
Introduction
Background

Numerical Experiments
Conclusion

Performance tuning of Newton-GMRES
methods for discontinuous Galerkin

discretization of the Navier-Stokes equations

Matthew J. Zahr and Per-Olof Persson

Stanford University
University of California, Berkeley
Lawrence Berkeley National Lab

25th June 2013
San Diego, CA

43rd AIAA Fluid Dynamics Conference and Exhibit

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

1 Introduction

2 Background
ODE Scheme
Newton Prediction
Jacobian Recycling
GMRES Tolerance

3 Numerical Experiments
Experiment 1: ODE Scheme
Experiment 2: Newton Prediction
Experiment 3: Jacobian Recycling
Experiment 4: GMRES Tolerance

4 Conclusion

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

Motivation

Low-order methods perform poorly for problems where
high numerical accuracy is required

Wave propagation (e.g. aeroacoustics)
Turbulent flow (e.g. draw & transition prediction)
Non-linear interactions (e.g. fluid-structure coupling)

High-order discontinuous Galerkin methods attractive
options:

Low dissipation, stabilization, complex geometries

Parallel computers required for realistic problems because
of high computational and storage costs with DG

Motivation

Need for higher fidelity predictions in computational mechanics

Turbulent flow simulations (DNS/LES/DES)
Engineering applications: Drag prediction, rotor dynamics,
fluid/structure interaction, flapping flight
Computational aeroacoustics, accurate prediction of noise sources
Other problems involving wave propagation, multiple scale
phenomena, and non-linear interactions

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

Motivation

Fundamental properties of Discontinuous Galerkin (DG)
methods:

Motivation

Fundamental properties of Discontinuous Galerkin (DG) methods:

FVM FDM FEM DG

1) High-order/Low dispersion

2) Unstructured meshes

3) Stability for conservation laws

However, several problems to resolve:

High CPU/memory requirements (compared to FVM or H-O FDM)
Low tolerance to under-resolved features
High-order geometry representation and mesh generation

The challenge is to make DG competitive for real-world problems

However, several problems to resolve:
High CPU/memory requirements (compared to FVM or
H-O FDM)
Low tolerance to under-resolved features
High-order geometry representation and mesh generateion

The challenge is to make DG competitive for real-world
problems

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

Semi-discrete Equations

Discretization of the Navier-Stokes equations with DG-FEM

Mu̇(t) = r(t,u(t))

where

M ∈ RN×N is the block diagonal mass matrix,

u ∈ RN is the time-dependent state vector arising from the
DG-FEM discretization, and

r : R+ × RN → RN is the spatially-discretized nonlinearity
of the Navier-Stokes equations.

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

ODE Scheme
Newton Prediction
Jacobian Recycling
GMRES Tolerance

Implicit Time Integration

Implicit solvers typically required because of CFL
restrictions from viscous effects, low Mach numbers, and
adaptive/anisotropic grids

Backward differentiation formulas
Runge-Kutta methods

Jacobian matrices are large even at p = 2 or p = 3,
however:

They are required for non-trivial preconditioners
They are very expensive to recompute

Therefore, we consider matrix-based Newton-Krylov solvers

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

ODE Scheme
Newton Prediction
Jacobian Recycling
GMRES Tolerance

Backward Differentiation Formulas (BDF)

Mu(n+1) −

(
n∑

i=0

αiMu(i) + κ∆tr(tn+1,u
(n+1))

)
= 0

BDF1 (Backward Euler)

α1 =
[
0 · · · 0 1

]
κ1 = 1

BDF2

α2 =
[
0 · · · 0 −1/3 4/3

]
κ2 = 2/3

BDF3

α3 =
[
0 · · · 0 2/11 −9/11 18/11

]
κ3 = 6/11

BDF23

α23 = τα2 + (1− τ)α3 κ23 = τκ2 + (1− τ)κ3

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

ODE Scheme
Newton Prediction
Jacobian Recycling
GMRES Tolerance

BDF23 3: 3rd Order, A-stable BDF

Define u23 as

u23 = α23
n u(n) + α23

n−1u
(n−1) + α23

n−2u
(n−2)

Solve the nonlinear Backward Cauchy-Euler (BCE)
equation R(ui) = 0, where

R(ui) = Mui − (Mu23 + κ23∆tr(tn+1,ui))

Define u33 as

u33 = α3
nu

(n) + α3
n−1u

(n−1) + α3
n−2u

(n−2) − δ(ui − u23)

