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Motivation

Scientific Grand Challenges

March 2014

Applied Mathematics Research

o Combustion for Exascale Computing

o Design of next-generation engines
o Climate 7 gl
e “... estimate global temperature response L

to increases in greenhouse gases”
o “quantify how the climate system would
respond to an increase in temperature”

e predict major climatic events
o Material

o Artificial light harvesting
o Bridge between atomistic and macroscale
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Motivation

Exascale as Enabling Technology

Scientific Grand Challenges: Combustion

o Goal: Design of next-generation engines ;\pplled Matfomatics Rasearch

o High-efficiency, low-emission, biodiesel for Exascale Computing
o Computational model

o High-pressure turbulent reacting flow
o Complex geometry

o High-pressure/velocity fuel injection
o Intermediary particulate soot

o Uncertainty Quantification (UQ)
o Design optimization
o Multiobjective: fuel efficiency and

emissions
o Multi-point: design for multiple operating
points 5 L
o Optimization under uncertainty 0
7
v
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Motivation

Many-Query Analyses and Grand Challenges

. . - Scientific Grand Challenges
Optimization and UQ e Natiahalisacurity:
o Multiphysics simulations THE ROLE OF COMPUTING AT THE EXTREME SCALE
o Example: aerodynamic optimization Gt RO 1

o Frame design
o Noise mitigation
o Jet turbine design

o Material science
o Computational chemistry
o Nonproliferation

o UQ and error analysis
o Climate modeling

Ll
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Motivation

Difficulty of Many-Query Analyses: Optimization
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Motivation

Reduced-Order Models (ROMs)

ROMs and Exascale

o Very similar goals

e enable computational analysis, design, UQ, control of highly-complex systems
not feasible with existing tools/technology
e use computational tool to solve relevant scientific and engineering problems

o Pursue goals with opposite approaches

o ROMs: systematic dimensionality reduction while preserving fidelity to
drastically reduce cost of simulation

o Exascale: Leverage O(10*®) FLOPS to enable direct simulation of
high-fidelity systems

o Not mutually exclusive!
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Motivation

Reduced-Order Models (ROMs)

s Enabling Technolog

o Many-query analyses
o Optimization: design, control
o Single objective, single-point
o Multiobjective, multi-point
o Uncertainty Quantification

o Optimization under uncertainty
o Real-time analysis Figure: Flapping Wing
o Model Predictive Control (MPC) (Persson et al., 2012)
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Motivation

Application I: Compressible, Turbulent Flow over Vehicle

1044 mm 389

@ Benchmark in automotive
industry

o Mesh

o 2,890,434 vertices

e 17,017,090 tetra

e 17,342,604 DOF ¢ d Body: Geometry (Ahmed et al, 1984)
e CFD

o Compressible

Navier-Stokes
e DES + Wall func

o Single forward simulation

o =~ 0.5 day on 512 cores
@ Desired: shape optimization

S ===
(‘ o unsteady effects ey ~_
: 3 o minimize average drag 0DOE

(b) Ahmed Body: Mesh (cariberg et a1, 2011 CSGF
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Motivation

Application II: Turbulent Flow over Flapping Wing

e CFD

o Compressible Navier-Stokes
o Discontinuous Galerkin

o Biologically-inspired flight
o Micro aerial vehicles
@ Mesh

e 43,000 vertices
e 231,000 tetra (p = 3)

e 2,310,000 DOF o unsteady effects
’ 7 o maximize thrust

@ Desired: shape optimization +
control

60 | 5
3 Figure: Flapping Wing (Persson et al., 2012) eDOE
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Outline

© PDE-Constrained Optimization
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PDE-Constrained Optimization

Hierarchy of PDE-Constrained Optimization
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Hierarchy of PDE-Constrained Optimization

Dynamic PDE
Static Parameter
w(p, t)
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PDE-Constrained Optimization

Hierarchy of PDE-Constrained Optimization

Dynamic PDE
Static Parameter
w(p, t)

Dynamic PDE
Dynamic Parameter
w(p(t),t)
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PDE-Constrained Optimization

Hierarchy of PDE-Constrained Optimization

Dynamic PDE Dynamic PDE
Static Parameter Dynamic Parameter
w(p, t) w(p(t), t)

'omplexity - Difficulty - CPU H
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Hierarchy of PDE-Constrained Optimization

Dynamic PDE
Static Parameter
w(p, t)

Dynamic PDE
Dynamic Parameter
w(p(t),t)
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PDE-Constrained Optimization

Hierarchy of PDE-Constrained Optimization

Dynamic PDE Dynamic PDE
Static Parameter Dynamic Parameter
w(p, t) w(p(t), t)
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PDE-Constrained Optimization

Problem Formulation

Goal: Rapidly solve PDE-constrained optimization problems of the form

minimize w
Jninimize, f(w, )

subject to  R(w,u) =10

Discretize-then-optimize

where R : RY x R? — R¥ is the discretized (steady, nonlinear) PDE, w is the
PDE state vector, w is the vector of parameters, and N is assumed to be very
large.
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PDE-Constrained Optimization

Two Approaches

Simultaneous Analysis and Design (SAND)
nimize W,
Jminimize, S0
subject to R(w,pu) =0

o Treat state and parameters as optimization variables

Nested Analysis and Design (NAND)

miRLEE (w(p), p)

o w = w(p) through R(w, ) =0
o Treat parameters as only optimization variables

@ o Enforce nonlinear equality constraint at every iteration

JE
@Gunzburger, 2003), (Hinze et al., 2009) Pessr
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PDE-Constrained Optimization

Sensitivity Derivation

o Consider some functional F(w(u), p) to be differentiated (i.e. objective
function or constraint)

LAF _oF _oFow
du ~ Op  Ow Ou
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PDE-Constrained Optimization

