦. The top left figure corresponds to the curved mesh with no other
deformation applied, i.e., xxx = φφφ(XXX). The remaining figures correspond to snapshots (top to bottom, left to right) taken at equally spaced
time increments during the second period that correspond to times t = 5.0, 6.0, 7.0, 8.0, 9.0.

1.5.2 Energetically optimal flapping under a thrust constraint

The high-order numerical discretization of the isentropic, compressible Navier-Stokes equations and corresponding
adjoint method are applied to determine the energetically optimal flapping motion of the geometry introduced in the
previous section using gradient-based optimization techniques in the low Reynolds number regime of Re = 1000. For
a physically relevant mission, requirements are placed on the time-averaged thrust leading to an optimization problem
with a nonlinear constraint. As a result, two adjoint equations must be solved at each optimization iteration to compute
the gradient of the objective function and nonlinear constraint. From (1.32), it is clear that the linear system that arises
at each stage of each time step is the same for each functional; the only difference is the right-hand side, which presents
an opportunity to use some fast multiple right-hand side solver [45, 8]; however, this was not done in this work.

The DG-ALE scheme introduced in Section 1.2 is used for the spatial discretization of the system of conservation
laws with polynomial order p= 3 (for both the geometry and solution representation) and a diagonally implicit Runge-
Kutta scheme for the temporal discretization. The DG-ALE scheme uses the Roe flux [41] for the inviscid numerical
flux and the Compact DG flux [37] for the viscous numerical flux. The Butcher tableau for the three-stage, third-order
DIRK scheme considered in this work is given in Table 1.2. Since the present study looks to find the energetically
optimal flapping motion subject to a constraint on the thrust, the quantities of interest for the optimization problem
are the average work done on the fluid by the wing, W (UUU , µµµ), and thrust, Tx(UUU , µµµ), over one flapping period. To
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Fig. 1.7: Snapshots of a slice of the volumetric mesh in the X1−X3 plane corresponding to the flapping motion in (1.47) with µ1 = µ4 =
µ7 = µ9 = 0, µ3 =−µ6 =−π/3, µ2 = 60◦, µ5 =−µ8 =−25◦. The top left figure corresponds to the curved mesh with no other deformation
applied, i.e., xxx = φφφ(XXX). The remaining figures correspond to snapshots (top to bottom, left to right) taken at equally spaced time increments
during the second period that correspond to times t = 5.0, 6.0, 7.0, 8.0, 9.0.

α α
1+α

2
1+α

2 −α α

1 γ ω α

γ ω α

Table 1.2: Butcher Tableau for 3-stage, 3rd order DIRK scheme [1]
α = 0.435866521508459, γ =− 6α2−16α+1

4 , ω = 6α2−20α+5
4 .

ensure the transients that result from initializing the simulation from non-periodic flow (uniform flow in this case) do
not pollute the time-averaged quantities, two full periods of the flapping motion are simulated and the quantities are
averaged over only the final period. Therefore, the time-averaged quantities are defined as

W (UUU ,µµµ) =− 1
T

∫ 2T

T

∫
ΓΓΓ

fff (UUU ,µµµ) · ẋxx dS dt

Tx(UUU ,µµµ) =− 1
T

∫ 2T

T

∫
ΓΓΓ

fff (UUU ,µµµ) · eee1 dS dt
(1.49)
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Fig. 1.8: Snapshots of a slice of the volumetric mesh in the X1−X2 plane corresponding to the flapping motion in (1.47) with µ1 = µ4 =
µ7 = µ9 = 0, µ3 =−µ6 =−π/3, µ2 = 60◦, µ5 =−µ8 =−25◦. The top left figure corresponds to the curved mesh with no other deformation
applied, i.e., xxx = φφφ(XXX). The remaining figures correspond to snapshots (top to bottom, left to right) taken at equally spaced time increments
during the second period that correspond to times t = 5.0, 6.0, 7.0, 8.0, 9.0.

where ΓΓΓ is the surface of the wing, fff ∈ R3 is the force imparted by the fluid on the body, eeei ∈ R3 is the ith canonical
basis vector, and ẋxx is the velocity of each point on ΓΓΓ . The negative sign in the definition of the thrust is required since
the flow is in the +X1-direction and, therefore, a positive thrust is directed in the −X1-direction.

