Performance tuning of Newton-GMRES methods for discontinuous Galerkin discretization of the Navier-Stokes equations

Matthew J. Zahr and Per-Olof Persson

Stanford University University of California, Berkeley Lawrence Berkeley National Lab

25th June 2013 San Diego, CA 43rd AIAA Fluid Dynamics Conference and Exhibit

Introduction

2 Background

- ODE Scheme
- Newton Prediction
- Jacobian Recycling
- GMRES Tolerance
- **3** Numerical Experiments
 - Experiment 1: ODE Scheme
 - Experiment 2: Newton Prediction
 - Experiment 3: Jacobian Recycling
 - Experiment 4: GMRES Tolerance

Conclusion

Motivation

- Low-order methods perform poorly for problems where high numerical accuracy is required
 - Wave propagation (e.g. aeroacoustics)
 - Turbulent flow (e.g. draw & transition prediction)
 - Non-linear interactions (e.g. fluid-structure coupling)
- High-order discontinuous Galerkin methods attractive options:
 - Low dissipation, stabilization, complex geometries
- Parallel computers required for realistic problems because of high computational and storage costs with DG

Motivation

• Fundamental properties of Discontinuous Galerkin (DG) methods:

	FVM	FDM	FEM	DG
1) High-order/Low dispersion	X	\checkmark	\checkmark	✓
2) Unstructured meshes	1	X	\checkmark	\checkmark
3) Stability for conservation laws	1	1	X	1

- However, several problems to resolve:
 - High CPU/memory requirements (compared to FVM or H-O FDM)
 - Low tolerance to under-resolved features
- •
- High-order geometry representation and mesh generateion
- The challenge is to make DG competitive for real-world problems

Semi-discrete Equations

Discretization of the Navier-Stokes equations with DG-FEM

$$\mathbb{M}\dot{\mathbf{u}}(t) = \mathbf{r}(t, \mathbf{u}(t))$$

where

- $\mathbb{M} \in \mathbb{R}^{N \times N}$ is the block diagonal mass matrix,
- $\mathbf{u} \in \mathbb{R}^N$ is the time-dependent state vector arising from the DG-FEM discretization, and
- $\mathbf{r} : \mathbb{R}_+ \times \mathbb{R}^N \to \mathbb{R}^N$ is the spatially-discretized nonlinearity of the Navier-Stokes equations.

ODE Scheme Newton Prediction Jacobian Recycling GMRES Tolerance

Implicit Time Integration

- Implicit solvers typically required because of CFL restrictions from viscous effects, low Mach numbers, and adaptive/anisotropic grids
 - Backward differentiation formulas
 - Runge-Kutta methods
- Jacobian matrices are large even at p = 2 or p = 3, however:
 - They are required for non-trivial preconditioners
 - They are very expensive to recompute
- Therefore, we consider matrix-based Newton-Krylov solvers

ODE Scheme Newton Prediction Jacobian Recycling GMRES Tolerance

Backward Differentiation Formulas (BDF)

$$\mathbb{M}\mathbf{u}^{(n+1)} - \left(\sum_{i=0}^{n} \alpha_i \mathbb{M}\mathbf{u}^{(i)} + \kappa \Delta t \mathbf{r}(t_{n+1}, \mathbf{u}^{(n+1)})\right) = 0$$

• BDF1 (Backward Euler)

$$\boldsymbol{lpha}^1 = \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix}$$
 $\kappa_1 = 1$

• BDF2

$$\boldsymbol{\alpha}^2 = \begin{bmatrix} 0 & \cdots & 0 & -1/3 & 4/3 \end{bmatrix} \qquad \qquad \kappa_2 = 2/3$$

• BDF3

$$\alpha^3 = \begin{bmatrix} 0 & \cdots & 0 & 2/11 & -9/11 & 18/11 \end{bmatrix}$$
 $\kappa_3 = 6/11$

BDF23

$$\boldsymbol{\alpha}^{23} = \tau \boldsymbol{\alpha}^2 + (1 - \tau) \boldsymbol{\alpha}^3 \qquad \qquad \kappa_{23} = \tau \kappa_2 + (1 - \tau) \kappa_3$$

ODE Scheme Newton Prediction Jacobian Recycling GMRES Tolerance

BDF23_3: 3rd Order, A-stable BDF

• Define \mathbf{u}_{23} as

$$\mathbf{u}_{23} = \boldsymbol{\alpha}_n^{23} \mathbf{u}^{(n)} + \boldsymbol{\alpha}_{n-1}^{23} \mathbf{u}^{(n-1)} + \boldsymbol{\alpha}_{n-2}^{23} \mathbf{u}^{(n-2)}$$

