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The fully discrete adjoint method, corresponding to a globally high-order accurate dis-
cretization of the compressible Navier-Stokes equations on deforming domains, is intro-
duced. A mapping-based Arbitrary Lagrangian-Eulerian description transforms the gov-
erning equations to a fixed reference domain. A high-order discontinuous Galerkin spatial
discretization and diagonally implicit Runge-Kutta temporal discretization are employed
to obtain the globally high-order discretization of the Navier-Stokes equations. Relevant
quantities of interest, to be used as the objective function in aerodynamic trajectory op-
timization problems, are discretized in a solver-consistent manner. Gradients of these
quantities of interest are computed via the adjoint method and verified against a second-
order finite difference approximation. The proposed fully discrete adjoint method is coupled
with state-of-the-art, gradient-based numerical optimization software to solve aerodynamic
trajectory optimization problems. The first example is an inverse design problem with a
known, global optimum that the solver is able to recover in fewer than 20 iterations. In a
second problem, a trajectory is determined that successfully completes a prescribed mission
while harvesting energy from the flow.

I. Introduction

Intrinsically time-dependent systems, where steady-state analysis in not applicable, constitute an im-
portant class of engineering problems. Such systems often arise in fluid dynamics for problems that are
inherently dynamic, such as flapping flight, or problems where a steady-state solution does not exist, such as
separated flow. Design or control of such systems calls for the solution of time-dependent PDE-constrained
optimization problems of the form

minimize
U , µ

∫ T

0

∫
Γ

f(U ,µ, t) dS dt

subject to
∂U

∂t
+∇ · F (U ,∇U) = 0

(1)

where the constraint corresponds to some vector-valued conservation law with solution U , f is some output
quantity of interest, and µ are the optimization parameters. If a high degree of accuracy is sought, the
numerical solution of such optimization problems with low-order methods may be an expensive endeavor.

This motivates the use of high-order methods, which have gained considerable attention for fluid prob-
lems due to their ability to produce highly accurate solutions with minimum numerical dispersion.1,2 For
PDE-constrained optimization, high-order convergence of integrated quantities of interest is sought as these
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quantities, and their gradients, drive an optimization algorithm, e.g. in the definition of the objective func-
tion and the constraints. This requires a globally high-order discretization of the governing, time-dependent
PDE – the compressible Navier-Stokes equations, in this work. Additionally, a high-order numerical inte-
gration scheme is required for the quantities of interest whose dominant error term should match that of the
discretization of the governing equation. This ensures high-order convergence in not only the solution of the
partial differential equation, but in the quantities that drive the optimization.

In this work, a Discontinuous Galerkin (DG) method is used for the spatial discretization as it pro-
duces stable discretizations of the convective operator for arbitrarily high-order discretizations.1 Diagonally
Implicit Runge-Kutta (DIRK) schemes up to third-order are used for the temporal discretization. Two
methods are considered for discretization of the integrated quantity of interest. Both methods approximate
spatial integrals using the finite element shape functions of the discontinuous Galerkin scheme; they differ
in their treatment of the temporal integrals. The first uses standard numerical quadrature rules, such as the
trapezoidal rule or Simpson’s rule. The second method applies the temporal discretization of the PDE to an
augmented system of ODEs consisting of semi-discrete PDE and the output quantity. The advantage of this
approach is the discretization of the output integral inherits the exact order of convergence of the temporal
discretization.

Derivative computations are a crucial component of gradient-based PDE-constrained optimization. For
time-dependent PDE-constrained optimization, three frameworks exist for defining derivatives of quantities
of interest with respect to parameters, depending on whether the optimality system of (1) is posed at the
continuous, semi-discrete, or fully discrete level. These constitute genuinely distinct methods for computing
derivatives as it is well-documented that the operations of discretization and differentiation do not commute
for finite spatial and temporal discretizations; see [3]. Since the fully discrete equations are being solved
numerically, it is advantageous to pose the optimality system at the fully discrete level as this guarantees the
computed gradients will be consistent with the functionals to which they correspond.4 For the continuous
and semi-discrete approaches, this will only be the case as the mesh size and time step approach zero.
The fully discrete PDE-constrained optimization framework, which will be the focus of this document, is
particularly important when high-order methods are used to discretize the time-dependent PDE since the
mesh size and time step size are not necessarily small.