Sensitivity Derivation

o Consider some functional F(w(u), p) to be differentiated (i.e. objective
function or constraint)
JAF_0F oFow
dpu  Op  Ow Op
dR OR  OROw
o R(w(p),u) =0forall p = E—O—a—&-afwa
ow {8R} 'R

“op~ |ow] op
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PDE-Constrained Optimization

Sensitivity Derivation

o Consider some functional F(w(u), i) to be differentiated (i.e. objective
function or constraint)
JAE_0F  oFow
du ~ Op  Ow Ou
dR _OR  OROw

o R(w(p), ) =0 for all p = @:0_@+87w@

“ow

ow

ow {aR}l IR

op

Gradient of Functional

T
oF _0F _oF ([0R]TOR) _0F ([oR]T 0T\ OR
- ow o | op ow ow

Zahr and Farhat Progressive ROM-Constrained Optimization



PDE-Constrained Optimization

Summary: NAND formulation, Sensitivity Approach

Nested Analysis and Design (NAND)

MERLEE (w(p), p)

o w = w(u) through R(w, ) =0

Gradient of Objective Function (Sensitivity Approach)

ORTVOR AR OR | OROw
ow o dp  op  Owou
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Reduced-Order Models e e

Outline

© Reduced-Order Models
o Construction of Bases
@ Speedup Potential

[
0 DOE
CSGF
N

Zahr and Farhat Progressive ROM-Constrained Optimization




Reduced-Order Models Construction of Bases

Speedup Potential

Reduced-Order Model

o Model Order Reduction (MOR) assumption: state vector lies in
low-dimensional affine subspace
0 ow, 0
w Wr _ 0¥

~ T:7 @ — —_— = _—
W R W w + Py B o o

where y € R"™ are the reduced coordinates of w, in the basis ® € RV*", and
n<<N
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Reduced-Order Models

Reduced-Order Model

o Model Order Reduction (MOR) assumption: state vector lies in
low-dimensional affine subspace

ow  Ow, dy
Arw,=w+® == — = =L
W R W w + Py B o o

where y € R"™ are the reduced coordinates of w, in the basis ® € RV*", and
n<<N

o Substitute assumption into High-Dimensional Model (HDM), R(w, ) = 0

R(W + @y, pu) = 0

CSGF
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Reduced-Order Models

Reduced-Order Model

o Model Order Reduction (MOR) assumption: state vector lies in
low-dimensional affine subspace

_ ow  Ow, dy
W, = Liid = — = = p_L
W R W w + Py B o o

where y € R"™ are the reduced coordinates of w, in the basis ® € RV*", and
n<<N

o Substitute assumption into High-Dimensional Model (HDM), R(w, ) = 0
R(W + @y, pu) = 0

o Require projection of residual in low-dimensional left subspace, with basis
¥ c RVX" to be zero

%j R, (y,p) =¥ R(W+ ®y,pu) =0 @DOE
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Reduced-Order Models

Construction of Bases
Speedup Potential

Reduced Optimization Problem

o Reduce-then-optimize!

ROM-Constrained Optimization - NAND Formulation

MIIEE (W + @y(p), 1)

o y = y(u) through $TR(W + ®y, ) = 0

o Issues that must be considered

e Construction of bases
e Speedup potential
o Reduced sensitivity derivation
o Training
~

DOE
CSGF
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Reduced-Order Models Construction of Bases

Speedup Potential

3

Definition of ®: Proper Orthogonal Decomposition

Recall MOR assumption

w— W~ Py = — =P

Implication: we desire

o)~ w U {0 € rone

(4

Include translated state vectors and sensitivities as snapshots

e Previous work considering sensitivity snapshots 2

~

DOE
2(Carlberg and Farhat, 2008), (Hay et al., 2009), (Carlberg and Farhat, 2011) OQGJ:
3(Sirovich, 1987)
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Reduced-Order Models

Construction of Bases
Speedup Potential

Definition of ®: Proper Orthogonal Decomposition

@ Recall MOR assumption

w—w~ Py —

e-Sensitivity* POD

-

4(Washabaugh and Farhat, 2013),(Zahr and Farhat, 2014
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Reduced-Order Models

Construction of Bases
Speedup Potential

Definition of ®: Proper Orthogonal Decomposition

@ Recall MOR assumption
ow 0
~o2Y

—wP — —_—
W —W y o o

State-Sensitivity* POD
o Collect state and sensitivity snapshots by sampling HDM

X=[w)—w wlpy)—w - wip,)—w]
Y= [Sm) GE) - 3w
@ Use Proper Orthogonal Decomposition to generate reduced bases from each
individually
dx = POD(X)
Py = POD(Y)
E
; GF
. -

4(Washabaugh and Farhat, 2013),(Zahr and Farhat, 2014
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Reduced-Order Models

Construction of Bases
Speedup Potential

Definition of ®: Proper Orthogonal Decomposition

@ Recall MOR assumption
ow 0
~o2Y

—wxP — — =
W —W y op ou

State-Sensitivity* POD
o Collect state and sensitivity snapshots by sampling HDM

X=[w)—w wlpy)—w - wip,)—w]
Y= [Sm) GE) - 3w
@ Use Proper Orthogonal Decomposition to generate reduced bases from each
individually
dx = POD(X)
Py = POD(Y)
o Concatenate to get ROB E
A P = [‘I’X (I’Y] SF

4(Washabaugh and Farhat, 2013),(Zahr and Farhat, 2014
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Reduced-Order Models Construction of Bases

Speedup Potential

Definition of ¥: Minimum-Residual ROM

e ROM governing equation: R,.(y,u) = $TR(W + ®y, ) =0
o Standard options for choice of left basis ¥
o =& — Galerkin

o ¥ = g—g@ = Least-Squares Petrov-Galerkin (LSPG)>®

[( N ~
; 5(Bui-Thanh et al., 2008) ODOE

(") 6(Carlberg et al., 2011) ({GJF
7(Fahl, 2001)
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Reduced-Order Models

