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Motivation

Complex, time-dependent problems

REDUCED ORDER MODEL (ROM) 

 o Perturbation problems (stability, trends, control, etc.)!

 o Response problems (behavior, performance, etc.)!

 - linearized                                                                                                                 !

 - nonlinear                                                                            !

!   Complex, time-dependent problems!

Real-time analyses

Model Predictive Control

Many-query analyses

Optimization
Uncertainty-Quantification
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Model Order Reduction Framework

EFFICIENT NONLINEAR MODEL REDUCTION 7

2.4. Consistency-driven approach for nonlinear model reduction

Model reduction of nonlinear systems is often executed in a somewhat ad hoc manner, where
approximations are constructed using intuition and past experience without much reference to
properties that a “good” approximation should satisfy. To avoid this pitfall, this work adopts
a strategy that enables approximations to be carefully constructed to meet desired conditions.
In the proposed approach, if a given model is deemed too computationally expensive for real-
time evaluation, an additional approximation is introduced, resulting in another less accurate
but more economical model. This results in a hierarchy of models characterized by tradeoffs
between accuracy and computational efficiency. The approximations, which are introduced
consecutively, are constructed to generate minimal error with respect to the previous model
by satisfying optimality and consistency properties that are defined more precisely below.

As shown in Figure 1, the model hierarchy employed in this work consists of three
computational models: an original model, and two increasingly “lighter” approximated
versions. Each approximated model is generated by acquiring data during the evaluation of
the more accurate model for sample inputs, then compressing the data, and finally introducing
the approximation that exploits the compressed data.

The high-dimensional model will be referred to as Model I and is taken to be the “truth.”
When evaluating this model is too computationally intensive for real-time prediction, a
projection approximation (Approximation 1) is introduced to reduce the dimensionality of
the state equations. This leads to the reduced-order model (ROM), or Model II. If this ROM
is still too CPU intensive for online computations, a system approximation (Approximation
2) is introduced to reduce the computational complexity of its processing. The result of the
application of this system approximation to Model II can be interpreted as a computational
model and therefore will be referred to as Model III in the remainder of this paper.

Data collection

I.

II.

III.

Full-order model

Reduced-order model

Data collection

Approximation 1: Projection

Compression

Compression

Approximation 2: System approximation

Reduced-order model + system approximation

Figure 1. Model hierarchy with approximations shown in red.

As previously stated, the approximations should introduce minimal error with respect to
the previous model in the hierarchy. To this end, Approximations 1 and 2 will be constructed
to be: 1) consistent, and 2) optimal in the sense defined below.

Consistent approximation: An approximation is said here to be consistent if, when
implemented without data compression, it introduces no additional error in the solution of
the same problem for which data was acquired. �

Optimal approximation: An approximation is said here to be optimal if it leads to
approximated quantities that minimize some error measure with respect to the previous model
in the hierarchy. �

Copyright c� 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 0:1–25
Prepared using nmeauth.cls

[Carlberg et. al. 2011]
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High-Dimensional Model

Consider the nonlinear system of Ordinary Differential
Equations (ODE), usually arising from the semi-discretization
of Partial Differential Equation,

dw

dt
= F(w, t,µ)

where

w ∈ RN state vector

µ ∈ Rd parameter vector

F : RN × R× Rd → RN nonlinearity of ODE

This is the High-Dimensional Model (HDM).

Zahr and Farhat
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Fully Discretization of HDM

Our approach to Model Order Reduction leverages
dimensionality reduction at the fully discrete level

Full, implicit (single-step) discretization of the governing
equation yields a sequence of nonlinear systems of
equations:

R(w(n), tn,µ;w(n−1)) = 0, n ∈ {1, 2, . . . , Ns}

where

w(n) = w(tn)

R : RN × R× Rd → RN

From this point, we drop the dependence of R on the previous
time step w(n−1).