Equipped with the fully discrete high-order numerical scheme, the fully discrete PDE-constrained opti-
mization problem is posed and the fully discrete, time-dependent adjoint method derived. From the dual
variables, the gradient of the quantity of interest can be reconstructed at a cost essentially independent of
the number of optimization parameters. The high-order numerical scheme and the corresponding fully dis-
crete adjoint method are used to solve aerodynamic trajectory optimization problems using gradient-based
optimization techniques.

The remainder of this document is organized as follows. Section II introduces the compressible Navier-
Stokes equations and the isentropic assumption. This section also introduces the DG-ALE spatial dis-
cretization, the DIRK temporal discretization, and the discretization of the integrated quantities of interest.
Section III presents the fully discrete adjoint method corresponding to the numerical scheme introduced in
Section II. Section IV applies the high-order numerical scheme to optimize the trajectory of a 2D airfoil.
Section V offers conclusions.

II. Governing Equations and Discretization

II.A. Partial Differential Equations

Consider the compressible Navier-Stokes equations, defined in the parametrized, time-dependent domain
v(µ, t),

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (2)

∂

∂t
(ρui) +

∂

∂xi
(ρuiuj + p) = +

∂τij
∂xj

for i = 1, 2, 3, (3)

∂

∂t
(ρE) +

∂

∂xi
(uj(ρE + p)) = − ∂qj

∂xj
+

∂

∂xj
(ujτij), (4)
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where ρ is the fluid density, u1, u2, u3 are the velocity components, and E is the total energy. The viscous
stress tensor and heat flux are given by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xj

δij

)
and qj = − µ

Pr

∂

∂xj

(
E +

p

ρ
− 1

2
ukuk

)
. (5)

Here, µ is the viscosity coefficient and Pr = 0.72 is the Prandtl number which we assume to be constant.
For an ideal gas, the pressure p has the form

p = (γ − 1)ρ

(
E − 1

2
ukuk

)
, (6)

where γ is the adiabatic gas constant. In this work, the entropy is assumed constant, that is to say the flow
is adiabatic and reversible. For a perfect gas, the entropy is defined as

s = p/ργ . (7)

Using (7) to explicitly relate the pressure and density, the energy equation becomes redundant. This effec-
tively reduces the square system of PDEs of size nsd + 2 to one of size nsd + 1, where nsd is the number
of spatial dimensions. It can be shown, under suitable assumptions, that the solution of the isentropic ap-
proximation of the Navier-Stokes equations converges to the solution of the incompressible Navier-Stokes
equations as the Mach number goes to 0.5–7

II.B. Spatial Discretization: Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Method

In this work, a high-order Arbitrary Lagrangian-Eulerian (ALE) discontinuous Galerkin discretization of the
Navier-Stokes equations on a deforming domain will be employed for the spatial discretization.8,9 This is
achieved by defining a time-dependent mapping from the physical domain to a fixed reference domain, where
all computations will be performed.

X1

X2

NdA

V

x1

x2

nda

v
x=x(X)

Figure 1: Time-dependent mapping between reference and physical domains.

Denote the physical domain by v(µ, t) ⊂ Rnsd and the fixed, reference domain by V ⊂ Rnsd . At
each time t, let G be a time-dependent diffeomorphism between the reference domain and physical domain:
x(X,µ, t) = G(X,µ, t), where X ∈ V is a point in the reference domain and x(X,µ, t) ∈ v(µ, t) is the
corresponding point in the physical domain at time t.

Consider the compressible Navier-Stokes equations in the physical domain (x, t), written as a system of
conservation laws

∂U

∂t
+∇ · F (U ,∇U) = 0 in v(µ, t), (8)

where F (U ,∇U) = F inv(U) + F vis(U ,∇U). For brevity, the transformed equations on the reference
domain are stated without derivation,

∂UX
∂t

+∇X · FX(UX ,∇XUX) = 0 in V, (9)

where ∇X denotes spatial derivatives with respect to the reference variables, X, and the transformed
quantities take the form

UX = ḡU , FX = F invX + F visX , F invX = gF invG−T −UX ⊗G−1vG, F visX = gF visG−T , (10)
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where G = ∇XG, g = det(G), and
∂ḡ

∂t
−∇X(gG−1vG) = 0. (11)

This ALE formulation satisfies the Geometric Conservation Law (GCL),10 as discussed in [9]. For details on
the derivation, the reader is directed to [9].

