

Comparison of Model Order Reduction Techniques on High-Fidelity Electrical, Mechanical, and Biological Systems Matthew J. Zahr, Kevin Carlberg, David Amsallem, & Charbel Farhat **AHPCRC;** Farhat Research Group, Stanford University

Motivation

There has been little work done comparing model reduction techniques across a variety of linear and nonlinear systems; the goal of this work is to provide a testbed that enables a thorough comparison of techniques on different types of systems.

Model reduction of simple systems such as linear time-invariant systems is relatively mature, while nonlinear model reduction is much more complicated.

A natural question is: which of these model reduction techniques performs best on which problems?

International Journal of Numerical Methods in Engineering, in press, 2010. doi:10.1002/nme.3050 [4] Saifon Chaturantabut and Danny Sorensen. Nonlinear Model Reduction via Discrete Empirical Interpolation. SIAM Journal on Scientific Computing, 2010 vol. 32 pp. 2737-2764. [5] Thilo Penzl. Algorithms for model reduction of large dynamical systems. Linear Algebra and Its Applications, 2006.

[6] Michal Jerzy Rewienski. A Trajectory Piecewise-Linear Approach to Model Order Reduction of Nonlinear Dynamical Systems. PhD thesis, Massachusetts Institute of Technology, 2003. [7] T.Thanh and K.Willcox. Model reduction for large-scale cfd applications using the balanced proper orthogonal decomposition. Technical report, 17th AIAA Computational Fluid Dynamics Conference, Toronto, Ontario Canada, 2005.

Acknowledgements

MJZ would like to thank the AHPCRC for the opportunity to spend the summer of 2010 performing high performance computing research. Also, I would like to thank Professor Farhat for the opportunity to be part of his research team. Finally, I would like to extend my gratitude to Kevin Carlberg and David Amsallem for the guidance and assistance they provided me throughout this project and beyond.

generaliz

Nonlinear Module Results (continued)
SAGN Parameter Comparison is a technique for reducing the computational cost of nonlinear as that was developed by Carlberg & Farhat [3]. There are three vital parameters: $nR = number$ of POD basis vector to represent the l, $nJ = number$ of POD basis vectors to represent the Jacobian, and nl er of indices for which the Jacobian and Residual are computed. or is strongly dependent on nR and nJ , but only weakly dependent on the trend was seen in all nonlinear problems.
$ \begin{array}{c} & 20\% - 30\% \\ & 10\% - 20\% \\ & 5\% - 10\% \\ & 4\% - 5\% \\ & 3\% - 4\% \\ & 2\% - 3\% \\ & 1\% - 2\% \\ & 0\% - 0.5\% \\ \end{array} $ Robustness Analysis
section, unlike the other sections, the online and offline (training) liffer. Train input = 49H(t) ; Online input = 81H(t).
ne POD methods have a high degree of robustness, while TPWL ot. Galerkin POD is the most robust of the POD methods and SAGN east.
Center Point Beam Deflection FOM Galerkin POD Petrov-Galerkin POD Gappy POD O O O O O O O O O O O O O
$\begin{array}{c} & & & & \\ 1 & 2 & 3 & 4 & 5 & 6 \\ & t & & & x 10^4 \end{array}$
e optimal parameters gathered from the previous four sections, a final ison is made to determine the best MOR technique for this problem. and Gappy POD have the largest induced error and the most significant up. The other POD methods have negligible speed-up and negligible error. These results generalized to all nonlinear problems.
sion: SAGN performs best for the MEMS problem due to favorable between speed-up and induced error.
Center Point Beam Deflection Model Error vs. Speed-Up (Pareto Space)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Conclusion
MOR testbed provides a means to effectively compare MOR es for linear and nonlinear problems. The testbed was useful for ng MOR techniques and is intended for researchers to test new against those currently in existence. e Penzl problem, Balanced Truncation performed the best. This ion roughly generalized to the other linear problems. For the witch, SAGN performed best, which is an observation that did not ze to all nonlinear problems.