• Solve the nonlinear Backward Cauchy-Euler (BCE) equation $\mathcal{R}(\mathbf{u}_i) = 0$, where

$$\mathcal{R}(\mathbf{u}_i) = \mathbb{M}\mathbf{u}_i - (\mathbb{M}\mathbf{u}_{23} + \kappa_{23}\Delta t\mathbf{r}(t_{n+1}, \mathbf{u}_i))$$

 $\bullet\,$ Define \mathbf{u}_{33} as

$$\mathbf{u}_{33} = \boldsymbol{\alpha}_n^3 \mathbf{u}^{(n)} + \boldsymbol{\alpha}_{n-1}^3 \mathbf{u}^{(n-1)} + \boldsymbol{\alpha}_{n-2}^3 \mathbf{u}^{(n-2)} - \delta(\mathbf{u}_i - \mathbf{u}_{23})$$

- Solve the nonlinear BCE equation $\mathcal{R}(\mathbf{u}_{n+1}) = 0$, where

$$\mathcal{R}(\mathbf{u}_{n+1}) = \mathbb{M}\mathbf{u}^{(n+1)} - \left(\mathbb{M}\mathbf{u}_{33} + \kappa_{33}\Delta t\mathbf{r}(t_{n+1}, \mathbf{u}^{(n+1)})\right)$$

ODE Scheme Newton Prediction Jacobian Recycling GMRES Tolerance

Diagonally-Implicit Runge Kutta (DIRK)

Standard formulation (k-form)

$$\mathbf{u}^{(n+1)} = \mathbf{u}^{(n)} + \sum_{i=1}^{s} b_i \mathbf{k}_i$$
$$\mathbb{M}\mathbf{k}_i = \Delta t \mathbf{r} \left(t_n + c_i \Delta t, \mathbf{u}^{(n)} + \sum_{j=1}^{i} a_{ij} \mathbf{k}_j \right),$$

Alternate formulation (u-form)

$$\mathbf{u}^{(n+1)} = \mathbf{u}^{(n)} + \Delta t \sum_{j=1}^{s} b_j \mathbb{M}^{-1} \mathbf{r} (t_n + c_j \Delta t, \bar{\mathbf{u}}_j)$$
$$\mathbb{M} \bar{\mathbf{u}}_i = \mathbb{M} \mathbf{u}^{(n)} + \Delta t \sum_{j=1}^{i} a_{ij} \mathbf{r} (t_n + c_j \Delta t, \bar{\mathbf{u}}_j).$$

ODE Scheme Newton Prediction Jacobian Recycling GMRES Tolerance

Newton Prediction

Accurate predictions for Newton's method may result in fewer nonlinear iterations

- Extrapolation using Lagrangian polynomial
 - Construct polynomial of order p with p + 1 points in solution history
 - Use polynomial to predict solution at next time step
 - Constant (LAG0), linear (LAG1), quadratic (LAG2)
- Extrapolation using Hermite polynomial
 - Construct polynomial of order 2p + 1 with p points in history of solution and derivative
 - Use polynomial to predict solution at next time step
 - Linear (HERM1), cubic (HERM2), quintic (HERM3)

ODE Scheme Newton Prediction Jacobian Recycling GMRES Tolerance

Jacobian Recycling

- For matrix-based methods, every nonlinear iteration requires a Jacobian evaluation
 - Jacobian assembly at least $10\times$ as expensive as residual evaluation
- Re-using Jacobians yield inexact Newton directions
 - May require more Newton iterations per time step
 - Enables re-use of preconditioner
 - Reduces number of Jacobian evaluations and preconditioner computations
- Recompute Jacobian when corresponding Newton step fails to reduce nonlinear residual

ODE Scheme Newton Prediction Jacobian Recycling GMRES Tolerance

GMRES Tolerance

When using GMRES to solve

$$Ax = b,$$

common convergence criteria is

$$||Ax - b||_2 \le Gtol \, ||b||_2$$

- Small GMRES tolerance \rightarrow search directions "close" to Newton directions
 - More GMRES iterations per Newton step, fewer Newton iterations

- Large GMRES tolerance \rightarrow search directions may be far from Newton directions
 - Fewer GMRES iterations per Newton step, more Newton iterations

Introduction Background Numerical Experiments Conclusion Experiment 2: Newton Prediction Experiment 3: Jacobian Recycling Experiment 4: GMRES Tolerance

Euler Vortex

Euler vortex mesh, with degree p = 4

Solution (density)

Figure : Euler Vortex: Mesh and Solution at $t_0 = \sqrt{10^2 + 5^2}$

Experiment 1: ODE Scheme Experiment 2: Newton Prediction Experiment 3: Jacobian Recycling Experiment 4: GMRES Tolerance

Viscous flow over NACA wing at high angle of attack

NACA mesh, with degree p = 4

Solution (Mach)

Figure : NACA Wing: Mesh and Solution at $t_0 = 5.01$

BDF23_3 cheaper than DIRK3 for high accuracyBDF23 has same slope but better offset than BDF2