With UX as the transformed variable, (9) can be converted to a first-order system

∂UX
∂t

+∇X · FX(UX ,QX) = 0

QX −∇XUX = 0
(12)

and discretized via a discontinuous Galerkin finite element method,9 where the numerical fluxes used for
the inviscid and viscous fluxes are the Roe flux11 and Compact DG (CDG) flux,12 respectively. The result
of the discretization will be a system of Ordinary Differential Equations (ODEs), representing the semi-
discretization of (12), the compressible Navier-Stokes equations on the reference domain,

M
∂u

∂t
= r(u,µ, t), (13)

where M is the block-diagonal, symmetric, fixed mass matrix, u is the vectorization of UX at all nodes in the
DG mesh, and r is the nonlinear function defining the DG discretization of the inviscid and viscous fluxes.

An important implication of performing all computations on a fixed reference domain is the mass matrix
for the semi-discrete first-order system will be constant for all times, t, and parameters, µ. This has two
primary benefits: (a) cost reduction as the mass matrix must be computed and factorized only once, and

(b) simplification of the sensitivity/adjoint derivation as derivatives of mass matrix are zero,
∂M
∂µ

= 0. This

second point is particularly beneficial as both implementation and execution time are reduced since mass
matrix sensitivities do not have to be derived, implemented, and computed.

With the high-order spatial discretization of the Navier-Stokes on a deformable domain defined, high-
order temporal discretization of the resulting system of ODEs will be considered next.

II.C. Temporal Discretization: Diagonally Implicit Runge-Kutta

A subclass of the Implicit Runge-Kutta (IRK) schemes, known as Diagonally Implicit Runge-Kutta (DIRK)
schemes,13 are used for the temporal discretization. They are capable of achieving high-order, stable temporal
discretizations without requiring the solution of an enlarged system of equations. The DIRK schemes are
defined by a lower triangular Butcher tableau, that take the following form when applied to (13)

u(n) = u(n−1) +

s∑
i=1

bik
(n)
i

Mk(n)i = ∆tnr

u(n−1) +

i∑
j=1

aijk
(n)
j , µ, tn−1 + ci∆tn

 ,

(14)

for n = 1, . . . , Nt and i = 1, . . . , s, where Nt are the number of time steps in the temporal discretization and
s is the number of stages in the DIRK scheme. The temporal domain, [0, T ] is discretized into Nt segments
with endpoints {t0, t1, . . . , tNt

}, with the nth segment having length ∆tn = tn − tn−1 for n = 1, . . . , Nt.
From (14), a complete time step requires the solution of a sequence of s nonlinear systems of equation of

size N . In Section IV, a third-order A- and L-stable DIRK scheme will be considered. The Butcher tableau
for the DIRK scheme is given in Table 1.

II.D. Spatio-temporal Discretization of Quantities of Interest

The final discretization that must be considered is that of the integrated output quantity of interest

F(U ,µ) =

∫ T

0

∫
Γ

f(U ,µ, t) dS dt. (15)
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α α
1+α
2

1+α
2 − α α

γ + ω + α γ ω α

γ ω α

Table 1: Butcher Tableau for 3-stage, 3rd order DIRK scheme

α = 0.435866521508459, γ = − 6α2−16α+1
4 , ω = 6α2−20α+5

4

This output quantity may be either the objective function of the optimization problem of interest, or a
constraint. The spatial integral is approximated with the shape functions of the finite element discretization

fh(u,µ, t) ≈
∫
Γ

f(U ,µ, t) dS, (16)

which is standard in the finite element community. In (16), fh depends on the semi-discrete quantity u

and approximates the continuous quantity

∫
Γ

f(U ,µ, t) dS. Two high-order discretizations of the temporal

integral in (15) are: (a) high-order numerical quadrature and (b) temporal discretization applied to an
augmented system of ODEs. In the first case, the numerical approximation of F takes the form

F(U ,µ) ≈ F (u(0), . . . ,u(Nt),µ) =

Nt∑
i=0

wifh(u(i),µ, ti), (17)

where the weights, wi, depend on the quadrature rule used. An important requirement on the choice of
numerical quadrature is the nodes must align with time steps, which eliminates optimal numerical quadrature,
such as Gauss-Legendre. Without this requirement, the solution must be interpolated to the quadrature
nodes prior to application of (17).