Construction of Bases
Speedup Potential

Definition of ¥: Minimum-Residual ROM

e ROM governing equation: R,.(y,u) = $TR(W + ®y, ) =0
o Standard options for choice of left basis ¥
o =& — Galerkin

o U= g—RQ —  Least-Squares Petrov-Galerkin (LSPG)5:5
w

Minimum-Residual Property

A ROM possesses the minimum-residual property if R,.(y, p) = 0 is equivalent to
the optimality condition of (© > 0)

minimize ||R(W + @y, 1)||lo
yER™

(i 5(Bu1 Thanh et al., 2008) DOE

CSGF
Carlberg et al. 2011) Y
7(Fahl, 2001)
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Reduced-Order Models

Construction of Bases
Speedup Potential

Definition of ¥: Minimum-Residual ROM

e ROM governing equation: R,.(y,u) = $TR(W + ®y, ) =0
o Standard options for choice of left basis ¥
o =& — Galerkin

o U= g%{) —  Least-Squares Petrov-Galerkin (LSPG)5:5

Minimum-Residual Property

A ROM possesses the minimum-residual property if R,.(y, p) = 0 is equivalent to
the optimality condition of (© > 0)

minimize ||R(W + @y, 1)||lo
yER™

o LSPG possesses minimum-residual property®

(i 5(Bu1 Thanh et al., 2008) DOE

Carlberg et al. 2011) %F
7(Fahl, 2001)
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Reduced-Order Models

Construction of Bases
Speedup Potential

Definition of ¥: Minimum-Residual ROM

e ROM governing equation: R,.(y,u) = $TR(W + ®y, ) =0
o Standard options for choice of left basis ¥
o =& — Galerkin

o U= g%{) —  Least-Squares Petrov-Galerkin (LSPG)5:5

Minimum-Residual Property

A ROM possesses the minimum-residual property if R,.(y, p) = 0 is equivalent to
the optimality condition of (© > 0)

minimize ||R(W + @y, 1)||lo
yER™

o LSPG possesses minimum-residual property®

o Implications

o Recover exact solution when basis not truncated (consistent®)
o Monotonic improvement of solution as basis size increases
o Ensures sensitivity information in ® cannot degrade state approximation”

5 : DOE
6(Bu1 Thanh et al., 2008) CSGF

(Carlberg et al., 2011) N~
7(Fahl, 2001)

Zahr and Farhat Progressive ROM-Constrained Optimization




Reduced-Order Models Construction of Bases

Speedup Potential

Nonlinear ROM Bottleneck

R, (y,pu) =¥ "R(W+ ®y,p) =0

S
+
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Reduced-Order Models Construction of Bases

Speedup Potential

Nonlinear ROM Bottleneck

R, (y,p) = ¥ R(w + @y, pu) =0
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Reduced-Order Models Construction of Bases

Speedup Potential

Nonlinear ROM Bottleneck

R, (y,p) =¥ R(W+ ®y,p) =0
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Reduced-Order Models Construction of Bases

Speedup Potential

Nonlinear ROM Bottleneck

R, (y,p) = ¥ R(W + ®y, ) =0
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Reduced-Order Models

Construction of Bases
Speedup Potential

Nonlinear ROM Bottleneck

R, _
(Y, p) = ‘I’T*W(W + Py, p)® =0

—~

DOE
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Reduced-Order Models

Construction of Bases
Speedup Potential

Nonlinear ROM Bottleneck

_gr R

W+ ®y, pu)® =0

—~
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Reduced-Order Models

Construction of Bases
Speedup Potential

Nonlinear ROM Bottleneck

_gr R

W+ @y, p)® =0

‘IIT
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Reduced-Order Models

Construction of Bases
Speedup Potential

Nonlinear ROM Bottleneck

_gr R

W+ ®y, pu)® =0
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Reduced-Order Models Construction of Bases

Speedup Potential

Hyperreduction

Several different forms of hyperreduction exist to alleviate bottleneck caused by
nonlinear terms

o If nonlinearity polynomial, precompute tensorial coefficients

e Linearize (or “polynomialize”) about specific points in state space 8

e Gappy POD to reconstruct nonlinear residual from a few entries ©

o Empirical Interpolation Method (EIM) *°
o Discrete Empirical Interpolation Method (DEIM) !
o Gauss-Newton with Approximated Tensors (GNAT) '2

8 (Rewienski, 2003)

9(Everson and Sirovich, 1995) >
0(Barrault et al., 2004) ODOE
1

:

=

Chaturantabut and Sorensen, 2010) Ci(i':
Carlberg et al., 2011)’(Carlberg et al., 2013)
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Reduced-Order Models Construction of Bases

Speedup Potential

Hyperreduction: Gappy POD 13

o Assume nonlinear terms (residual/Jacobian) lie in low-dimensional subspace
R(w, ) =~ ®gr(w, )

where ® € RV*"% and r : RY x RP — R™® are the reduced coordinates;
nr < N

[
0 DOE
CSGF
N

13 (Everson and Sirovich, 1995),(Chaturantabut and Sorensen, 2010),(Carlberg et al., 2011)
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Reduced-Order Models Construction of Bases

Speedup Potential

Hyperreduction: Gappy POD 13

o Assume nonlinear terms (residual/Jacobian) lie in low-dimensional subspace
R(w, ) =~ ®gr(w, )

where ® € RV*"7 and r : RY x RP — R"™% are the reduced coordinates;
ngp <N
@ Determine R by solving gappy least-squares problem

r(w, ) = argmin||ZT ®pa — ZTR(w, p)||
acR"R

where Z is a restriction operator

[
0 DOE
CSGF
N

13 (Everson and Sirovich, 1995),(Chaturantabut and Sorensen, 2010),(Carlberg et al., 2011)
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Reduced-Order Models Construction of Bases