Solve the nonlinear BCE equation R(un+1) = 0, where

R(un+1) = Mu(n+1) −
(
Mu33 + κ33∆tr(tn+1,u

(n+1))
)

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

ODE Scheme
Newton Prediction
Jacobian Recycling
GMRES Tolerance

Diagonally-Implicit Runge Kutta (DIRK)

Standard formulation (k-form)

u(n+1) = u(n) +

s∑
i=1

biki

Mki = ∆tr

tn + ci∆t,u
(n) +

i∑
j=1

aijkj

 ,

Alternate formulation (u-form)

u(n+1) = u(n) + ∆t

s∑
j=1

bjM−1r(tn + cj∆t, ūj)

Mūi = Mu(n) + ∆t

i∑
j=1

aijr (tn + cj∆t, ūj) .

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

ODE Scheme
Newton Prediction
Jacobian Recycling
GMRES Tolerance

Newton Prediction

Accurate predictions for Newton’s method may result in fewer
nonlinear iterations

Extrapolation using Lagrangian polynomial

Construct polynomial of order p with p+ 1 points in
solution history
Use polynomial to predict solution at next time step
Constant (LAG0), linear (LAG1), quadratic (LAG2)

Extrapolation using Hermite polynomial

Construct polynomial of order 2p+ 1 with p points in
history of solution and derivative
Use polynomial to predict solution at next time step
Linear (HERM1), cubic (HERM2), quintic (HERM3)

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

ODE Scheme
Newton Prediction
Jacobian Recycling
GMRES Tolerance

Jacobian Recycling

For matrix-based methods, every nonlinear iteration
requires a Jacobian evaluation

Jacobian assembly at least 10× as expensive as residual
evaluation

Re-using Jacobians yield inexact Newton directions

May require more Newton iterations per time step
Enables re-use of preconditioner
Reduces number of Jacobian evaluations and preconditioner
computations

Recompute Jacobian when corresponding Newton step fails
to reduce nonlinear residual

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

ODE Scheme
Newton Prediction
Jacobian Recycling
GMRES Tolerance

GMRES Tolerance

When using GMRES to solve

Ax = b,

common convergence criteria is

||Ax− b||2 ≤ Gtol ||b||2

Small GMRES tolerance → search directions “close” to
Newton directions

More GMRES iterations per Newton step, fewer Newton
iterations

Large GMRES tolerance → search directions may be far
from Newton directions

Fewer GMRES iterations per Newton step, more Newton
iterations

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

Experiment 1: ODE Scheme
Experiment 2: Newton Prediction
Experiment 3: Jacobian Recycling
Experiment 4: GMRES Tolerance

Euler Vortex

Euler vortex mesh, with degree
p = 4

Solution (density)

Figure : Euler Vortex: Mesh and Solution at t0 =
√

102 + 52

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

Experiment 1: ODE Scheme
Experiment 2: Newton Prediction
Experiment 3: Jacobian Recycling
Experiment 4: GMRES Tolerance

Viscous flow over NACA wing at high angle of attack

Student Version of MATLAB

NACA mesh, with degree p = 4

Student Version of MATLAB

Solution (Mach)

Figure : NACA Wing: Mesh and Solution at t0 = 5.01

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

Experiment 1: ODE Scheme
Experiment 2: Newton Prediction
Experiment 3: Jacobian Recycling
Experiment 4: GMRES Tolerance

DIRK3
DIRK2
DIRK1
BDF23 3
BDF23
BDF2

Euler Vortex

E
rr
or

(m
as
s
m
at
ri
x
n
or
m
)

CPU time (sec)

100 101 102 103
10−5

10−4

10−3

10−2

10−1

100

101

LAG2, Jacobian
Recomputation, Gtol = 10−5

DIRK3
DIRK2
DIRK1
BDF23 3
BDF23
BDF2

NACA Wing

E
rr
or

(m
as
s
m
at
ri
x
n
or
m
)

CPU time (sec)

102 103
10−6

10−5

10−4

10−3

10−2

LAG2, Jacobian
Recomputation, Gtol = 10−5

BDF23 3 cheaper than DIRK3 for high accuracy

BDF23 has same slope but better offset than BDF2

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

Experiment 1: ODE Scheme
Experiment 2: Newton Prediction
Experiment 3: Jacobian Recycling
Experiment 4: GMRES Tolerance

HERM3
HERM2
HERM1
LAG2
LAG1
LAG0

Euler Vortex

E
rr
or

(m
as
s
m
at
ri
x
n
or
m
)