A disadvantage of high-order numerical quadrature is the stencil expands as the approximation order
increases. Additionally, when the system of ODEs are solved via an IRK scheme, there is additional in-

formation, namely the stages, k
(n)
i , that are not being used in the output integration. An alternative that

circumvents the disadvantages of high-order numerical quadrature is to apply the temporal discretization of
the semi-discrete PDE to the following augmented system of ODEs,[

M 0

0 1

][
u̇

Ḟh

]
=

[
r(u,µ, t)

fh(u,µ, t)

]
, (18)

This method of integrating the output quantity of interest has the added benefits of ensuring the order of
accuracy matches that of the time discretization. It would be unnecessary to integrate one more accurately
than the other as the lowest order error term will dominate. Applying DIRK to equation (18), the following
scheme is obtained

u(n) = u(n−1) +

s∑
i=1

bik
(n)
i

F (n)
h = F (n−1)

h +

s∑
i=1

bif

u(n−1) +

i∑
j=1

aijk
(n)
j , µ, tn−1 + ci∆tn


Mk(n)i = ∆tnr

u(n−1) +

i∑
j=1

aijk
(n)
j , µ, tn−1 + ci∆tn

 .

(19)

The output quantity of interest, F being sought will be approximated by

F(U ,µ) ≈ F (u(0), . . . ,u(Nt),k
(1)
1 , . . . ,k(Nt)

s ,µ) = F (Nt)
h . (20)

In the next section, the three high-order discretizations will be combined in the derivation of the fully discrete
adjoint method for computing gradients of output quantities.
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III. Fully Discrete, Time-Dependent Adjoint Method

In this section, the gradient of output functionals with respect to parameters are derived via a fully
discrete, time-dependent adjoint method. Given the spatial and temporal discretization of the governing
PDE, and the discretization of the integrated output quantity, the fully discrete, time-dependent PDE-
constrained optimization problem is

minimize
u(0), ..., u(Nt)∈RNu ,

k
(1)
1 , ..., k(Nt)

s ∈RNu ,

µ∈RNµ

J(u(0), . . . , u(Nt), k
(1)
1 , . . . , k(Nt)

s , µ)

subject to u(0) = u0(µ)

u(n) = u(n−1) +

s∑
i=1

bik
(n)
i

Mk(n)i = ∆tnr

u(n−1) +

i∑
j=1

aijk
(n)
j , µ, tn−1 + ci∆tn


(21)

where i = {1, . . . , s} and n = {1, . . . , Nt} in the constraints. For convenience, the following definitions are
introduced

r̃(0)(u(0),µ) = u(0) − u0(µ)

r̃(n)(u(n−1),u(n),k
(n)
1 , . . . ,k(n)s ,µ) = u(n) − u(n−1) −

s∑
i=1

bik
(i)
i

R(n)(u(n−1),k
(n)
1 , . . . ,k

(n)
i ,µ) = Mk(n)i −∆tnr

u(n−1) +

i∑
j=1

aijk
(n)
j , µ, tn−1 + ci∆tn

 .

(22)

The Lagrangian of the optimization problem in (21) takes the form

L(u(0), . . . , u(Nt), k
(1)
1 , . . . , k(Nt)

s , µ, λ(0), . . . , λ(Nt), κ
(1)
1 , . . . , κ(Nt)

s ) =

J(u(0), . . . , u(Nt), k
(1)
1 , . . . , k(Nt)

s , µ)−
Nt∑
n=0

λ(n)T r̃(n) −
Nt∑
n=0

s∑
i=1

κ
(n)
i

T
R

(n)
i .

(23)

The first-order optimality conditions of (21) state that the Lagrangian must be stationary at the optimal
solution, i.e.

∂L
∂u(n)

= 0 n = 0, . . . , Nt

∂L
∂k

(n)
i

= 0 i = 1, . . . , s, n = 1, . . . , Nt

∂L
∂λ(n)

= 0 n = 0, . . . , Nt

∂L
∂κ

(n)
i

= 0 i = 1, . . . , s, n = 1, . . . , Nt

∂L
∂µ

= 0 n = 0, . . . , Nt.