The initialization and integration strategy described is a commonly-used and crude approximation to the ideal
situation of initializing the simulation with the state that will induce a time-periodic flow, which will ensure the
simulation is completely free of unphysical initial transients. A method to initialize a simulation with this state was
introduced in [64] as well as the corresponding adjoint method to allow for optimization under a time-periodicity
constraint.

Finally, let the fully discrete, high-order approximation of the integrated quantities of interest (DG in space, DIRK
in time) in (1.25) be denoted with the corresponding Roman symbol, e.g.,
W (uuu(0), . . . ,uuu(Nt ),kkk(n)1 , . . . ,kkk(n)s ,µµµ) is the fully discrete approximation of W (UUU ,µµµ) and similarly for Tx. Then the fully
discrete optimization problem of interest takes the form
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Fig. 1.9: Trajectories of α(t), β (t), and θ(t), in degrees, at the initial guess ( ) and solution ( ) of the optimization problem in
(1.50).

minimize
uuu(0), ..., uuu(Nt )∈RNuuu ,

kkk(1)1 , ..., kkk(Nt )
s ∈RNuuu ,

µµµ∈RNµµµ

W (uuu(0), . . . , uuu(Nt ), kkk(1)1 , . . . , kkk(Nt )
s , µµµ)

subject to Tx(uuu(0), . . . , uuu(Nt ), kkk(1)1 , . . . , kkk(Nt )
s , µµµ)≥ T̄x

uuu(0) = uuu0

uuu(n) = uuu(n−1)+
s

∑
i=1

bikkk
(n)
i

MMMkkk(n)i = ∆ tnrrr
(

uuu(n)i , µµµ, tn−1 + ci∆ tn
)
,

(1.50)

where T̄x is a lower bound on the thrust. In this work, T̄x = 0 is taken to ensure the flapping motion generates sufficient
thrust to overcome the induced drag on the wing. In this section, the parameters µ1 = µ4 = µ7 = 0 and µ9 = π/2 are
frozen, which leads to a 5 parameter optimization problem in the all the amplitudes (µ2, µ5, µ8) and pitch and sweep
phases (µ3, µ6).

The optimization solver used in this work is IPOPT [52], a nonlinearly constrained interior point method. Fig. 1.9
contains the trajectory of α , β , θ that define initial guess and solution of the optimization problem in (1.50). The
initial guess for the optimization problem is a pure flapping motion, i.e., α(µµµ0, t) = β (µµµ0, t) = 0. In general, a quality
initial guess is important since the solution of non-convex optimization problems, such as this one, are dependent on
the starting point. In a practical design setting, the goal is to improve an existing or baseline design, which will usually
constitute a reasonable starting guess for the optimizer. Another strategy for generating reasonable initial guesses
is to perform homotopy on the thrust constraint. The optimal solution increases the flapping amplitude from 15◦ to
32.1◦, increases the pitch amplitude from 0◦ to 31.3◦, and only incorporates a negligible amount of dynamic sweeping
(0.02◦). The optimal phase angle between the flapping and pitch motions is determined to be 87.1◦.
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Fig. 1.10: Time of the total power (top) and x-directed force (bottom) imparted onto the fluid by the airfoil at initial guess ( ) and
optimal solution ( ).
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Fig. 1.11: Convergence of quantities of interest, W and Tx, with optimization iteration. Each iteration requires a primal and adjoint flow
computation to compute the quantities of interest and their gradients, respectively.

The instantaneous quantities of interest for the nominal motion and solution of (1.50) are included in Fig. 1.10. It is
clear that the optimal motion requires more work than the nominal motion to overcome the induced drag on the wing
and satisfy the thrust constraint.