Speedup Potential

Hyperreduction: Gappy POD 13

o Assume nonlinear terms (residual/Jacobian) lie in low-dimensional subspace
R(w, ) =~ ®gr(w, )

where ® € RV*"7 and r : RY x RP — R"™% are the reduced coordinates;
ngp <N
@ Determine R by solving gappy least-squares problem

r(w, ) = argmin||ZT ®pa — ZTR(w, p)||
acR"R

where Z is a restriction operator
o Analytical solution

r(w,p) = (27®r)" (Z"R(w, )

[
0 DOE
CSGF
N

13 (Everson and Sirovich, 1995),(Chaturantabut and Sorensen, 2010),(Carlberg et al., 2011)
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Reduced-Order Models Construction of Bases

Speedup Potential

Hyperreduction: Gappy POD 3

o Assume nonlinear terms (residual/Jacobian) lie in low-dimensional subspace
R(w, ) =~ ®gr(w, )

where ® € RV*"7 and r : RY x RP — R"™% are the reduced coordinates;
ngp <N
@ Determine R by solving gappy least-squares problem

r(w, ) = argmin||ZT ®pa — ZTR(w, p)||
acR"R

where Z is a restriction operator
o Analytical solution

r(w,p) = (27®r)" (Z"R(w, )

o Hyperreduced model

@ T T T ioTh (= I~
S Ry(y.p) = U@y (27@5) (ZTR(W + By, p)) =0 0@%

13 (Everson and Sirovich, 1995),(Chaturantabut and Sorensen, 2010),(Carlberg et al., 2011)
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Reduced-Order Models Construction of Bases

Speedup Potential

Gappy POD in Practice: Euler Vortex
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Reduced-Order Models

Construction of Bases
Speedup Potential

Gappy POD in Practice: Euler Vortex

1
.
L

Full Hesh
Sanple Hesh
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Reduced-Order Models

Construction of Bases
Speedup Potential

Gappy POD in Practice: Ahmed Bod

(a) 253 sample nodes (b) 378 sample nodes (c) 505 sample nodes

~
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Reduced-Order Models Construction of Bases

Speedup Potential

Bottleneck Alleviation

Using the Gappy POD approximation, the hyper-reduced governing equations are
Riy(y.u) = 875 (Z7@5)' (ZTR(W + @y, 1)) = 0

where
E=9"d, (2 %)

is known offline and can be precomputed

Rg - - ZTR

R ° Size scales independent of large dimension N
[% o Amenable to online or deployed computations 08&5;':
am
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Reduced Sensitivities
Training

ROM-Constrained Optimization

Outline

@ ROM-Constrained Optimization
@ Reduced Sensitivities
o Training
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Reduced Sensitivities
Training

ROM-Constrained Optimization

Reduced Optimization Problem

ROM-Constrained Optimization - NAND Formulation

MEE (W + @y (p), 1)

o y =y(p) through r(y,pu) =0
o For ROM only: r(y, u) = $TR(w + ®y, p)

o For ROM + hyperreduction: r(y,u) = T &g (ZT%‘I’R)Jr (ZTR(W + 'I’y,u))

o

o Issues that must be considered

Reduced sensitivity derivation

A CSGF
() N/
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ROM-Constrained Optimization Reduced Sensitivities
Training

Gradient of Reduced Objective Function

o Recall MOR assumption:

ow,. 8y
r= W P — =
w W + Py o 3#

o For gradient-based optimization, the gradient of the reduced objective
function is required

df of af  d(w+ ®y) dy
G TR = g Y S ey oy om
_of | of
_@ ow, %
_of , Of ow,
o " ow, op

@ Recall HDM gradient:

n
% L wlp = o+ 5L @3\&%
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Reduced Sensitivities
Training

ROM-Constrained Optimization

Sensitivities

HDM sensitivities

IR  OROw aw__[aR]‘l IR

R(W(“)aﬂ):():@‘i‘aiwau— - 8;¢_ aiw @
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Reduced Sensitivities
Training

ROM-Constrained Optimization

Sensitivities

HDM sensitivities

OR  OR 0w ow OR]1 ' OR
R(w(p), ) =0 —> ow —_[ ]

on Towop 0 om |ow| om

ROM sensitivities
Recall:

w, =W+ ®y Rr(y(/"’)v w) = \I’TR(W + q’)’(#)a /1’)
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Reduced Sensitivities
Training

ROM-Constrained Optimization

Sensitivities
HDM sensitivities

IR  OROw W__[@R]_l IR

R(W(N)au)zoza‘i‘aiwau— - 8M_ aiw @

ROM sensitivities
Recall:

w, =W+ ®y Rr(y(/"’)v w) = \I’TR(W + q’)’(#)a /1’)

R,  OR,dy _ oW _ 5% _ga-1p

R, (y(p),p) =0 = on T oy o = | B o
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Reduced Sensitivities
Training

ROM-Constrained Optimization

Sensitivities
HDM sensitivities

OR OROw ow

R(w(e), ) =0 — G+ o =0 — 8“:—[

ROM sensitivities
Recall:

w, =W+ ®y Rr(y(/"’)v w) = \I’TR(W + q’)’(#)a /1’)

R, OR, 8_y _ ow, 8y

_ —J -1
0 (‘IlTej> OR (\IIT ) OR
N ) T T
T o ZR + W o | &,
-

Zahr and Farhat Progressive ROM-Constrained Optimization



Reduced Sensitivities

ROM-Constrained Optimization Training
raining

Minimum-Error Reduced Sensitivities

e ROM sensitivities

e May not represent HDM sensitivities well
o May be difficult to compute if ¥ = ¥(u)