• LAG0 is a poor predictor

- LAG1, LAG2, HERM1, HERM2 are comparable predictors
- LAG2 is a good predictor for all Δt considered
- High-order extrapolation may not be a good idea

• LAG0 is a poor predictor

- LAG1, LAG2, HERM1, HERM2 are comparable predictors
- LAG2 is a good predictor for all Δt considered
- High-order extrapolation may not be a good idea

• LAG0 is a poor predictor

- LAG1, LAG2, HERM1, HERM2 are comparable predictors
- LAG2 is a good predictor for all Δt considered
- Hermite predictors not reliable

BDF23_3, LAG2, $Gtol = 10^{-5}$ BDF23_3, LAG2, $Gtol = 10^{-5}$

• Jacobian recycling is beneficial most beneficial for small Δt

• More sophisticated recomputation strategies could make the differences more pronounced

BDF23_3, LAG2, Jacobian Recomputation BDF23_3, LAG2, Jacobian Recomputation

EV: Smaller *Gtol* better for range of Δt considered
NACA: Larger *Gtol* better for range of Δt considered

Introduction	Experiment 1: ODE Scheme
Background	Experiment 2: Newton Prediction
Numerical Experiments	Experiment 3: Jacobian Recycling
Conclusion	Experiment 4: GMRES Tolerance

• Larger *Gtol* better for range of Δt considered

Speedup Results - BDF23

	BDF23, LAG0, 10^{-5}	BDF23 , LAG2 , 10^{-5}
L2 Error	3.24×10^{-4}	3.24×10^{-4}
CPU Time (sec)	1.95×10^4	7.86×10^3
Speedup over Base	5.41	13.4

Table : Speedup/Error Results: Euler Vortex - BDF23, JacobianRecycling

	BDF23 , LAG0 , 10^{-5}	BDF23 , LAG2 , 10^{-5}
L2 Error	6.34×10^{-5}	7.82×10^{-6}
CPU Time (sec)	1.14×10^{3}	6.20×10^{2}
Speedup over Base	6.24	11.5

Table : Speedup/Error Results: NACA Wing - BDF23, JacobianRecycling

Base: DIRK3, LAG0, Jacobian Recomputation, $Gtol = 10^{-5}$

Speedup Results - BDF23_3

	BDF23_3, LAG0, 10 ⁻⁵	BDF23_3, LAG2, 10 ⁻⁵
L2 Error	2.95×10^{-6}	2.98×10^{-6}
CPU Time (sec)	4.48×10^{4}	1.71×10^4
Speedup over Base	2.35	6.17

 Table : Speedup/Error Results: Euler Vortex - BDF23_3, Jacobian Recycling

	BDF23_3, LAG0, 10^{-5}	BDF23_3, LAG2, 10^{-5}
L2 Error	3.10×10^{-5}	3.11×10^{-7}
CPU Time (sec)	2.38×10^3	1.25×10^3
Speedup over Base	3.00	5.73

 Table : Speedup/Error Results: NACA Wing - BDF23_3, Jacobian

 Recycling

Base: DIRK3, LAG0, Jacobian Recomputation, $Gtol = 10^{-5}$

Speedup Results - DIRK3

	DIRK3, LAG0, 10^{-5}	DIRK3, LAG2, 10^{-5}
L2 Error	2.92×10^{-6}	2.92×10^{-6}
CPU Time (sec)	4.80×10^4	$4.13 imes 10^4$
Speedup over Base	2.20	2.55

Table : Speedup/Error Results: Euler Vortex - DIRK3, JacobianRecycling

	DIRK3, LAG0, 10^{-5}	DIRK3, LAG2, 10^{-5}
L2 Error	1.64×10^{-7}	1.15×10^{-7}
CPU Time (sec)	3.65×10^3	3.59×10^3
Speedup over Base	1.96	1.99

Table : Speedup/Error Results: NACA Wing - DIRK3, JacobianRecycling

Base: DIRK3, LAG0, Jacobian Recomputation, $Gtol = 10^{-5}$

Conclusions

- Two new BDF-type schemes introduced: BDF23, BDF23_3
- BDF23_3 attractive high-order alternative to DIRK3
- Quadratic Lagrange polynomial prediction significantly better than commonly used constant prediction
- Jacobian recycling speeds up computations by factor of 2-3 for small Δt
- Larger GMRES tolerance provides speedup *particularly* when Jacobians are recycled
- BDF23 with LAG2 predictor is 11 14 times faster than DIRK3 with LAG0 prediction

• BDF23_3 with LAG2 predictor is about 6 times faster than DIRK3 with LAG0 prediction

Acknowledgments

- Department of Energy Computational Science Graduate Fellowship
- Per-Olof Persson