(24)
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Restricting attention to the variations with respect to the PDE state vectors, i.e. u(n) and k
(n)
i , the fully

discrete adjoint evolution equations are obtained

λ(Nt) =
∂J

∂u(Nt)

T

λ(n−1) = λ(n) +
∂J

∂u(n−1)

T

+

s∑
i=1

∆tn
∂r

∂u

u(n−1) +

i∑
j=1

aijk
(n)
j , µ, tn−1 + ci∆tn

T

κ
(n)
i

MTκ
(n)
i =

∂J

∂k
(n)
i

T

+ biλ
(n) +

s∑
j=i

aji∆tn
∂r

∂u

(
u(n−1) +

j∑
q=1

ajqk
(n)
q , µ, tn−1 + cj∆tn

)T
κ
(n)
j

(25)

for n = 1, . . . , Nt and i = 1, . . . , s. From the form of the discrete evolution equations in (25), the adjoint
equations must be evolved backward in time, and the stages solved in reverse order. Furthermore, the adjoint

equations can only be solved once the primal solution, u(n) and k
(n)
i , are available. This implies that the

primal equations must be solved and the solution stored at each time step and each stage, prior to backward
evolution of the adjoint equations.

Equipped with the primal solution, u(n) and k
(n)
i , and the dual solution, λ(n) and κ

(n)
i , the gradient of

the functional can be computed as

dJ

dµ
=
∂J

∂µ
+ λ(0)T ∂u0

∂µ
+

Nt∑
n=1

∆tn

s∑
i=1

κ
(n)
i

T ∂r

∂µ
(u

(n)
i ,µ, tn−1 + ci∆tn); (26)

see [14] for the derivation. In the next section, the fully discrete adjoint method is used to compute the
gradients of optimization functionals and solve for the optimal heaving motion of a 2D airfoil using gradient-
based optimization.

IV. Application

IV.A. Problem Description

In this section, the fully discrete adjoint method corresponding to the high-order discretization of the con-
servation law and its quantities of interest is applied to solve PDE-constrained optimization problems. In
particular, the optimal control of a 2D NACA0012 airfoil (Figure 2), with chord length c = 1 and zero-
thickness trailing edge, is considered. The governing equations for this problem are the 2D compressible,
isentropic Navier-Stokes equations.

h(t)

θ(t)

c
c/3

Figure 2: Schematic of geometry and kinematics of NACA0012 airfoil with zero-thickness trailing edge and
cord length c. Only vertical translation, h(t), and rotation about the 1/3-chord, θ(t), are permitted.

The mission of the airfoil is to move upward a distance of µ1 in T units of time, smoothly varying its angle
of attack from 0 at t = 0 to µ2 at t = T/2 to 0 at t = T . Figure 2 illustrates the kinematically admissible
motions of the airfoil, in terms of h(t), the vertical translation of the airfoil, and θ(t), the rotation of the
airfoil about the 1/3 chord, which coincides with the angle of attack since the incoming flow is perfectly
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horizontal. The expressions for h(t) and θ(t), in terms of the parameters µ1 and µ2 are given in (27)

h(t) =


0, if t < 0

µ1
1−cosπt/T

2 , 0 ≤ t < T

µ1, otherwise

θ(t) =


0, if t < 0

µ2 · 1−2 cosπt/T
2 , 0 ≤ t < T

0, otherwise.

(27)

The expressions for h(t) and θ(t) ensure the motion is smooth (h(t), θ(t) continuously differentiable) and
slowly varying at the initial and final times (h′(0) = h′(T ) = θ′(0) = θ′(T ) = 0). They also guarantee the
airfoil will begin at its nominal position (y(0) = θ(0) = 0) and end at its target (h(T ) = µ1, θ(T ) = 0).
Finally, µ2 is the amplitude of θ midway through the time interval (θ(T/2) = µ2).

Seven output quantities of interest will be considered in this document. The first is the distance of the
solution to the PDE at parameter µ, U(x,µ, t), from a target state, U∗(x, t),

I(U ,µ, t) =
1

2

∫ T

0

∫
v(µ,t)

|U(x,µ, t)−U∗(x, t)|2 dv dt. (28)

Here, the target state U∗(x, t) corresponds to the solution of the partial differential equation at µ = µ∗ =
[1.0, π/6]T . The fully discrete, high-order approximation to I(U ,µ, t) will be denoted

I(u(0), . . . ,u(Nt),k
(1)
1 , . . . ,k

(Nt)
s ,µ). The remaining six quantities of interest for a body, defined by surface