[
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Reduced Sensitivities
Training

ROM-Constrained Optimization

Minimum-Error Reduced Sensitivities

o ROM sensitivities
e May not represent HDM sensitivities well
o May be difficult to compute if ¥ = ¥(u)
Ry 9 (TTe;) 0(¥Tey) ’R 0°R

LSPG: ¥ = —& , involve ———, ———
¢ ow ow op fmvetve owow  Owop

[
0 DOE
CSGF
N
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Reduced Sensitivities

ROM-Constrained Optimization cuc
Training

Minimum-Error Reduced Sensitivities

e ROM sensitivities

e May not represent HDM sensitivities well
o May be difficult to compute if ¥ = ¥(u)
o (rTe;) o (¥Tey 2 2
o LspG:w = By ., (¥e)) , (T7e)) § volve R OR
ow ow op owow  Owop
o Define quantity that minimizes the sensitivity error in some norm @ > 0

—

Jy

ow
— —argmin ||— — Pa
o g1 ||au lle

[
0 DOE
CSGF
N
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Reduced Sensitivities

ROM-Constrained Optimization cuc
Training

Minimum-Error Reduced Sensitivities

o ROM sensitivities
e May not represent HDM sensitivities well
o May be difficult to compute if ¥ = ¥(u)
o L5pGw = Ry, O(WTe)) 0(¥Te)) o OR - OR
ow ow op owow  Owop
o Define quantity that minimizes the sensitivity error in some norm @ > 0

)

9w _ arg min ||a—W — ®alle

op a o

dy 128\ g1/20R IR
9y _ _ & gn o
ou (6 ) © ow Oop

~
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Reduced Sensitivities
Training

ROM-Constrained Optimization

Minimum-Error Reduced Sensitivities

o Similar in spirit to the derivation of LSPG, select o2 = %
Ay R\ R
2y (e ) I
op ow ow
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Reduced Sensitivities
Training

ROM-Constrained Optimization e

Minimum-Error Reduced Sensitivities

o Similar in spirit to the derivation of LSPG, select e/ = R

W

Oy __(Rg\'OR
on ow ow

o Instead of true objective gradient

dfr a.fr afr ay
= @7
use 4 as a surrogate for a—y
ou au
df, of, | Ofs Oy
5 ‘ Wi, = + (Pi ™~
(%j du (wr, 1) op  Ow Ju 0 DOE
U; CSGF
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Reduced Sensitivities
Training

ROM-Constrained Optimization

Minimum-Error Reduced Sensitivities

Minimum-Error Reduced Sensitivities

oy __(0RG\'OR oW, _ 50y
on ow o)’ o O

o Advantages

o Error between HDM/ROM sensitivities decreases monotonically as vectors

added to ®
o If a—w C range P, exact sensitivities recovered W 8—W
op op op

o If sensitivity basis not truncated, exact derivatives recovered at training points

vOE
CSGF
~
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Reduced Sensitivities
Training

ROM-Constrained Optimization

Minimum-Error Reduced Sensitivities

Minimum-Error Reduced Sensitivities

oy __(0RG\'OR oW, _ 50y
on ow o)’ o O

o Advantages

o Error between HDM/ROM sensitivities decreases monotonically as vectors

added to ®
o If a—w C range P, exact sensitivities recovered W 8—W
op op op

o If sensitivity basis not truncated, exact derivatives recovered at training points

o Disadvantages

oy , Oy df. |, dfr
o In general, — # ~— —
s 7 a op dp a dp

o Convergence issues for reduced optimization problem

vOE
CSGF
~
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Reduced Sensitivities

ROM-Constrained Optimization .
rainin g

Minimum-Error Reduced Sensitivities and LSPG

ROM sensitivities

For LSPG ROM

dy 8
G _Y with second derivatives dropped
ou  Ow
A RIl = 0 Iy oy
[%ﬁ IR >0 = 25— 27
(a

—~

&
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Reduced Sensitivities

ROM-Constrained Optimization Ao
Training

Offline-Online (Database) Approach

Offline-Online Approach to ROM-Constrained Optimization

o Identify samples in offline phase to be used for training

o Space-fill sampling (i.e. latin hypercube)
o Greedy sampling

o Collect snapshots from HDM
o Build ROB ®
@ Solve optimization problem
s ot B
L f(W+ @y, p)
subject to  WTR(W + @y, u) =0

(LeGresley and Alonso, 2000), (Lassila and Rozza, 2010), (Rozza and Manzoni,

(?010) (Manzoni et al., 2012) ~
] 0005

CSGF
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Reduced Sensitivities
Training

ROM-Constrained Optimization

Offline-Online Approach

Compress

Offline

Figure: Schematic of Algorithm
e
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N/

Zahr and Farhat Progressive ROM-Constrained Optimization




Reduced Sensitivities

ROM-Constrained Optimization P
Training

Offline-Online Approach

) @ 2
)

(a) Idealized Optimization Trajectory: Parameter Space

(b) Breakdown of Computational Effort
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Reduced Sensitivities

ROM-Constrained Optimization Ao
Training

Progressive/Adaptive Approach

Progressive Approach to ROM-Constrained Optimization
o Collect snapshots from HDM at sparse sampling of the parameter space

o Initial condition for optimization problem
o Build ROB @ from sparse training
@ Solve optimization problem
minimize w + Py,
e {5+ s )
subject to ‘I’TR(V_V +®y,pu) =0

1 _ 5
SR + @y, )3 < ¢

o Use solution of above problem to enrich training and repeat until
convergence

% Arian et al., 2000), (Fahl, 2001), (Afanasiev and Hinze, 2001), (Kunisch anﬁp

OE

AYVolkwein, 2008), (Hinze and Matthes, 2013), (Yue and Meerbergen, 2013), ( SGF
~

