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Motivation

Low-order methods perform poorly for problems where
high numerical accuracy is required

Wave propagation (e.g. aeroacoustics)
Turbulent flow (e.g. draw & transition prediction)
Non-linear interactions (e.g. fluid-structure coupling)

High-order discontinuous Galerkin methods attractive
options:

Low dissipation, stabilization, complex geometries

Parallel computers required for realistic problems because
of high computational and storage costs with DG

Motivation

Need for higher fidelity predictions in computational mechanics

Turbulent flow simulations (DNS/LES/DES)
Engineering applications: Drag prediction, rotor dynamics,
fluid/structure interaction, flapping flight
Computational aeroacoustics, accurate prediction of noise sources
Other problems involving wave propagation, multiple scale
phenomena, and non-linear interactions
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Fundamental properties of Discontinuous Galerkin (DG)
methods:

Motivation

Fundamental properties of Discontinuous Galerkin (DG) methods:

FVM FDM FEM DG

1) High-order/Low dispersion

2) Unstructured meshes

3) Stability for conservation laws

However, several problems to resolve:

High CPU/memory requirements (compared to FVM or H-O FDM)
Low tolerance to under-resolved features
High-order geometry representation and mesh generation

The challenge is to make DG competitive for real-world problems

However, several problems to resolve:
High CPU/memory requirements (compared to FVM or
H-O FDM)
Low tolerance to under-resolved features
High-order geometry representation and mesh generateion

The challenge is to make DG competitive for real-world
problems
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Semi-discrete Equations

Discretization of the Navier-Stokes equations with DG-FEM

Mu̇(t) = r(t,u(t))

where

M ∈ RN×N is the block diagonal mass matrix,

u ∈ RN is the time-dependent state vector arising from the
DG-FEM discretization, and

r : R+ × RN → RN is the spatially-discretized nonlinearity
of the Navier-Stokes equations.
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Implicit Time Integration

Implicit solvers typically required because of CFL
restrictions from viscous effects, low Mach numbers, and
adaptive/anisotropic grids

Backward differentiation formulas
Runge-Kutta methods

Jacobian matrices are large even at p = 2 or p = 3,
however:

They are required for non-trivial preconditioners
They are very expensive to recompute

Therefore, we consider matrix-based Newton-Krylov solvers
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Backward Differentiation Formulas (BDF)

Mu(n+1) −

(
n∑

i=0

αiMu(i) + κ∆tr(tn+1,u
(n+1))

)
= 0

BDF1 (Backward Euler)

α1 =
[
0 · · · 0 1

]
κ1 = 1

BDF2

α2 =
[
0 · · · 0 −1/3 4/3

]
κ2 = 2/3

BDF3

α3 =
[
0 · · · 0 2/11 −9/11 18/11

]
κ3 = 6/11

BDF23

α23 = τα2 + (1− τ)α3 κ23 = τκ2 + (1− τ)κ3
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BDF23 3: 3rd Order, A-stable BDF

Define u23 as

u23 = α23
n u(n) + α23

n−1u
(n−1) + α23

n−2u
(n−2)

Solve the nonlinear Backward Cauchy-Euler (BCE)
equation R(ui) = 0, where

R(ui) = Mui − (Mu23 + κ23∆tr(tn+1,ui))

Define u33 as

u33 = α3
nu

(n) + α3
n−1u

(n−1) + α3
n−2u

(n−2) − δ(ui − u23)

Solve the nonlinear BCE equation R(un+1) = 0, where

R(un+1) = Mu(n+1) −
(
Mu33 + κ33∆tr(tn+1,u

(n+1))
)
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Diagonally-Implicit Runge Kutta (DIRK)

Standard formulation (k-form)

u(n+1) = u(n) +

s∑
i=1

biki

Mki = ∆tr

tn + ci∆t,u
(n) +

i∑
j=1

aijkj

 ,

Alternate formulation (u-form)

u(n+1) = u(n) + ∆t

s∑
j=1

bjM−1r(tn + cj∆t, ūj)

Mūi = Mu(n) + ∆t

i∑
j=1

aijr (tn + cj∆t, ūj) .
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Newton Prediction

Accurate predictions for Newton’s method may result in fewer
nonlinear iterations

Extrapolation using Lagrangian polynomial

Construct polynomial of order p with p+ 1 points in
solution history
Use polynomial to predict solution at next time step
Constant (LAG0), linear (LAG1), quadratic (LAG2)

Extrapolation using Hermite polynomial

Construct polynomial of order 2p+ 1 with p points in
history of solution and derivative
Use polynomial to predict solution at next time step
Linear (HERM1), cubic (HERM2), quintic (HERM3)
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Jacobian Recycling

