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Scientific Grand Challenges

Combustion

Design of next-generation engines

Climate

“. . . estimate global temperature response
to increases in greenhouse gases”
“quantify how the climate system would
respond to an increase in temperature”

predict major climatic events

Material

Artificial light harvesting
Bridge between atomistic and macroscale
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Exascale as Enabling Technology

Scientific Grand Challenges: Combustion

Goal: Design of next-generation engines

High-efficiency, low-emission, biodiesel

Computational model

High-pressure turbulent reacting flow
Complex geometry
High-pressure/velocity fuel injection
Intermediary particulate soot

Uncertainty Quantification (UQ)

Design optimization

Multiobjective: fuel efficiency and
emissions
Multi-point: design for multiple operating
points
Optimization under uncertainty
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Many-Query Analyses and Grand Challenges

Optimization and UQ

Multiphysics simulations
Example: aerodynamic optimization

Frame design
Noise mitigation
Jet turbine design

Material science

Computational chemistry

Nonproliferation

UQ and error analysis

Climate modeling
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Reduced-Order Models (ROMs)

ROMs and Exascale

Very similar goals

enable computational analysis, design, UQ, control of highly-complex systems
not feasible with existing tools/technology
use computational tool to solve relevant scientific and engineering problems

Pursue goals with opposite approaches

ROMs: systematic dimensionality reduction while preserving fidelity to
drastically reduce cost of simulation
Exascale: Leverage O(1018) FLOPS to enable direct simulation of
high-fidelity systems

Not mutually exclusive!
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Reduced-Order Models (ROMs)

ROMs as Enabling Technology

Many-query analyses
Optimization: design, control

Single objective, single-point
Multiobjective, multi-point

Uncertainty Quantification

Optimization under uncertainty

Real-time analysis

Model Predictive Control (MPC)

Flapping Bat Flight Simulation

Visualization of Mach number on isosurface of entropy

Unphysical separation around simplified animal “body”

Figure: Flapping Wing
(Persson et al., 2012)

REDUCED ORDER MODEL (ROM) 

 o Perturbation problems (stability, trends, control, etc.)!

 o Response problems (behavior, performance, etc.)!

 - linearized                                                                                                                 !

 - nonlinear                                                                            !

!   Complex, time-dependent problems!

Zahr and Farhat Progressive ROM-Constrained Optimization



Motivation
PDE-Constrained Optimization

Reduced-Order Models
ROM-Constrained Optimization

Numerical Experiments
Conclusion
References

Application I: Compressible, Turbulent Flow over Vehicle

Benchmark in automotive
industry

Mesh

2,890,434 vertices
17,017,090 tetra
17,342,604 DOF

CFD

Compressible
Navier-Stokes
DES + Wall func

Single forward simulation

≈ 0.5 day on 512 cores

Desired: shape optimization

unsteady effects
minimize average drag

and LES turbulence models, as well as a wall function. It performs a second-order semi-discretization of the convective fluxes
using a method based on the Roe, HLLE, or HLLC upwind scheme. It can also perform second- and fourth-order explicit and
implicit temporal discretizations using a variety of time integrators. The GNAT implementation in AERO-F is characterized by
the sample-mesh concept described in Section 5. All linear least-squares problems and singular value decompositions are
computed in parallel using the ScaLAPACK library [50]. AERO-F is used here to demonstrate GNAT’s potential when applied
to a realistic, large-scale, nonlinear benchmark CFD problem: turbulent flow around the Ahmed body.

The Ahmed-body geometry [47] is a simplied car geometry. It can be described as a modified parallelepiped featuring
round corners at the front end and a slanted face at the rear end (see Fig. 6). Depending on the inclination of this face, dif-
ferent flow characteristics and wake structure may be observed. For a slant angle uP 30!, the flow features a large detach-
ment. For smaller slant angles, the flow reattaches on the slant. Consequently, the drag coefficient suddenly decreases when
the slant angle is increased beyond its critical value of u ¼ 30!. Due to this phenomenon, predicting the flow past the Ahmed
body for varying slant angles has become a popular benchmark in the automotive industry.

This work considers the subcritical angleu ¼ 20! and treats the drag coefficient CD ¼ D
1
2q1V2

15:6016#10$2 m2 around the body as

the output of interest. The free-stream velocity is set to V1 ¼ 60 m/s, and the Reynolds number based on a reference length
of 1.0 m is set to Re ¼ 4:29# 106. The free-stream angle of attack is set to 0!.

6.2.1. High-dimensional CFD model
The high-dimensional CFD model corresponds to an unsteady Navier–Stokes simulation using AERO-F’s DES turbulence

model and wall function. The fluid domain is discretized by a mesh with 2,890,434 nodes and 17,017,090 tetrahedra (Fig. 7).
A symmetry plane is employed to exploit the symmetry of the body about the x–z plane. Due to the turbulence model and
three-dimensional domain, the number of conservation equations per node is m ¼ 6, and therefore the dimension of the CFD
model is N ¼ 17;342;604. Roe’s scheme is employed to discretize the convective fluxes; a linear variation of the solution is
assumed within each control volume, which leads to a second-order space-accurate scheme.