Γ (the airfoil surface, in this case), take the following form

Fx(U ,µ, t) =

∫
Γ

f(U ,µ, t) · e1 dS Fy(U ,µ, t) =

∫
Γ

f(U ,µ, t) · e2 dS

Tz(U ,µ, t) =

∫
Γ

f(U ,µ, t)× (x− x0) dS Py(U ,µ, t) =

∫
Γ

ẏf(U ,µ, t) · e2 dS

Pθ(U ,µ, t) = −
∫
Γ

θ̇f(U ,µ, t)× (x− x0) dS P(U ,µ, t) =

∫
Γ

f(U ,µ, t) · ẋ dS

(29)

where f ∈ Rnsd is the force imparted by fluid on the body, ei is the ith canonical basis vector in Rnsd ,
x and ẋ are the position and velocity of a point on the surface Γ, and y, θ, ẏ, θ̇ define the motion of the
reference point, x0 (the 1/3-chord of the airfoil, in this case); see Figure 2. The Fx and Fy terms correspond
to the total x- and y-directed forces on the body, Tz is the moment about x0, and P is the total power
exerted on the body by the fluid. The total power P is broken into its translational, Py, and rotational, Pθ,
components. For a 2D rigid body motion with no x-translation, an additive relationship among these terms
holds

P(U ,µ, t) = Py(U ,µ, t) + Pθ(U ,µ, t). (30)

The negative sign is included in the definition of Pθ due to the clockwise definition of θ in Figure 2. In the
remainder of this document, a superscript h will be used to denote the high-order DG approximation to these
spatial integrals that constitute the instantaneous quantities of interest, e.g., Ph(u,µ, t) is the high-order
approximation of P(U ,µ, t), where u is the semi-discrete approximation of U . Temporal integration of the
instantaneous quantities of interest leads to the integrated quantities of interest

Jx(U ,µ) =

∫ T

0

∫
Γ

f(U ,µ, t) · e1 dS dt Jy(U ,µ) =

∫ T

0

∫
Γ

f(U ,µ, t) · e2 dS dt

Jθ(U ,µ) =

∫ T

0

∫
Γ

f(U ,µ, t)× (x− x0) dS dt Wy(U ,µ) =

∫ T

0

∫
Γ

ẏf(U ,µ, t) · e2 dS dt

Wθ(U ,µ) = −
∫ T

0

∫
Γ

θ̇f(U ,µ, t)× (x− x0) dS dt W(U ,µ) =

∫ T

0

∫
Γ

f(U ,µ, t) · ẋ dS dt,

(31)

which will be used as optimization functionals in subsequent sections. The terms Jx, Jy, and Jθ are the
x-, y-directed, and rotational impulse the fluid exerts on the airfoil, respectively. W is the total work
done on the airfoil by the fluid and Wy and Wθ are its translational and rotational components. The fully
discrete, high-order approximation of the integrated quantities of interest (DG-in-space, DIRK-in-time) will

be denoted with the corresponding Roman symbol, e.g., W (u(0), . . . ,u(Nt),k
(n)
1 , . . . ,k

(n)
s ,µ) is the fully

discrete approximation of W(U ,µ).
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Before considering an unsteady optimization problem, the derivatives obtained via the fully discrete
adjoint method of Section III are compared to finite differences. To minimize the effect of catastrophic
cancellation, a centered finite difference scheme is utilized. Figure 3 shows the discrepancy between the
gradient computed via the fully discrete adjoint method and that computed via finite differences is small
(O(10−7)) for two of the output quantities of interest.
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Figure 3: Comparison of dI
dµ ( ) and dW

dµ ( ) computed from fully discrete adjoint method with that
obtained from second-order finite difference approximation, for various step sizes.

The next sections will consider time-dependent optimization and control problems using the quantities
of interest from (28) and (31) as optimization functionals.

IV.B. Aerodynamic Inverse Design

In this section, an inverse design problem is considered, where a target solution U∗(x, t) is obtained by
solving (14) at µ = µ∗, then I is minimized to recover µ∗ by only considering U∗(x, t). The fully discrete
version of this problem takes the form

minimize
u(0), ..., u(Nt)∈RNu ,

k
(1)
1 , ..., k(Nt)

s ∈RNu ,

µ∈RNµ

I(u(0), . . . ,u(Nt),k
(1)
1 , . . . ,k(Nt)

s ,µ)

subject to − 2.0 ≤ µ1 ≤ 2.0, − π/2 ≤ µ2 ≤ π/2
u(0) = u0

u(n) = u(n−1) +

s∑
i=1

bik
(n)
i

Mk(n)i = ∆tnr
(
u
(n)
i , µ, tn−1 + ci∆tn

)
.