Fig. 1.11 shows the convergence of the integrated quantities of interest with iterations in the optimization solver. It
can be seen that, initially, the thrust constraint is violated and after only 2 optimization iterations, the flapping motion
has become sufficient to overcome the induced drag and satisfy the thrust constraint, at the cost of additional energy
that must be input to the system. After 10 iterations, the thrust constraint is satisfied and reduction of the work has
essentially ceased. At the optimal solution, the thrust constraint is active and satisfied to 9 digits of accuracy.

The trajectory of the wing and isosurfaces of the surrounding flow are shown in Fig. 1.12 (nominal) and Fig. 1.13
(optimal). The flow around the nominal trajectory is fairly benign in that there is little flow separation, does not require
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Fig. 1.12: Visualization of the flow field around wing with flapping motion corresponding to the initial guess for the optimization
problem in (1.50). The color shows the pressure field on the wing surface as well as on an isosurface of the streamwise vorticity.
Snapshots (top to bottom, left to right) taken at equally spaced time increments during the second period that correspond to times
t = 5.0, 5.83, 6.67, 7.5, 8.33, 9.17.

much energy, and the generated thrust is not sufficient to overcome the induced drag. In contrast, the optimal trajectory
flaps “harder” (larger flapping and pitching amplitudes) in order to generate sufficient thrust to satisfy the constraint.
The result is more separation, even though the additional pitching helps streamline the flow, and more required energy.

1.6 Conclusion

This work presents a framework for using high-order numerical discretizations to solve optimization problems con-
strained by deforming domain conservation laws and demonstrates its potential on the large-scale application of deter-
mining energetically optimal flapping motions of a three-dimensional wing. The high-order numerical method employs
a discontinuous Galerkin spatial discretization and diagonally implicit Runge-Kutta temporal discretization for both
the ALE-transformed conservation law and its quantities of interest. The fully discrete adjoint method was used to
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Fig. 1.13: Visualization of the flow field around wing with flapping motion corresponding to the solution of the optimization prob-
lem in (1.50). The color shows the pressure field on the wing surface as well as on an isosurface of the streamwise vorticity. Snap-
shots (top to bottom, left to right) taken at equally spaced time increments during the second period that correspond to times t =
5.0, 5.83, 6.67, 7.5, 8.33, 9.17.

compute gradients of quantities of interest to ensure they are discretely consistent and the cost of computing them
only scales weakly with the number of parameters. This framework only required 12 iterations when coupled with the
nonlinear optimizer IPOPT to solve the relevant problem of finding a thrust-neutral flapping trajectory that minimizes
the energy required to complete the motion.

The framework presented is sufficiently general to handle a number of relevant generalizations such as shape op-
timization of the wing cross-section and planform, more general spline-based parametrizations, and the inclusion of
other aerodynamic constraints. The ALE framework is capable of handling completely general domain deformations,
which includes static changes to the shape of the wing in a shape-only or combined shape and trajectory optimiza-
tion setting. A more general parametrization can also easily be included by using a spline-based parametrization of the
flapping angles in (1.48) and the expanded design space would likely lead to better designs. Finally, other aerodynamic
constraints can easily be incorporated in the optimization problem in (1.50) at the cost of an additional adjoint solve
for each additional constraint (that depends on the PDE solution).
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While this work is one step toward solving optimization problems of engineering and scientific relevance, further
development is required to have an impact in practice. This work has considered a pure fluid problem and treats
the structure as rigid, which is not realistic, particularly in the regime of MAVs. Additionally, as noted in [43, 22,
65, 48, 42, 47], more efficient flapping motions may be realized from a flexible structure. As such, extending the
high-order discretization and corresponding adjoint method to fluid-structure interaction problems or, more generally,
multiphysics problems coupled along an interface, will be the subject of future work. Furthermore, for larger scale
applications the cost of repeatedly solving the conservation law becomes a challenge and calls for more efficient
solvers such as those developed in [36] or a globally convergent optimization framework that incorporates fast and
reliable adaptive reduced-order models [60, 59].
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