Flow simulations are performed within a time interval t 2 0 s;0:1 s½ &, the second-order accurate implicit three-point
backward difference scheme is used for time integration, and the computational time-step size is fixed to Dt ¼ 8# 10$5 s.
For the chosen CFD mesh, this time-step size corresponds to a maximum CFL number of roughly 2000. The nonlinear system
of algebraic equations arising at each time step is solved by Newton’s method. Convergence is declared at the kth iteration
for the nth time step when the residual satisfies kRnðkÞk 6 0:001kRnð0Þk. All flow computations are performed in a non-dimen-
sional setting.

A steady-state simulation computes the initial condition for the unsteady simulation. This steady-state calculation is
characterized by the same parameters as above, except that it employs local time stepping with a maximum CFL number
of 50, it uses the first-order implicit backward Euler time integration scheme, and it employs only one Newton iteration
per (pseudo) time step.

All computations are performed in double-precision arithmetic on a parallel Linux cluster5 using a variable number of
cores.

6.2.2. Comparison with experiment
Ref. [47] reports an experimental drag coefficient of 0.250 around the Ahmed body for a slant angle of u ¼ 20!. Fig. 8

reports the time history of the drag coefficient computed using the high-dimensional CFD model described in the previous
section. Indeed, the time-averaged value of the computed drag coefficient obtained using the trapezoidal rule is CD ¼ 0:2524.

Fig. 6. Geometry of the Ahmed body (from Ref. [51].)

5 The cluster contains compute nodes with 16 GB of memory. Each node consists of two quad-core Intel Xeon E5345 processors running at 2.33 GHz inside a
DELL Poweredge 1950. The interconnect is Cisco DDR InfiniBand.

K. Carlberg et al. / Journal of Computational Physics 242 (2013) 623–647 637

(a) Ahmed Body: Geometry (Ahmed et al, 1984)

Hence, it is within less than 1% of the reported experimental value. This asserts the quality of the constructed CFD model and
AERO-F’s computations. For reference, this high-dimensional CFD simulation consumed 13.28 h on 512 cores.

6.2.3. ROM performance metrics
The following metrics will be used to assess GNAT’s performance. The relative discrepancy in the drag coefficient, which

assesses the accuracy of a GNAT simulation, is measured as follows:

RD ¼
1
nt

Xnt

n¼1
jCn

DI " Cn
DIII

j
max

n
Cn
DI "min

n
Cn
DI

; ð31Þ

where Cn
DI denotes the drag coefficient computed at the nth time step using the high-dimensional CFD model (tier I model),

and Cn
DIII denotes the corresponding value computed using the GNAT ROM (tier III model).

The improvement in CPU performance delivered by GNAT as measured in wall time is defined as

WT ¼ T I

T III
; ð32Þ

where T I denotes the wall time consumed by a flow simulation associated with the high-dimensional CFD model, and T III

denotes the wall time consumed online by its counterpart based on a GNAT ROM. For the high-dimensional model, the
reported wall time includes the solution of the governing equations and the output of the state vector; for the GNAT
reduced-order model, it includes the execution of Algorithm 2. After the completion of Algorithms 1 and 2 is executed to

Fig. 7. CFD mesh with 2,890,434 grid points and 17,017,090 tetrahedra (partial view, u ¼ 20%). Darker areas indicate a more refined area of the mesh.

Fig. 8. Time history of the drag coefficient predicted for u ¼ 20% using DES and a CFD mesh with N ¼ 17;342;604 unknowns. Oscillatory behavior due to
vortex shedding is apparent.

638 K. Carlberg et al. / Journal of Computational Physics 242 (2013) 623–647

(b) Ahmed Body: Mesh (Carlberg et al, 2011)
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Application II: Turbulent Flow over Flapping Wing

Biologically-inspired flight

Micro aerial vehicles

Mesh

43,000 vertices
231,000 tetra (p = 3)
2,310,000 DOF

CFD

Compressible Navier-Stokes
Discontinuous Galerkin

Desired: shape optimization +
control

unsteady effects
maximize thrust

Flapping Bat Flight Simulation

Visualization of Mach number on isosurface of entropy

Unphysical separation around simplified animal “body”

Figure: Flapping Wing (Persson et al., 2012)
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Hierarchy of PDE-Constrained Optimization

Dynamic PDE
Dynamic Parameter

w(µ(t), t)

Dynamic PDE
Static Parameter

w(µ, t)

Static PDE
Static Parameter

w(µ)

Complexity - Difficulty - CPU Hours
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Problem Formulation

Goal: Rapidly solve PDE-constrained optimization problems of the form

minimize
w∈RN , µ∈Rp

f(w,µ)

subject to R(w,µ) = 0
Discretize-then-optimize

where R : RN × Rp → RN is the discretized (steady, nonlinear) PDE, w is the
PDE state vector, µ is the vector of parameters, and N is assumed to be very
large.

REDUCED ORDER MODEL (ROM) 

 o Perturbation problems (stability, trends, control, etc.)!

 o Response problems (behavior, performance, etc.)!

 - linearized                                                                                                                 !

 - nonlinear                                                                            !