. and Farhat, 2014)
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Reduced Sensitivities
Training

ROM-Constrained Optimization

Progressive Approach

Optimizer

»

Compress

ROM

Figure: Schematic of Algorithm
e
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Reduced Sensitivities

ROM-Constrained Optimization P
Training

Progressive Approach

¢

(a) Idealized Optimization Trajectory: Parameter Space

QCSGF
(b) Breakdown of Computational Effort )
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Reduced Sensitivities
Training

ROM-Constrained Optimization

Progressive Approach

Ingredients of Proposed Approach (Zahr and Farhat, 2014)

o Minimum-residual ROM (LSPG) and minimum-error sensitivities

(31]:: (p) = %(u) for training parameters p

o Reduced optimization (sub)problem

(4]

inimize  f(w + ®y,
mipicaige f(w+ @y, p)

subject to ‘I’TR(V_V +®y,pu)=0

1 N 5
SIR(W + @y, )3 < e

o Reference vector w and initial guess for each reduced optimization problem
o fr(p) = f(p) for training parameters p
o Efficiently update ROB with additional snapshots or new translation vector

o Without re-computing SVD of entire snapshot matrix

o Adaptive selection of € — trust-region approach o
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ROM-Constrained Optimization ecees] o iivitics

Training

Initial guess for reduced optimization

Let
poy= uéo) = initial condition for PDE-constrained optimization
u§k) = kth iteration of jth reduced optimization problem
u; = solution of jth reduced optimization problem
Define
St= {15, 15} S, py) = fw(eg 1), m5 1)
v ") wius ; P R ) ) = P (15 ) 1)
S ={w(pi), wlpg), .., w(pj)} rH; ) rit—1)s By

%, = arg min f(w(p), p)

73
t ;LESJ.

M o Robustness to poor selection of e
s, P

E
GF
-
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Reduced Sensitivities

ROM-Constrained Optimization P
Training

Affine offset and initial guess for ROM solve

Let
ury = uéo) = initial condition for PDE-constrained optimization
p§k) = kth iteration of jth reduced optimization problem
p,; = solution of jth reduced optimization problem
Define
St={p 15, 15} S, py) = f(w(eg 1), m5 1)
v . : . P ) ) = e (50 )
Sy ={w(p ), w(ng), .., w(p;)} r(H5 ) Hj rj—1)s Hj—

Initial Guess for ROM Solve: State Space

w=w®
n w® = arg. min |[R(w, )]
(‘ Hesy E
i o ROM exzact at training points => ROM/HDM objective identical wi

Zahr and Farhat Progressive ROM-Constrained Optimization



Reduced Sensitivities

ROM-Constrained Optimization P
Training

Adaptive Selection of Trust-Region Radius

Let

pr= u(()o) = initial condition for PDE-constrained optimization

ugk) = kth iteration of jth reduced optimization problem
p; = solution of jth reduced optimization problem
Define
St ={uim5,- - 15} b — Fw(ph),pi) — f(w(pl_1), 15 -1)
w * * * J * *) * *

SY = {w(p ), wpy), ..., w(pl)} Fwe(p3), 15) = f(we(pf 1), 15 4)

Trust-Region Radius

Le pre[05,2]
€ =qe pr€0.250.5)U(24]
Te otherwise E
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Reduced Sensitivities

ROM-Constrained Optimization P
Training

Fast Updates to Reduced-Order Basis

Two situations where snapshot matrix modified (Zahr and Farhat, 2014)
o Additional snapshots to be incorporated

&' =POD([X Y]) given & =POD(X)
o Offset vector modified
&' =POD(X —w1”)  given & =POD(X —wi1”)

CSGF
N/
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Reduced Sensitivities

ROM-Constrained Optimization P
Training

Fast Updates to Reduced-Order Basis

Two situations where snapshot matrix modified (Zahr and Farhat, 2014)
o Additional snapshots to be incorporated

&' =POD([X Y]) given & =POD(X)
o Offset vector modified
&' =POD(X —w1”)  given & =POD(X —wi1”)

Compute new basis using singular factors of existing basis complete without
complete recomputation

CSGF
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ROM-Constrained Optimization e vees] e
Training

Fast Updates to Reduced-Order Basis

Two situations where snapshot matrix modified (Zahr and Farhat, 2014)
o Additional snapshots to be incorporated

®' =POD([X Y]) given & =POD(X)

o Offset vector modified
&' =POD(X —w1”)  given & =POD(X —wi1”)
Compute new basis using singular factors of existing basis complete without

complete recomputation

Fast, Low-Rank Updates to ROB
Compute (Brand, 2006)

& = POD(X + AB”) given & =POD(X)

o Large-scale SVD (IV X ngnap) replaced by small SVD (independent of N)

£y
(‘ o Error incurred by using truncated basis < 0,41 (Zahr et al., 2014) E_
@ o Usually small in MOR applications -
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Reduced Sensitivities

ROM-Constrained Optimization P
Training

Interpretation of Proposed Progressive Approach

The proposed approach to PDE-constrained optimization using
progressively-constructed ROMs can be interpreted as:
@ A nonlinear trust region algorithm for nonlinear programming
o Nonlinear trust region defined by HDM residual norm
e Trust region “radius” adaptively selected using traditional trust region
techniques
@ Trust region model problems defined by the ROM-constrained optimization
problem™
o Objective and gradient of ROM-constrained model problem match the HDM
quantities at the initial guess of subproblem

~

DOE
OCSGF
N/

14 (Fahl, 2001)
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Numerical Experiments

Outline

@ Numerical Experiments
@ Rocket Nozzle Design
o Airfoil Design

Zahr and Farhat

Rocket Nozzle Design
Airfoil Design

Progressive ROM-Constrained Optimization
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Rocket Nozzle Design