Zahr and Farhat
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Model Order Reduction with Local Bases

The goal of reducing the computational cost and resources
required to solve a large-scale system of ODEs is attempted
through dimensionality reduction

Specifically, the (discrete) trajectory of the solution in state
space is assumed to lie in a low-dimensional affine subspace

w(n) ≈ w(n−1) + Φ(w(n−1))y(n)

Φ(w(n−1)) ∈ RN×kw(w(n−1)) Reduced Basis

y(n) ∈ Rkw(w(n−1)) Reduced Coordinates

where kw(w(n−1))� N

Zahr and Farhat
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Offline Phase
Online Phase
Hyperreduction

Overview

In practice, NV bases are computed in an offline phase:
Φi ∈ RN×kiw

Each basis, Φi, is associated with a representative vector in
state space, wi

c

Then, Φ(w(n−1)) .
= Φi, where

||w(n−1) −wi
c|| ≤ ||w(n−1) −wj

c|| for all j ∈ {1, 2, . . . , NV }.

Contrived Example

d

dt

[
x(t)
y(t)

]
=

[
1

x(t)2+y(t)2

− sinx(t)
x(t)2+y(t)2

]
[
x(0)
y(0)

]
=

[
−1
0

]
Zahr and Farhat
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Data Collection

HDM sampling (snapshot collection)
Simulate HDM at one or more parameter configurations
{µ1, . . . ,µn} and collect snapshots w(j)

Combine in snapshot matrix W

Figure : Contrived Example: HDM
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Data Organization

Snapshot clustering
Cluster snapshots using the k-means algorithm based on
their relative distance in state space
Store the center of each cluster, wi

c

W partitioned into cluster snapshot matrices Wi

Figure : Contrived Example: Snapshot Clustering
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Data Compression

Modify snapshot matrices Wi by subtracting a reference
vector, w̄ from each column Ŵi = Wi − w̄eT

Apply POD method to each cluster: Φi = POD(Ŵi)

Figure : Contrived Example: Basis Construction
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Overview

The MOR assumption is substituted into the HDM to
obtain the over-determined nonlinear system of equations:

R(w(n−1) + Φiy(n), tn,µ) = 0

Since the above system does not have a solution, in
general, we seek the solution that minimizes the residual of
the HDM in the chosen affine subspace:

y(n) = arg min
y∈Rkiw

||R(w(n−1) + Φiy, tn,µ)||2

This is the Reduced-Order Model (ROM)

Zahr and Farhat
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Inconsistency

Recall the MOR assumption:

w(n) −w(n−1) ≈ Φiy(n)

w(n) −w(switch)≈ Φi
n∑

k=switch

y(k)

where w(switch) is the most recent state to initiate a switch
between bases.

Recall the reduced bases are constructed as

Φi = POD
(
Wi − w̄eT

)
Basis construction consistent with MOR assumption only if
w̄ = w(switch)

Zahr and Farhat
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Solution: Fast Basis Updating

We seek a reduced basis of the form:

Φ̂i = POD(Wi −w(switch)eT )

= POD(Wi − w̄eT + (w̄ −w(switch))eT )

= POD(Ŵi + (w̄ −w(switch))eT )

Φ̂ is the (truncated) left singular vectors of a matrix that is
a rank-one update of a matrix, Ŵi, whose (truncated) left
singular vectors is readily available, Φi.

Fast updates available [Brand 2006].

Zahr and Farhat
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Figure : Contrived Example: ROM Solution
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Figure : Contrived Example: ROM Solution

No Basis Updating
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Figure : Contrived Example: ROM Solution

No Basis Updating

−1 −0.5 0 0.5 1 1.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

y

 

 

HDM

Subspace 1

Subspace 2

Subspace 3

Local ROM

Student Version of MATLAB

Basis Updating

−1 −0.5 0 0.5 1 1.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

y

 

 