(32)

The spatial discretization of the compressible Navier-Stokes equations uses the DG-ALE formulation from
Section II.B with 971 p = 3 elements. The time interval of T = 2 is discretized via DIRK3 with 100 time
steps and Simpson’s rule is used to discretize I as I. The Reynolds number for the flow is 100 and the Mach
number is 0.2. All unsteady CFD simulations are initialized from the steady-state solution of the t = 0
configuration of the airfoil. The airfoil trajectory is discretized according to (27) and the target solution
corresponds to the parameter µ∗1 = 1.0, µ∗2 = π/6.

The L-BFGS-B15 solver is used to solve (32), a bound-constrained optimization problem with a nonlinear

objective function. The gradients of the objective function with respect to parameter,
dI

dµ
, are computed via

the fully discrete adjoint method according to Section III. The convergence of the optimization procedure is
contained in Figure 4, which shows the decay of the objective function to zero in 20 iterations. This indicates
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that the optimizer found a parameter that recovers the target state. Figure 4 also shows the evolution of µ1

and µ2 as a function of iteration, from which it is can be verified the optimizer recovers the target parameters,
µ∗1 and µ∗2.
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Figure 4: Convergence history for inverse design optimization problem.

IV.C. Energetically Optimal Trajectory

In this section, the problem of determining the energetically optimal trajectory of a 2D NACA0012 airfoil
with chord length c = 1 and zero-thickness trailing edge is considered. The fully discrete version of this
problem takes the form

minimize
u(0), ..., u(Nt)∈RNu ,

k
(1)
1 , ..., k(Nt)

s ∈RNu ,

µ∈RNµ

W (u(0), . . . ,u(Nt),k
(1)
1 , . . . ,k(Nt)

s ,µ)

subject to u(0) = u0

u(n) = u(n−1) +

s∑
i=1

bik
(n)
i

Mk(n)i = ∆tnr
(
u
(n)
i , µ, tn−1 + ci∆tn

)
.

(33)

The spatial discretization of the compressible Navier-Stokes equations uses the DG-ALE formulation from
Section II.B with 971 p = 3 elements. The time interval of T = 2 is discretized via DIRK3 with 100 time
steps and the solver consistent discretization is used for the output integral. The Reynolds number for the
flow is 1000 and the Mach number is 0.2. All unsteady CFD simulations are initialized from the steady-state
solution of the t = 0 configuration of the airfoil. Similar to the previous section, the prescribed mission for
the airfoil is to begin at the nominal position, y(0) = θ(0) = 0, and end at y(T ) = 1.0 and θ(T ) = 0.

The trajectory of the airfoil – y(t) and θ(t) – is discretized via clamped cubic splines with my+1 and mθ+1
knots, respectively. The knots are uniformly spaced between 0 and T in the t-dimension and the knot values
are optimization parameters. The derivatives of y(t) and θ(t) are clamped to zero at the endpoints of the time
interval to ensure smooth transitions and avoid non-physical transients. Two instances of the optimization
problem in (33), corresponding to different parametrizations, will be considered. Parametrization PI will
fix the translational motion and optimize over only the rotation, while PII will optimize over both the
translational and rotational motion; see Table 2. Given the generality of this spline discretization, bound
constraints were added to (33) to ensure reasonable motions of the airfoil are obtained.

Similar to the inverse design problem in the previous section, the L-BFGS-B solver is applied to (33) to
solve the bound-constrained optimization problem with a nonlinear objective. The gradients of the objective

function with respect to parameter,
dW

dµ
, are computed using the fully discrete adjoint method, which was

verified against a second-order finite difference approximation in Figure 3.
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PI PII

my mθ Nµ my mθ Nµ

0 5 6 5 5 12

Table 2: Summary of parametrizations considered in Section IV.C. The number of clamped cubic spline
knots used to discretize y(t) and θ(t) are my+1 and mθ+1, respectively. PI freezes the rigid body translation
(my = 0) and optimizes over only the rotation (mθ 6= 0). PII optimizes over all rigid body degrees of freedom
(my = mθ 6= 0).
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Figure 5: Trajectories of y(t) and θ(t) at initial guess ( ), energetically optimal pitch at fixed translation
- PI ( ), and energetically optimal pitch and translation - PII ( ).