For matrix-based methods, every nonlinear iteration
requires a Jacobian evaluation

Jacobian assembly at least 10× as expensive as residual
evaluation

Re-using Jacobians yield inexact Newton directions

May require more Newton iterations per time step
Enables re-use of preconditioner
Reduces number of Jacobian evaluations and preconditioner
computations

Recompute Jacobian when corresponding Newton step fails
to reduce nonlinear residual
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GMRES Tolerance

When using GMRES to solve

Ax = b,

common convergence criteria is

||Ax− b||2 ≤ Gtol ||b||2

Small GMRES tolerance → search directions “close” to
Newton directions

More GMRES iterations per Newton step, fewer Newton
iterations

Large GMRES tolerance → search directions may be far
from Newton directions

Fewer GMRES iterations per Newton step, more Newton
iterations
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Euler Vortex

Euler vortex mesh, with degree
p = 4

Solution (density)

Figure : Euler Vortex: Mesh and Solution at t0 =
√

102 + 52
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Viscous flow over NACA wing at high angle of attack

Student Version of MATLAB

NACA mesh, with degree p = 4

Student Version of MATLAB

Solution (Mach)

Figure : NACA Wing: Mesh and Solution at t0 = 5.01
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BDF23 3 cheaper than DIRK3 for high accuracy

BDF23 has same slope but better offset than BDF2
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LAG0 is a poor predictor

LAG1, LAG2, HERM1, HERM2 are comparable predictors

LAG2 is a good predictor for all ∆t considered

High-order extrapolation may not be a good idea
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the differences more pronounced
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Speedup Results - BDF23

BDF23, LAG0, 10−5 BDF23, LAG2, 10−5

L2 Error 3.24× 10−4 3.24× 10−4

CPU Time (sec) 1.95× 104 7.86× 103

Speedup over Base 5.41 13.4

Table : Speedup/Error Results: Euler Vortex - BDF23, Jacobian
Recycling

BDF23, LAG0, 10−5 BDF23, LAG2, 10−5

L2 Error 6.34× 10−5 7.82× 10−6

CPU Time (sec) 1.14× 103 6.20× 102

Speedup over Base 6.24 11.5

Table : Speedup/Error Results: NACA Wing - BDF23, Jacobian
Recycling

Base: DIRK3, LAG0, Jacobian Recomputation, Gtol = 10−5
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Speedup Results - BDF23 3

BDF23 3, LAG0, 10−5 BDF23 3, LAG2, 10−5

L2 Error 2.95× 10−6 2.98× 10−6

CPU Time (sec) 4.48× 104 1.71× 104

Speedup over Base 2.35 6.17

Table : Speedup/Error Results: Euler Vortex - BDF23 3, Jacobian
Recycling

BDF23 3, LAG0, 10−5 BDF23 3, LAG2, 10−5

L2 Error 3.10× 10−5 3.11× 10−7

CPU Time (sec) 2.38× 103 1.25× 103

Speedup over Base 3.00 5.73

Table : Speedup/Error Results: NACA Wing - BDF23 3, Jacobian
Recycling

Base: DIRK3, LAG0, Jacobian Recomputation, Gtol = 10−5
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Speedup Results - DIRK3

DIRK3, LAG0, 10−5 DIRK3, LAG2, 10−5

L2 Error 2.92× 10−6 2.92× 10−6

CPU Time (sec) 4.80× 104 4.13× 104

Speedup over Base 2.20 2.55

Table : Speedup/Error Results: Euler Vortex - DIRK3, Jacobian
Recycling

DIRK3, LAG0, 10−5 DIRK3, LAG2, 10−5

L2 Error 1.64× 10−7 1.15× 10−7

CPU Time (sec) 3.65× 103 3.59× 103

Speedup over Base 1.96 1.99

Table : Speedup/Error Results: NACA Wing - DIRK3, Jacobian
Recycling

Base: DIRK3, LAG0, Jacobian Recomputation, Gtol = 10−5
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Conclusions

Two new BDF-type schemes introduced: BDF23, BDF23 3

BDF23 3 attractive high-order alternative to DIRK3

Quadratic Lagrange polynomial prediction significantly
better than commonly used constant prediction

Jacobian recycling speeds up computations by factor of
2− 3 for small ∆t

Larger GMRES tolerance provides speedup particularly
when Jacobians are recycled

BDF23 with LAG2 predictor is 11 - 14 times faster than
DIRK3 with LAG0 prediction

BDF23 3 with LAG2 predictor is about 6 times faster
than DIRK3 with LAG0 prediction
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