N . Airfoil Design
Numerical Experiments g

Quasi-1D Euler Flow

Quasi-1D Euler equations:

ouU 1 9(AF)
o " A or @
where
p pu 0
U= |pu|, F=|p+p|, Q=55
e (e+p)u 0

o Semi-discretization
o Finite Volume Method: constant reconstruction, 500 cells
e Roe flux and entropy correction

o Full discretization

o Backward Euler

e Pseudo-transient integration to steady state o o
DOE

OCSGF

N/
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Rocket Nozzle Design
Numerical Experiments Lol DasiEe

Nozzle Parametrization

Nozzle parametrized with cubic splines using 13 control points and constraints
requiring

@ convexity

A'(z) >0
@ bounds on A(z) Aj(z) < A(z) < Ay(x)
@ bounds on A’(z) at inlet/outlet A(x) <0, A(xy) >0
007 i N‘(M/,l(' Vurd(m‘tnz:\liml i
- = Ale)
0.06 A /
A(x) “‘
0.05 O Spline Points “L
e —— —_—————— ’ ODOE
. ‘ ‘ ‘ ‘ CSGF
0 0.05 0.1 . 0.15 0.2 0.25 N\
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Rocket Nozzle Design

N . Airfoil Design
Numerical Experiments g

Parameter Estimation/Inverse Design

For this problem, the goal is to determine the parameter p* such that the flow
achieves some optimal or desired state w*

Jminimize [[w(pe) — w|
subject to R(w,pu) =0 (1)
c(w,p) <0

where ¢ are the nozzle constraints.

@ This problem is solved using
o the HDM as the governing equation
o HDM-based optimization
o the HROM as the governing equation
o HROM-based optimization
~

DOE
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Rocket Nozzle Design
Airfoil Design

Numerical Experiments

Objective Function Convergence

(a) Convergence (# HDM Evals) (b) Convergence (CPU Time)

10 : T T T T T
: HDM-Based Opt
~Based Opt

Objective Function

10° i i i i i 10 i i 1 . 1 .
20 25 30 0 500 1000 1500 2000 2500 3000 3500

15
# HDM Evaluations CPU Time (sec)
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Rocket Nozzle Design
Airfoil Design

Numerical Experiments

Parameter Estimation Convergence

(a) Convergence (# HDM Evals) (b) Convergence (CPU Time)

10 10° T T T T
a4 &
¢ 101 1 10" 4
102 L L L L L 102 L L L L L L
0 5 1 15 20 25 30 0 500 1000 1500 2000 2500 3000 3500
# HDM Evaluations # HDM Evaluations
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Rocket Nozzle Design
Airfoil Design

Numerical Experiments

Hyper-Reduced Optimization Progression

(b) Pressure Progression

= Desired Optimal

Initial Guess

Desired Optimal

HROM-Based Iterates

0.06- Initial Guess L
HROM-Based Iterates = = = HROM-Based Optimal
- = = HROM-Based Optimal L ® Sample Mesh
0.05F 1

[ ]

Sample Mesh

201

o

g
o
2
¢
<

=
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Numerical Experiments

Rocket Nozzle Design

Optimization Summary

Airfoil Design

HDM-Based Opt

HROM-Based Opt

Rel. Error in p* (%) 1.82 5.26
Rel. Error in w* (%) 0.11 0.12
# HDM Evals 27 8

# HROM Evals 0 161
CPU Time (s) 3361.51 2001.74

Zahr and Farhat
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&
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Rocket Nozzle Design

Numerical Experiments Lkl D

Compressible, Inviscid Airfoil Inverse Design

(a) NACAO0O012: Pressure field (b) RAE2822: Pressure field (Mo = 0.5,

[ I (Mo = 0.5, a = 0.0°) o =0.0° —
( o Pressure discrepancy minimization (Euler equations) DOE
o Initial Configuration: NACA0012 CSGF

o Target Configuration: RAE2822
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Rocket Nozzle Design

Numerical Experiments Al 1P

Initial /Target Airfoils: Scaled

[
0 DOE
CSGF
N
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Rocket Nozzle Design

Numerical Experiments Lkl D

Shape Parametrization

Figure: Shape parametrization of a NACAO0012 airfoil using a cubic design element
[( 4 ~
) Fones
(74
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Rocket Nozzle Design

Numerical Experiments Lkl D

Shape Parametrization

(c) u(7) = 0.1 (d) p(8) = 0.1

Figure: Shape parametrization of a NACAO0012 airfoil using a cubic design element

CSGF
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Rocket Nozzle Design

Numerical Experiments Lkl D

Optimization Results

0.6 T

—_— Initial

_ Target

- - - HDM-based optimization
ROM-based optimization

-10.5

Distance Transverse to Centerline

| -0.1
_12 | | | | | | | | |
o ol 02 03 04 05 06 07 08 09 1 088&,:

Distance along airfoil
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Rocket Nozzle Design

Numerical Experiments Lkl D

Optimization Results

2
2

2

2

1076 \ \
1078 a

’ Neoe

[[P(W+ @iy (1)) —p(w(pA52522))|
[[p(W+@ 1y (0))—p(w(uliAE2E22))]|

10-10 |- |
ER
10-12 |- |
\ —@- HDM-based optimization
10~ 14 |- —@- ROM-based optimization |

0 2 4 6 8§ 10 12 14 16 18 20 22 24 26 28 30 '5\

. y ; DOE
Number of HDM queries CSGF
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Rocket Nozzle Design
Airfoil Design
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Rocket Nozzle Design
Airfoil Design

Numerical Experiments

Optimization Results

DOE
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Reduced optimization iterations
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Rocket Nozzle Design