!   Complex, time-dependent problems!
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Two Approaches

Simultaneous Analysis and Design (SAND)

minimize
w∈RN , µ∈Rp

f(w,µ)

subject to R(w,µ) = 0

Treat state and parameters as optimization variables

Nested Analysis and Design (NAND)

minimize
µ∈Rp

f(w(µ),µ)

w = w(µ) through R(w,µ) = 0

Treat parameters as only optimization variables

Enforce nonlinear equality constraint at every iteration

(Gunzburger, 2003), (Hinze et al., 2009)
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Sensitivity Derivation

Consider some functional F(w(µ),µ) to be differentiated (i.e. objective
function or constraint)

dF
dµ

=
∂F
∂µ

+
∂F
∂w

∂w

∂µ

R(w(µ),µ) = 0 for all µ =⇒ dR

dµ
= 0 =

∂R

∂µ
+
∂R

∂w

∂w

∂µ

∂w

∂µ
= −

[
∂R

∂w

]−1
∂R

∂µ

Gradient of Functional

dF
dµ

=
∂F
∂µ
− ∂F
∂w

([
∂R

∂w

]−1
∂R

∂µ

)
=
∂F
∂µ
−

([
∂R

∂w

]−T
∂F
∂w

T
)T

∂R

∂µ

Zahr and Farhat Progressive ROM-Constrained Optimization



Motivation
PDE-Constrained Optimization

Reduced-Order Models
ROM-Constrained Optimization

Numerical Experiments
Conclusion
References

Sensitivity Derivation

Consider some functional F(w(µ),µ) to be differentiated (i.e. objective
function or constraint)

dF
dµ

=
∂F
∂µ

+
∂F
∂w

∂w

∂µ

R(w(µ),µ) = 0 for all µ =⇒ dR

dµ
= 0 =

∂R

∂µ
+
∂R

∂w

∂w

∂µ

∂w

∂µ
= −

[
∂R

∂w

]−1
∂R

∂µ

Gradient of Functional

dF
dµ

=
∂F
∂µ
− ∂F
∂w

([
∂R

∂w

]−1
∂R

∂µ

)
=
∂F
∂µ
−

([
∂R

∂w

]−T
∂F
∂w

T
)T

∂R

∂µ

Zahr and Farhat Progressive ROM-Constrained Optimization



Motivation
PDE-Constrained Optimization

Reduced-Order Models
ROM-Constrained Optimization

Numerical Experiments
Conclusion
References

Sensitivity Derivation
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Summary: NAND formulation, Sensitivity Approach

Nested Analysis and Design (NAND)

minimize
µ∈Rp

f(w(µ),µ)

w = w(µ) through R(w,µ) = 0

Gradient of Objective Function (Sensitivity Approach)

df

dµ
(w(µ),µ) =

∂f

∂µ
+
∂f

∂w

∂w

∂µ

∂w

∂µ
=

[
∂R

∂w

]−1
∂R

∂µ
from

dR

dµ
=
∂R

∂µ
+
∂R

∂w

∂w

∂µ
= 0
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Construction of Bases
Speedup Potential

Reduced-Order Model

Model Order Reduction (MOR) assumption: state vector lies in
low-dimensional affine subspace

w ≈ wr = w̄ + Φy =⇒ ∂w

∂µ
≈ ∂wr

∂µ
= Φ

∂y

∂µ

where y ∈ Rn are the reduced coordinates of wr in the basis Φ ∈ RN×n, and
n� N

Substitute assumption into High-Dimensional Model (HDM), R(w,µ) = 0

R(w̄ + Φy,µ) ≈ 0

Require projection of residual in low-dimensional left subspace, with basis
Ψ ∈ RN×n to be zero

Rr(y,µ) = ΨTR(w̄ + Φy,µ) = 0
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Reduced Optimization Problem

Reduce-then-optimize1

ROM-Constrained Optimization - NAND Formulation

minimize
µ∈Rp

f(w̄ + Φy(µ),µ)

y = y(µ) through ΨTR(w̄ + Φy,µ) = 0

Issues that must be considered

Construction of bases
Speedup potential
Reduced sensitivity derivation
Training

1(Manzoni, 2012)
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Definition of Φ: Proper Orthogonal Decomposition3

Recall MOR assumption

w − w̄ ≈ Φy =⇒ ∂w

∂µ
≈ Φ

∂y

∂µ

Implication: we desire

{w(µ)− w̄}
⋃ {

∂w

∂µ
(µ)

}
⊆ range Φ

Include translated state vectors and sensitivities as snapshots

Previous work considering sensitivity snapshots 2

2(Carlberg and Farhat, 2008), (Hay et al., 2009), (Carlberg and Farhat, 2011)
3(Sirovich, 1987)
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Definition of Φ: Proper Orthogonal Decomposition

Recall MOR assumption

w − w̄ ≈ Φy =⇒ ∂w

∂µ
≈ Φ

∂y

∂µ

State-Sensitivity4 POD

Collect state and sensitivity snapshots by sampling HDM

X =
[
w(µ1)− w̄ w(µ2)− w̄ · · · w(µn)− w̄

]
Y =

[
∂w
∂µ (µ1) ∂w

∂µ (µ2) · · · ∂w
∂µ (µn)

]

Use Proper Orthogonal Decomposition to generate reduced bases from each
individually

ΦX = POD(X)

ΦY = POD(Y)

Concatenate to get ROB
Φ =

[
ΦX ΦY

]