CPU time (sec)

100 101 102 103
10−4

10−3

10−2

10−1

100

101

BDF23, Jacobian
Recomputation, Gtol = 10−5

HERM3
HERM2
HERM1
LAG2
LAG1
LAG0

NACA Wing

E
rr
or

(m
as
s
m
at
ri
x
n
or
m
)

CPU time (sec)

102 103

10−4

10−3

10−2

10−1

BDF23, Jacobian
Recomputation, Gtol = 10−5

LAG0 is a poor predictor

LAG1, LAG2, HERM1, HERM2 are comparable predictors

LAG2 is a good predictor for all ∆t considered

High-order extrapolation may not be a good idea

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

Experiment 1: ODE Scheme
Experiment 2: Newton Prediction
Experiment 3: Jacobian Recycling
Experiment 4: GMRES Tolerance

HERM3
HERM2
HERM1
LAG2
LAG1
LAG0

Euler Vortex

E
rr
or

(m
as
s
m
at
ri
x
n
or
m
)

CPU time (sec)

100 101 102 103
10−6

10−5

10−4

10−3

10−2

10−1

100

101

BDF23 3, Jacobian
Recomputation, Gtol = 10−5

HERM3
HERM2
HERM1
LAG2
LAG1
LAG0

NACA Wing

E
rr
or

(m
as
s
m
at
ri
x
n
or
m
)

CPU time (sec)

102 103

10−5

10−4

10−3

10−2

10−1

BDF23 3, Jacobian
Recomputation, Gtol = 10−5

LAG0 is a poor predictor

LAG1, LAG2, HERM1, HERM2 are comparable predictors

LAG2 is a good predictor for all ∆t considered

High-order extrapolation may not be a good idea

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

Experiment 1: ODE Scheme
Experiment 2: Newton Prediction
Experiment 3: Jacobian Recycling
Experiment 4: GMRES Tolerance

HERM3
HERM2
HERM1
LAG2
LAG1
LAG0

Euler Vortex

E
rr
or

(m
as
s
m
at
ri
x
n
or
m
)

CPU time (sec)

100 101 102 103
10−6

10−5

10−4

10−3

10−2

10−1

100

DIRK3, Jacobian
Recomputation, Gtol = 10−5

HERM3
HERM2
HERM1
LAG2
LAG1
LAG0

NACA Wing

E
rr
or

(m
as
s
m
at
ri
x
n
or
m
)

CPU time (sec)

102 103
10−6

10−5

10−4

10−3

10−2

10−1

DIRK3, Jacobian
Recomputation, Gtol = 10−5

LAG0 is a poor predictor

LAG1, LAG2, HERM1, HERM2 are comparable predictors

LAG2 is a good predictor for all ∆t considered

Hermite predictors not reliable

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

Experiment 1: ODE Scheme
Experiment 2: Newton Prediction
Experiment 3: Jacobian Recycling
Experiment 4: GMRES Tolerance

Jac Recycle
Jac Recompute

Euler Vortex

E
rr
or

(m
as
s
m
at
ri
x
n
or
m
)

CPU time (sec)

100 101 102 103
10−6

10−5

10−4

10−3

10−2

10−1

100

101

BDF23 3, LAG2, Gtol = 10−5

Jac Recycle
Jac Recompute

NACA Wing

E
rr
or

(m
as
s
m
at
ri
x
n
or
m
)

CPU time (sec)

102 103

10−6

10−5

10−4

10−3

BDF23 3, LAG2, Gtol = 10−5

Jacobian recycling is beneficial most beneficial for small ∆t

More sophisticated recomputation strategies could make
the differences more pronounced

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

Experiment 1: ODE Scheme
Experiment 2: Newton Prediction
Experiment 3: Jacobian Recycling
Experiment 4: GMRES Tolerance

Gtol = 10−5
Gtol = 10−4
Gtol = 10−3
Gtol = 10−2

Euler Vortex

E
rr
or

(m
as
s
m
at
ri
x
n
or
m
)

CPU time (sec)

100 101 102 103
10−6

10−5

10−4

10−3

10−2

10−1

100

101

BDF23 3, LAG2, Jacobian
Recomputation

Gtol = 10−5
Gtol = 10−2

NACA Wing

E
rr
or

(m
as
s
m
at
ri
x
n
or
m
)

CPU time (sec)