Numerical Experiments Al 1P

Optimization Results

HDM-based ROM-based
optimization optimization
# of HDM Evaluations 29 7
# of ROM Evaluations - 346
||M* _ MRAE2822||
([ RAE]| 2.28 x 1073% 4.17 x 107%%

Table: Performance of the HDM- and ROM-based optimization methods

CSGF
N/
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Overview

Outlook

Future Work
Conclusion

Outline

@ Conclusion
N ° Overview

@ Outlook DOE
43 e Future Work OCSGF
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Overview

Outlook

Future Work
Conclusion

Summary

Summa,

o Introduced progressive, nonlinear trust region framework for reduced
optimization

@ Proposed minimume-error reduced sensitivity analysis
o Reconstructed reduced sensitivities minimize error to true sensitivities

o Demonstrated approach on canonical problem from aerodynamic shape
optimization
o Factor of 4 fewer queries to HDM than standard PDE-constrained
optimization approaches

o Preliminary results on toy problem regarding extension of framework to
hyperreduction

~
DOE
OCSGF
N
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Outlook
Future Work

Conclusion

Difficulty of Breaking Offline-Online Barrier

Offline-Online Approach

Figure: Offline-Online Approach

o Offline/Online Barrier

+ Enables large online speedups
- Difficult to construct accurate, robust ROM
—JE

o Minimize ey
0~

VWcscrF

N

Zahr and Farhat Progressive ROM-Constrained Optimization




Overview
Outlook
Future Work

Conclusion

Difficulty of Breaking Offline-Online Barrier

ve Approach

Figure: Progressive Approach

o Requires minimizing HDM ! ROB , and !

o Cost and Quantity

DOE
CSGF
N/
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Conclusion

Minimizing Cost of ROM Construction (POD-Based)

@ ROM construction ROB cost comes from SVD underlying POD

o R-SVD scales as O(6mn? + 20n?) for A € R™*™ (Golub and Van Loan, 2012)
e Our case: m = #DOF in HDM, n = # snapshots
e Scales very poorly as snapshots are added
o Competing goals
o few snapshots to minimize SVD cost
o many snapshots to maximize accuracy/robustness of ROM
o Applications where smaller, faster SVDs beneficial

o Computation of state ROB, ®, from snapshots
e Computation of residual ROB, ® g, from snapshots

o Potential for HUGE number of snapshots

e Compute SVD of snapshot matrix leveraging SVD of subset of columns
N

DOE
GCSGF
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Conclusion

Minimizing Cost of ROM Construction (POD-Based)

o ROM construction ROB cost comes from SVD underlying POD

o R-SVD scales as O(6mn? 4+ 20n®) for A € R™*" (Golub and Van Loan, 2012)
o Our case: m = #DOF in HDM, n = # snapshots
e Scales very poorly as snapshots are added

e Solutions

o Approximate SVD (Halko et al., 2011)

o Low-rank SVD updates (Brand, 2006), (Zahr et al., 2014)

o Local ROMs (Dihlmann et al., 2011), (Amsallem et al., 2012)
o Column partition snapshot; compute SVD of each local snapshot set
e Several SVD computations on matrices with fewer columns

o Adaptive h-refinement (Carlberg, 2014)
o Fewer snapshots required offline since basis refined online

o Investigation currently underway (Washabaugh, Zahr) to demonstrate

“offline” speedup potential of these ideas on large-scale, parametric proﬁBOE
CSGF
N
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Minimizing Cost of ROM Evaluation

o Many-query setting: number of ROM S evaluations will be LARGE
~

o ROM query as fast as possible
o Reduce computational cost/complexity of evaluating nonlinear terms
o ROBs as small as possible

e ROM accurate in regions of parameter space of interest

o Solutions
o Hyperreduction
o Treatment of nonlinearities
e Local ROMs
o Reduce size of ROB at a given time step
o Adaptive h-refinement
o Refine ROB only when/where necessary to prevent unnecessarily large bases
o Temporal forecasting (Carlberg et al., 2012)

DOE

o Reduce temporal complexity o
OCSGF
N/
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Numerical Example: Ahmed Body

1044 mm 389

@ Benchmark in automotive v . - O I
. 202 470 k3 Y BT
industry o )
@ Mesh $ s
o 2,890,434 vertices
e 17,017,090 tetra (a) Ahmed Body: Geometry [anhmed et al 1984]
e 17,342,604 DOF

e CFD

o Compressible
Navier-Stokes
o DES + Wall func

e Local ROM
o 4 ROBs: 76, 68, 30, 20

t’] o Sized by energy (99.75%)

Zahr and Farhat Progressive ROM-Constrained Optimization

DOE
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Low-Rank SVD Updates

o Potential impact of low-rank SVD updates for ROM applications
demonstrated (Zahr et al., 2014) 15

o Local ROMs with online basis updates
e Better accuracy for given size of online bases than without updates

0.270

— HDM
— ROM (updates)
0.265 - - ROM (no updates)

Drag (nondimensionalized)

0.245
0 1 2 3 4 5 6 7 DOE
Time (nondimensionalized) CSGF
A/

15Work presented at STAM Annual Meeting 2014 - Chicago, IL
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Future Work

o Incorporate state-of-the-art ROM technology into proposed framework
o Local ROMs, ROB updates, approx SVD, temporal forecasting, ROMES!¢

Convergence proof for proposed progressive optimization framework
Further development of hyperreduced sensitivity framework
Extensive study to compare with existing methods

Detailed parametric study to assess contribution of each component
Extend ideas to adjoint approach (vs. sensitivity approach)

®© 6 6 6 ¢ o

Application to large-scale, 3D problems

@ o Extension to unsteady PDEs with static parameters ! \DOE
S o Extension to unsteady PDEs with dynamic parameters OCSGF
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