4(Washabaugh and Farhat, 2013),(Zahr and Farhat, 2014)
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Definition of Ψ: Minimum-Residual ROM

ROM governing equation: Rr(y,µ) ≡ ΨTR(w̄ + Φy,µ) = 0

Standard options for choice of left basis Ψ
Ψ = Φ =⇒ Galerkin

Ψ =
∂R

∂w
Φ =⇒ Least-Squares Petrov-Galerkin (LSPG)5,6

Minimum-Residual Property

A ROM possesses the minimum-residual property if Rr(y,µ) = 0 is equivalent to
the optimality condition of (Θ � 0)

minimize
y∈Rn

||R(w̄ + Φy,µ)||Θ

LSPG possesses minimum-residual property6

Implications

Recover exact solution when basis not truncated (consistent6)
Monotonic improvement of solution as basis size increases
Ensures sensitivity information in Φ cannot degrade state approximation7

5(Bui-Thanh et al., 2008)
6(Carlberg et al., 2011)
7(Fahl, 2001)
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Nonlinear ROM Bottleneck

Rr(y,µ) = ΨTR(w̄ + Φy,µ) = 0

Rr = ΨT

R (R

w̄ + Φ

y

)
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Nonlinear ROM Bottleneck

∂Rr

∂y
(y,µ) = ΨT ∂R

∂w
(w̄ + Φy,µ)Φ = 0

∂Rr

∂y
= ΨT

Φ∂R
∂w

∂R
∂w ( )

w̄ + Φ

y
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Hyperreduction

Several different forms of hyperreduction exist to alleviate bottleneck caused by
nonlinear terms

If nonlinearity polynomial, precompute tensorial coefficients

Linearize (or “polynomialize”) about specific points in state space 8

Gappy POD to reconstruct nonlinear residual from a few entries 9

Empirical Interpolation Method (EIM) 10

Discrete Empirical Interpolation Method (DEIM) 11

Gauss-Newton with Approximated Tensors (GNAT) 12

8(Rewienski, 2003)
9(Everson and Sirovich, 1995)

10(Barrault et al., 2004)
11(Chaturantabut and Sorensen, 2010)
12(Carlberg et al., 2011),(Carlberg et al., 2013)
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Hyperreduction: Gappy POD 13

Assume nonlinear terms (residual/Jacobian) lie in low-dimensional subspace

R(w,µ) ≈ ΦRr(w,µ)

where Φ ∈ RN×nR and r : RN × Rp → RnR are the reduced coordinates;
nR � N

Determine R by solving gappy least-squares problem

r(w,µ) = arg min
a∈RnR

||ZTΦRa− ZTR(w,µ)||

where Z is a restriction operator

Analytical solution

r(w,µ) =
(
ZTΦR

)† (
ZTR(w,µ)

)
Hyperreduced model

Rg(y,µ) = ΨTΦR

(
ZTΦR

)† (
ZTR(w̄ + Φy,µ)

)
= 0

13(Everson and Sirovich, 1995),(Chaturantabut and Sorensen, 2010),(Carlberg et al., 2011)
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Gappy POD in Practice: Euler Vortex
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Gappy POD in Practice: Ahmed Body

Figure 11. Surface mesh for post-processing with 124,047 nodes and 492,445 tetrahedral volumes.
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Figure 12. Drag coefficient generated by the GNAT model using 378 sample nodes and different snapshot procedures.
GNAT(i) refers to GNAT with snapshot procedure i.

(a) 253 sample nodes (b) 378 sample nodes (c) 505 sample nodes

Figure 13. Sample meshes generated using snapshot method 1.
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Bottleneck Alleviation

Using the Gappy POD approximation, the hyper-reduced governing equations are

Rh(y,µ) = ΨTΦR

(
ZTΦR

)† (
ZTR(w̄ + Φy,µ)

)
= 0

where
E = ΨTΦR

(
ZTΦR

)†
is known offline and can be precomputed

Rg = E ZTR

Size scales independent of large dimension N

Amenable to online or deployed computations
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Reduced Optimization Problem

ROM-Constrained Optimization - NAND Formulation

minimize
µ∈Rp

f(w̄ + Φy(µ),µ)

y = y(µ) through r(y,µ) = 0

For ROM only: r(y,µ) = ΨTR(w̄ + Φy,µ)

For ROM + hyperreduction: r(y,µ) = ΨTΦR

(
ZTΦR

)† (
ZTR(w̄ + Φy,µ)

)
Issues that must be considered

Construction of bases
Speedup potential
Reduced sensitivity derivation
Training
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Gradient of Reduced Objective Function

Recall MOR assumption:

wr = w̄ + Φy =⇒ ∂wr

∂µ
= Φ

∂y

∂µ

For gradient-based optimization, the gradient of the reduced objective
function is required

df

dµ
(w̄ + Φy(µ),µ) =

∂f

∂µ
+

∂f

∂(w̄ + Φy)

∂(w̄ + Φy)