A summary of the optimal trajectory for both parametrizations is provided in Figure 5. Optimization
under parametrization PI introduces pitch to the trajectory and PII introduces an overshoot in the vertical
translation and further increases the pitch. The vorticity of the flow corresponding to the initial guess (pure
heave), optimal solution under parametrization PI, and optimal solution under PII are shown in Figures 8 -
10, respectively. The incorporation of pitch in PI and vertical overshoot in PII confines all separation to
the end of the time interval. This also causes the net force on the airfoil and its motion to be aligned for a
portion of the trajectory, leading to an instantaneous extraction of power, which can be verified in Figure 7.
For parametrization PI, the integrated result is an order of magnitude decrease in the total work required
to complete the mission; see Figure 6. In contrast, the optimal solution under parametrization PII extracts
or harvests energy from the flow, which can also be verified in Figure 6.

The convergence of all quantities of interest with optimization iteration is shown in Figure 6 for parametriza-
tions PI and PII. The optimization problem in (33) under parametrization PI effectively converges in fewer
than 20 iterations, while the larger design space of parametrization PII required about 40 iterations. The
auxiliary quantities of interest – those not included as optimization functionals – were included to empha-
size that the energy reduction was performed without consideration of these quantities. For example, the
reduction in the energy was accompanied with a large increase in the drag (Fx) and moment (Tz) on the
airfoil.

The time history of all instantaneous quantities of interest are shown at the initial guess and optimal
solution of (33) under parametrizations PI and PII in Figure 7. It can be seen that the optimized motions
extract a large amount of power from the flow during the middle of the time interval (approximately t = 0.5
to t = 1.5) at the cost of a large amount of input power at the edges of the interval to conform to the imposed
boundary conditions on y(t) and θ(t). The uncontrolled quantities of interest, such as the forces and torque,
substantially increase in magnitude; a side-effect of the energy reductions and extraction.

V. Conclusion

This work introduces a globally high-order accurate numerical scheme for the solution of the compressible
Navier-Stokes equations on a deformable domain. The adjoint equations of the fully discrete numerical
scheme derived and the gradient of (integrated) quantities of interest are expressed in terms of the primal
and dual solutions of the numerical scheme. The numerical scheme is defined by a high-order Discontinuous
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problem (33) under parametrizations PI ( ) and PII ( ).
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Figure 7: Time history of instantaneous quantities of interest (x-directed force – Fhx (u,µ, t), y-directed force
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power – Ph(u,µ, t)) at initial guess ( ), solution of (33) under parametrization PI ( ), and solution of
(33) under parametrization PII ( ).
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Figure 8: Flow vorticity around flapping airfoil undergoing motion corresponding to initial guess for opti-
mization problem (33), i.e., pure heave ( ). Flow separation off leading edge implies a large amount of
work required to complete mission. Snapshots taken at times t = 0.0, 0.4, 0.8, 1.2, 1.6, 2.0.
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Figure 9: Flow vorticity around airfoil undergoing energetically optimal pitching motion for the fixed trans-
lational motion in Figure 5 ( ). The pitching motion limits the flow separation to the end of the
trajectory and results in a reduction of required energy to complete mission. Snapshots taken at times
t = 0.0, 0.4, 0.8, 1.2, 1.6, 2.0.
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Figure 10: Flow vorticity around airfoil undergoing energetically optimal rigid body motion. The modified
pitching and heaving trajectories result in energy extraction since the resultant force on the airfoil and
its velocity are in the same direction for a large portion of the motion. Snapshots taken at times t =
0.0, 0.4, 0.8, 1.2, 1.6, 2.0.
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Galerkin Arbitrary Lagrangian-Eulerian spatial discretization and Diagonally Implicit Runge-Kutta temporal
discretization. The fully discrete adjoint method ensures the gradients of the quantities of interest are
consistent with the functionals themselves.

The quantity of interest gradients were shown to closely match the gradients obtained via finite differences,
validating the fully discrete adjoint method. The high-order scheme was applied to solve a time-dependent
aerodynamic optimal control problems using gradient-based optimization. For an inverse design problem,
the target control was recovered, to machine precision, in about 20 optimization iterations. The framework
was also used to determine the energetically optimal trajectory of an airfoil in viscous, compressible flow.
Even given a poor initial trajectory for the optimization problem that required a large amount of energy to
complete, the optimal trajectory was able to extract energy from the flow.
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