HDM

Subspace 1

Subspace 2

Subspace 3

Local ROM

Student Version of MATLAB

Zahr and Farhat



Introduction
Local Reduced-Order Models

Application
Conclusion

Offline Phase
Online Phase
Hyperreduction

Figure : Contrived Example: ROM Solution
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Figure : Contrived Example: ROM Solution
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Figure : Contrived Example: ROM Solution
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Figure : Contrived Example: ROM Solution
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Figure : Contrived Example: ROM Solution
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Figure : Contrived Example: ROM Solution
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Figure : Contrived Example: ROM Solution
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Figure : Contrived Example: ROM Solution
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Figure : Contrived Example: ROM Solution
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Extension to Hyperreduction (hROM)

For many classes of ODEs, the above framework is not
sufficient to achieve speedups or a reduction in required
computational resources

e.g. nonlinear, time-variant, or parametric ODEs

For the nonlinear case, methods exist for creating reduced
bases Φi

R and Φi
J for the nonlinear residual and Jacobian,

respectively [Chaturantabut and Sorensen 2009, Carlberg
et al 2011].

Enables pre-computation of terms that were previously
iteration-dependent

Further reduction available by using a sample mesh, i.e. a
well-chosen subset of the entire mesh [Carlberg et. al.
2011].

Zahr and Farhat
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Burger’s Equation (Non-predictive)
Potential Nozzle (Predictive)

1D Burger’s Equation (Shock Propagation)

High-Dimensional Model

N = 10, 000 degrees of freedom

∂U(x, t)

∂t
+
∂f(U(x, t))

∂x
= g(x) ∀x ∈ [0, L]

U(x, 0) = 1, ∀x ∈ [0, L]

U(0, t) = u(t), t > 0

where g(x) = 0.02e0.02x, f(U) = 0.5U2, and u(t) = 5.

Reduced-Order Model

NV = 4 bases of size: 9, 5, 4, 4

Zahr and Farhat
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Burger’s Equation (Non-predictive)
Potential Nozzle (Predictive)

High-Dimensional Model
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Burger’s Equation (Non-predictive)
Potential Nozzle (Predictive)

Clustering Results

Snapshot Clustering
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Burger’s Equation (Non-predictive)
Potential Nozzle (Predictive)

Reduced Basis Modes

Global Basis

0 10 20 30 40 50 60 70 80 90 100
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

x

M
o
d
e

S
h
a
p
e

 

 
Mode 1
Mode 2
Mode 3
Mode 4

Student Version of MATLAB

Local Bases

0 20 40 60 80 100
−0.04

−0.02

0

0.02

0.04

0.06

x

M
o
d
e

S
h
a
p
e

Basi s 1

0 20 40 60 80 100
−0.04

−0.02

0

0.02

0.04

x

M
o
d
e

S
h
a
p
e

Basi s 2

0 20 40 60 80 100
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

x

M
o
d
e

S
h
a
p
e

Basi s 3

0 20 40 60 80 100
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

x

M
o
d
e

S
h
a
p
e

Basi s 4

 

 

Mode 1

Mode 2

Mode 3

Mode 4

Student Version of MATLAB

Zahr and Farhat



Introduction
Local Reduced-Order Models

Application
Conclusion

Burger’s Equation (Non-predictive)
Potential Nozzle (Predictive)

Simulation Results

Error vs. Time
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Solution Snapshots
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Basis Usage
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Burger’s Equation (Non-predictive)
Potential Nozzle (Predictive)

Potential Nozzle Flow

d

dx
(A(x)ρ(x)u(x)) = 0 (1)
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Burger’s Equation (Non-predictive)
Potential Nozzle (Predictive)

Parametric Study - Setup

Training Online
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Burger’s Equation (Non-predictive)
Potential Nozzle (Predictive)

Parametric Study - Results
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Other Application: MEMS
MEMS 
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Conclusions

Local model reduction method
attractive for problems with distinct solution regimes
model reduction assumption and data collection are
inconsistent

Local model reduction with online basis updates
addresses inconsistency of local MOR
injects “online” data into pre-computed basis

Future work
application to 3D turbulent flows
application to nonlinear structural dynamics
use as surrogate in PDE-constrained optimization and
uncertainty quantification
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