∂y

∂y

∂µ

=
∂f

∂µ
+

∂f

∂wr
Φ
∂y

∂µ

=
∂f

∂µ
+

∂f

∂wr

∂wr

∂µ

Recall HDM gradient:

df

dµ
(w(µ),µ) =

∂f

∂µ
+
∂f

∂w

∂w

∂µ
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Sensitivities

HDM sensitivities

R(w(µ),µ) = 0 =⇒ ∂R

∂µ
+
∂R

∂w

∂w

∂µ
= 0 =⇒ ∂w

∂µ
= −

[
∂R

∂w

]−1
∂R

∂µ

ROM sensitivities

Recall:

wr = w̄ + Φy Rr(y(µ),µ) = ΨTR(w̄ + Φy(µ),µ)

Rr(y(µ),µ) = 0 =⇒ ∂Rr

∂µ
+
∂Rr

∂y

∂y

∂µ
= 0 =⇒ ∂wr

∂µ
= Φ

∂y

∂µ
= ΦA−1B

A =
N∑
j=1

Rj

∂
(
ΨTej

)
∂w

Φ + ΨT ∂R

∂w
Φ, B = −

 N∑
j=1

Rj

∂
(
ΨTej

)
∂µ

+ ΨT ∂R

∂µ


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Φ, B = −

 N∑
j=1

Rj

∂
(
ΨTej

)
∂µ

+ ΨT ∂R

∂µ
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Minimum-Error Reduced Sensitivities

ROM sensitivities

May not represent HDM sensitivities well
May be difficult to compute if Ψ = Ψ(µ)

LSPG: Ψ =
∂R

∂w
Φ =⇒

∂
(
ΨT ej

)
∂w

,
∂
(
ΨT ej

)
∂µ

involve
∂2R

∂w∂w
,

∂2R

∂w∂µ

Define quantity that minimizes the sensitivity error in some norm Θ � 0

∂̂y

∂µ
= arg min

a
||∂w

∂µ
−Φa||Θ

=⇒ ∂̂y

∂µ
= −

(
Θ1/2Φ

)†
Θ1/2 ∂R

∂w

−1 ∂R

∂µ
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Minimum-Error Reduced Sensitivities

Similar in spirit to the derivation of LSPG, select Θ1/2 = ∂R
∂w

∂̂y

∂µ
= −

(
∂R

∂w
Φ

)†
∂R

∂µ

Instead of true objective gradient

dfr
dµ

(wr(µ),µ) =
∂fr
∂µ

+
∂fr
∂w

Φ
∂y

∂µ

use
∂̂y

∂µ
as a surrogate for

∂y

∂µ

d̂fr
dµ

(wr,µ) =
∂fr
∂µ

+
∂fr
∂w

Φ
∂̂y

∂µ
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Minimum-Error Reduced Sensitivities

Minimum-Error Reduced Sensitivities

∂̂y

∂µ
= −

(
∂R

∂w
Φ

)†
∂R

∂µ

∂̂wr

∂µ
= Φ

∂̂y

∂µ

Advantages

Error between HDM/ROM sensitivities decreases monotonically as vectors
added to Φ

If

{
∂w

∂µ

}
⊂ range Φ, exact sensitivities recovered

∂̂wr

∂µ
=
∂w

∂µ
If sensitivity basis not truncated, exact derivatives recovered at training points

Disadvantages

In general,
∂̂y

∂µ
6= ∂y

∂µ
=⇒ d̂fr

dµ
6= dfr

dµ
Convergence issues for reduced optimization problem
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Minimum-Error Reduced Sensitivities and LSPG

ROM sensitivities

∂wr

∂µ
= Φ

∂y

∂µ
= ΦA−1B

A =

N∑
j=1

Rj

∂
(
ΨTej

)
∂w

Φ + ΨT ∂R

∂w
Φ, B = −

 N∑
j=1

Rj

∂
(
ΨTej

)
∂µ

+ ΨT ∂R

∂µ


For LSPG ROM

∂̂y

∂µ
=
∂y

∂µ
with second derivatives dropped

||R|| → 0 =⇒ ∂̂y

∂µ
→ ∂y

∂µ
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Offline-Online (Database) Approach

Offline-Online Approach to ROM-Constrained Optimization

Identify samples in offline phase to be used for training

Space-fill sampling (i.e. latin hypercube)
Greedy sampling

Collect snapshots from HDM

Build ROB Φ

Solve optimization problem

minimize
y∈Rn, µ∈Rp

f(w̄ + Φy,µ)

subject to ΨTR(w̄ + Φy,µ) = 0

(LeGresley and Alonso, 2000), (Lassila and Rozza, 2010), (Rozza and Manzoni,
2010), (Manzoni et al., 2012)
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Offline-Online Approach
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ROB
Φ,Ψ
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Figure: Schematic of Algorithm
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Offline-Online Approach

(a) Idealized Optimization Trajectory: Parameter Space
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(b) Breakdown of Computational Effort
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Progressive/Adaptive Approach

Progressive Approach to ROM-Constrained Optimization

Collect snapshots from HDM at sparse sampling of the parameter space

Initial condition for optimization problem

Build ROB Φ from sparse training

Solve optimization problem

minimize
y∈Rn, µ∈Rp

f(w̄ + Φy,µ)

subject to ΨTR(w̄ + Φy,µ) = 0

1

2
||R(w̄ + Φy,µ)||22 ≤ ε

Use solution of above problem to enrich training and repeat until
convergence

(Arian et al., 2000), (Fahl, 2001), (Afanasiev and Hinze, 2001), (Kunisch and
Volkwein, 2008), (Hinze and Matthes, 2013), (Yue and Meerbergen, 2013), (Zahr
and Farhat, 2014)
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Progressive Approach