102 103

10−5

10−4

10−3

BDF23 3, LAG2, Jacobian
Recomputation

EV: Smaller Gtol better for range of ∆t considered

NACA: Larger Gtol better for range of ∆t considered

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

Experiment 1: ODE Scheme
Experiment 2: Newton Prediction
Experiment 3: Jacobian Recycling
Experiment 4: GMRES Tolerance

Gtol = 10−5
Gtol = 10−4
Gtol = 10−3
Gtol = 10−2

Euler Vortex

E
rr
or

(m
as
s
m
at
ri
x
n
or
m
)

CPU time (sec)

100 101 102
10−6

10−5

10−4

10−3

10−2

10−1

100

101

BDF23 3, LAG2, Jacobian
Recycling

Gtol = 10−5
Gtol = 10−2

NACA Wing

E
rr
or

(m
as
s
m
at
ri
x
n
or
m
)

CPU time (sec)

102

10−5

10−4

10−3

BDF23 3, LAG2, Jacobian
Recycling

Larger Gtol better for range of ∆t considered

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

Speedup Results - BDF23

BDF23, LAG0, 10−5 BDF23, LAG2, 10−5

L2 Error 3.24× 10−4 3.24× 10−4

CPU Time (sec) 1.95× 104 7.86× 103

Speedup over Base 5.41 13.4

Table : Speedup/Error Results: Euler Vortex - BDF23, Jacobian
Recycling

BDF23, LAG0, 10−5 BDF23, LAG2, 10−5

L2 Error 6.34× 10−5 7.82× 10−6

CPU Time (sec) 1.14× 103 6.20× 102

Speedup over Base 6.24 11.5

Table : Speedup/Error Results: NACA Wing - BDF23, Jacobian
Recycling

Base: DIRK3, LAG0, Jacobian Recomputation, Gtol = 10−5

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

Speedup Results - BDF23 3

BDF23 3, LAG0, 10−5 BDF23 3, LAG2, 10−5

L2 Error 2.95× 10−6 2.98× 10−6

CPU Time (sec) 4.48× 104 1.71× 104

Speedup over Base 2.35 6.17

Table : Speedup/Error Results: Euler Vortex - BDF23 3, Jacobian
Recycling

BDF23 3, LAG0, 10−5 BDF23 3, LAG2, 10−5

L2 Error 3.10× 10−5 3.11× 10−7

CPU Time (sec) 2.38× 103 1.25× 103

Speedup over Base 3.00 5.73

Table : Speedup/Error Results: NACA Wing - BDF23 3, Jacobian
Recycling

Base: DIRK3, LAG0, Jacobian Recomputation, Gtol = 10−5

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

Speedup Results - DIRK3

DIRK3, LAG0, 10−5 DIRK3, LAG2, 10−5

L2 Error 2.92× 10−6 2.92× 10−6

CPU Time (sec) 4.80× 104 4.13× 104

Speedup over Base 2.20 2.55

Table : Speedup/Error Results: Euler Vortex - DIRK3, Jacobian
Recycling

DIRK3, LAG0, 10−5 DIRK3, LAG2, 10−5

L2 Error 1.64× 10−7 1.15× 10−7

CPU Time (sec) 3.65× 103 3.59× 103

Speedup over Base 1.96 1.99

Table : Speedup/Error Results: NACA Wing - DIRK3, Jacobian
Recycling

Base: DIRK3, LAG0, Jacobian Recomputation, Gtol = 10−5

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

Conclusions

Two new BDF-type schemes introduced: BDF23, BDF23 3

BDF23 3 attractive high-order alternative to DIRK3

Quadratic Lagrange polynomial prediction significantly
better than commonly used constant prediction

Jacobian recycling speeds up computations by factor of
2− 3 for small ∆t

Larger GMRES tolerance provides speedup particularly
when Jacobians are recycled

BDF23 with LAG2 predictor is 11 - 14 times faster than
DIRK3 with LAG0 prediction

BDF23 3 with LAG2 predictor is about 6 times faster
than DIRK3 with LAG0 prediction

Zahr and Persson DG Performance Tuning

Introduction
Background

Numerical Experiments
Conclusion

Acknowledgments

Department of Energy Computational Science Graduate
Fellowship

Per-Olof Persson

Zahr and Persson DG Performance Tuning

	Introduction
	Background
	ODE Scheme
	Newton Prediction
	Jacobian Recycling
	GMRES Tolerance

	Numerical Experiments
	Experiment 1: ODE Scheme
	Experiment 2: Newton Prediction
	Experiment 3: Jacobian Recycling
	Experiment 4: GMRES Tolerance

	Conclusion