(a) Idealized Optimization Trajectory: Parameter Space
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Progressive Approach

Ingredients of Proposed Approach (Zahr and Farhat, 2014)

Minimum-residual ROM (LSPG) and minimum-error sensitivities
dfr
dµ

(µ) =
df

dµ
(µ) for training parameters µ

Reduced optimization (sub)problem

minimize
y∈Rn, µ∈Rp

f(w̄ + Φy,µ)

subject to ΨTR(w̄ + Φy,µ) = 0

1

2
||R(w̄ + Φy,µ)||22 ≤ ε

Reference vector w̄ and initial guess for each reduced optimization problem

fr(µ) = f(µ) for training parameters µ

Efficiently update ROB with additional snapshots or new translation vector

Without re-computing SVD of entire snapshot matrix

Adaptive selection of ε→ trust-region approach
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Initial guess for reduced optimization

Let

µ∗−1 = µ
(0)
0 = initial condition for PDE-constrained optimization

µ
(k)
j = kth iteration of jth reduced optimization problem

µ∗j = solution of jth reduced optimization problem

Define

Sµj = {µ∗−1,µ
∗
0, . . . ,µ

∗
j}

Sw
j = {w(µ∗−1),w(µ∗0), . . . ,w(µ∗j )}

ρj =
f(w(µ∗j ),µ

∗
j )− f(w(µ∗j−1),µ∗j−1)

f(wr(µ∗j ),µ
∗
j )− f(wr(µ∗j−1),µ∗j−1)

Initial Guess for Reduced Optimization: Parameter Space

µ
(0)
j+1 = arg min

µ∈Sµ
j

f(w(µ),µ)

Robustness to poor selection of ε
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Affine offset and initial guess for ROM solve

Let

µ∗−1 = µ
(0)
0 = initial condition for PDE-constrained optimization

µ
(k)
j = kth iteration of jth reduced optimization problem

µ∗j = solution of jth reduced optimization problem

Define

Sµj = {µ∗−1,µ
∗
0, . . . ,µ

∗
j}

Sw
j = {w(µ∗−1),w(µ∗0), . . . ,w(µ∗j )}

ρj =
f(w(µ∗j ),µ

∗
j )− f(w(µ∗j−1),µ∗j−1)

f(wr(µ∗j ),µ
∗
j )− f(wr(µ∗j−1),µ∗j−1)

Initial Guess for ROM Solve: State Space

w̄ = w(0)

w(0) = arg min
µ∈Sw

j

||R(w,µ)||

ROM exact at training points =⇒ ROM/HDM objective identical
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Adaptive Selection of Trust-Region Radius

Let

µ∗−1 = µ
(0)
0 = initial condition for PDE-constrained optimization

µ
(k)
j = kth iteration of jth reduced optimization problem

µ∗j = solution of jth reduced optimization problem

Define

Sµj = {µ∗−1,µ
∗
0, . . . ,µ

∗
j}

Sw
j = {w(µ∗−1),w(µ∗0), . . . ,w(µ∗j )}

ρj =
f(w(µ∗j ),µ

∗
j )− f(w(µ∗j−1),µ∗j−1)

f(wr(µ∗j ),µ
∗
j )− f(wr(µ∗j−1),µ∗j−1)

Trust-Region Radius

ε′ =


1
τ ε ρk ∈ [0.5, 2]

ε ρk ∈ [0.25, 0.5) ∪ (2, 4]

τε otherwise
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Fast Updates to Reduced-Order Basis

Two situations where snapshot matrix modified (Zahr and Farhat, 2014)

Additional snapshots to be incorporated

Φ′ = POD(
[
X Y

]
) given Φ = POD(X)

Offset vector modified

Φ′ = POD(X− w̃1T ) given Φ = POD(X− w̄1T )

Compute new basis using singular factors of existing basis complete without
complete recomputation

Fast, Low-Rank Updates to ROB

Compute (Brand, 2006)

Φ′ = POD(X + ABT ) given Φ = POD(X)

Large-scale SVD (N × nsnap) replaced by small SVD (independent of N)

Error incurred by using truncated basis ∝ σn+1 (Zahr et al., 2014)

Usually small in MOR applications
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Interpretation of Proposed Progressive Approach

The proposed approach to PDE-constrained optimization using
progressively-constructed ROMs can be interpreted as:

A nonlinear trust region algorithm for nonlinear programming

Nonlinear trust region defined by HDM residual norm
Trust region “radius” adaptively selected using traditional trust region
techniques

Trust region model problems defined by the ROM-constrained optimization
problem14

Objective and gradient of ROM-constrained model problem match the HDM
quantities at the initial guess of subproblem

14(Fahl, 2001)
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Rocket Nozzle Design
Airfoil Design

Outline

1 Motivation

2 PDE-Constrained Optimization

3 Reduced-Order Models
Construction of Bases
Speedup Potential

4 ROM-Constrained Optimization
Reduced Sensitivities
Training

5 Numerical Experiments
Rocket Nozzle Design
Airfoil Design

6 Conclusion
Overview
Outlook
Future Work
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Quasi-1D Euler Flow

Quasi-1D Euler equations:

∂U

∂t
+

1

A

∂(AF)

∂x
= Q

where

U =

 ρρu
e

 , F =

 ρu
ρu2 + p
(e+ p)u

 , Q =

 0
p
A
∂A
∂x
0


Semi-discretization

Finite Volume Method: constant reconstruction, 500 cells
Roe flux and entropy correction

Full discretization

Backward Euler
Pseudo-transient integration to steady state
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Nozzle Parametrization

Nozzle parametrized with cubic splines using 13 control points and constraints
requiring

convexity A′′(x) ≥ 0
bounds on A(x) Al(x) ≤ A(x) ≤ Au(x)
bounds on A′(x) at inlet/outlet A′(xl) ≤ 0, A′(xr) ≥ 0
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Parameter Estimation/Inverse Design

For this problem, the goal is to determine the parameter µ∗ such that the flow
achieves some optimal or desired state w∗

minimize
w∈RN , µ∈Rp

||w(µ)−w∗||

subject to R(w,µ) = 0

c(w,µ) ≤ 0

(1)

where c are the nozzle constraints.

This problem is solved using
the HDM as the governing equation

HDM-based optimization

the HROM as the governing equation

HROM-based optimization
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Objective Function Convergence

(a) Convergence (# HDM Evals)
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Parameter Estimation Convergence

(a) Convergence (# HDM Evals)
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Hyper-Reduced Optimization Progression

(a) Parameter (µ) Progression
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(b) Pressure Progression
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Optimization Summary

HDM-Based Opt HROM-Based Opt

Rel. Error in µ∗ (%) 1.82 5.26

Rel. Error in w∗ (%) 0.11 0.12

# HDM Evals 27 8

# HROM Evals 0 161

CPU Time (s) 3361.51 2001.74
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Compressible, Inviscid Airfoil Inverse Design

(a) NACA0012: Pressure field
(M∞ = 0.5, α = 0.0◦)

(b) RAE2822: Pressure field (M∞ = 0.5,
α = 0.0◦)

Pressure discrepancy minimization (Euler equations)
Initial Configuration: NACA0012
Target Configuration: RAE2822
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Initial/Target Airfoils: Scaled
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Shape Parametrization

(a) µ(1) = 0.1 (b) µ(2) = 0.1

(c) µ(3) = 0.1 (d) µ(4) = 0.1

Figure: Shape parametrization of a NACA0012 airfoil using a cubic design element
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Shape Parametrization

(a) µ(5) = 0.1 (b) µ(6) = 0.1

(c) µ(7) = 0.1 (d) µ(8) = 0.1

Figure: Shape parametrization of a NACA0012 airfoil using a cubic design element
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Optimization Results
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Optimization Results
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Optimization Results

HDM-based
optimization

ROM-based
optimization

# of HDM Evaluations 29 7
# of ROM Evaluations - 346
||µ∗ − µRAE2822||
||µRAE2822|| 2.28× 10−3% 4.17× 10−6%

Table: Performance of the HDM- and ROM-based optimization methods
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Outline

1 Motivation

2 PDE-Constrained Optimization

3 Reduced-Order Models
Construction of Bases
Speedup Potential

4 ROM-Constrained Optimization
Reduced Sensitivities
Training

5 Numerical Experiments
Rocket Nozzle Design
Airfoil Design

6 Conclusion
Overview
Outlook
Future Work
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Summary

Summary

Introduced progressive, nonlinear trust region framework for reduced
optimization

Proposed minimum-error reduced sensitivity analysis

Reconstructed reduced sensitivities minimize error to true sensitivities

Demonstrated approach on canonical problem from aerodynamic shape
optimization

Factor of 4 fewer queries to HDM than standard PDE-constrained
optimization approaches

Preliminary results on toy problem regarding extension of framework to
hyperreduction
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Difficulty of Breaking Offline-Online Barrier

Offline-Online Approach
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Figure: Offline-Online Approach

Offline/Online Barrier

+ Enables large online speedups
- Difficult to construct accurate, robust ROM

Minimize

R
O

M

!
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Difficulty of Breaking Offline-Online Barrier

Progressive Approach
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Figure: Progressive Approach

Requires minimizing HDM , ROB , and

R
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!

Cost and Quantity
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Minimizing Cost of ROM Construction (POD-Based)

ROM construction ROB cost comes from SVD underlying POD

R-SVD scales as O(6mn2 + 20n3) for A ∈ Rm×n (Golub and Van Loan, 2012)
Our case: m = #DOF in HDM, n = # snapshots
Scales very poorly as snapshots are added

Competing goals

few snapshots to minimize SVD cost
many snapshots to maximize accuracy/robustness of ROM

Applications where smaller, faster SVDs beneficial

Computation of state ROB, Φ, from snapshots
Computation of residual ROB, ΦR, from snapshots

Potential for HUGE number of snapshots

Compute SVD of snapshot matrix leveraging SVD of subset of columns
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Minimizing Cost of ROM Construction (POD-Based)

ROM construction ROB cost comes from SVD underlying POD

R-SVD scales as O(6mn2 + 20n3) for A ∈ Rm×n (Golub and Van Loan, 2012)
Our case: m = #DOF in HDM, n = # snapshots
Scales very poorly as snapshots are added

Solutions

Approximate SVD (Halko et al., 2011)
Low-rank SVD updates (Brand, 2006), (Zahr et al., 2014)
Local ROMs (Dihlmann et al., 2011), (Amsallem et al., 2012)

Column partition snapshot; compute SVD of each local snapshot set
Several SVD computations on matrices with fewer columns

Adaptive h-refinement (Carlberg, 2014)

Fewer snapshots required offline since basis refined online

Investigation currently underway (Washabaugh, Zahr) to demonstrate
“offline” speedup potential of these ideas on large-scale, parametric problem
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Minimizing Cost of ROM Evaluation

Many-query setting: number of ROM

R
O

M

evaluations will be LARGE

ROM query as fast as possible

Reduce computational cost/complexity of evaluating nonlinear terms
ROBs as small as possible

ROM accurate in regions of parameter space of interest

Solutions
Hyperreduction

Treatment of nonlinearities

Local ROMs

Reduce size of ROB at a given time step

Adaptive h-refinement

Refine ROB only when/where necessary to prevent unnecessarily large bases

Temporal forecasting (Carlberg et al., 2012)

Reduce temporal complexity
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Numerical Example: Ahmed Body

Benchmark in automotive
industry

Mesh

2,890,434 vertices
17,017,090 tetra
17,342,604 DOF

CFD

Compressible
Navier-Stokes
DES + Wall func

Local ROM

4 ROBs: 76, 68, 30, 20
Sized by energy (99.75%)

and LES turbulence models, as well as a wall function. It performs a second-order semi-discretization of the convective fluxes
using a method based on the Roe, HLLE, or HLLC upwind scheme. It can also perform second- and fourth-order explicit and
implicit temporal discretizations using a variety of time integrators. The GNAT implementation in AERO-F is characterized by
the sample-mesh concept described in Section 5. All linear least-squares problems and singular value decompositions are
computed in parallel using the ScaLAPACK library [50]. AERO-F is used here to demonstrate GNAT’s potential when applied
to a realistic, large-scale, nonlinear benchmark CFD problem: turbulent flow around the Ahmed body.

The Ahmed-body geometry [47] is a simplied car geometry. It can be described as a modified parallelepiped featuring
round corners at the front end and a slanted face at the rear end (see Fig. 6). Depending on the inclination of this face, dif-
ferent flow characteristics and wake structure may be observed. For a slant angle uP 30!, the flow features a large detach-
ment. For smaller slant angles, the flow reattaches on the slant. Consequently, the drag coefficient suddenly decreases when
the slant angle is increased beyond its critical value of u ¼ 30!. Due to this phenomenon, predicting the flow past the Ahmed
body for varying slant angles has become a popular benchmark in the automotive industry.

This work considers the subcritical angleu ¼ 20! and treats the drag coefficient CD ¼ D
1
2q1V2

15:6016#10$2 m2 around the body as

the output of interest. The free-stream velocity is set to V1 ¼ 60 m/s, and the Reynolds number based on a reference length
of 1.0 m is set to Re ¼ 4:29# 106. The free-stream angle of attack is set to 0!.

6.2.1. High-dimensional CFD model
The high-dimensional CFD model corresponds to an unsteady Navier–Stokes simulation using AERO-F’s DES turbulence

model and wall function. The fluid domain is discretized by a mesh with 2,890,434 nodes and 17,017,090 tetrahedra (Fig. 7).
A symmetry plane is employed to exploit the symmetry of the body about the x–z plane. Due to the turbulence model and
three-dimensional domain, the number of conservation equations per node is m ¼ 6, and therefore the dimension of the CFD
model is N ¼ 17;342;604. Roe’s scheme is employed to discretize the convective fluxes; a linear variation of the solution is
assumed within each control volume, which leads to a second-order space-accurate scheme.

Flow simulations are performed within a time interval t 2 0 s;0:1 s½ &, the second-order accurate implicit three-point
backward difference scheme is used for time integration, and the computational time-step size is fixed to Dt ¼ 8# 10$5 s.
For the chosen CFD mesh, this time-step size corresponds to a maximum CFL number of roughly 2000. The nonlinear system
of algebraic equations arising at each time step is solved by Newton’s method. Convergence is declared at the kth iteration
for the nth time step when the residual satisfies kRnðkÞk 6 0:001kRnð0Þk. All flow computations are performed in a non-dimen-
sional setting.

A steady-state simulation computes the initial condition for the unsteady simulation. This steady-state calculation is
characterized by the same parameters as above, except that it employs local time stepping with a maximum CFL number
of 50, it uses the first-order implicit backward Euler time integration scheme, and it employs only one Newton iteration
per (pseudo) time step.

All computations are performed in double-precision arithmetic on a parallel Linux cluster5 using a variable number of
cores.

6.2.2. Comparison with experiment
Ref. [47] reports an experimental drag coefficient of 0.250 around the Ahmed body for a slant angle of u ¼ 20!. Fig. 8

reports the time history of the drag coefficient computed using the high-dimensional CFD model described in the previous
section. Indeed, the time-averaged value of the computed drag coefficient obtained using the trapezoidal rule is CD ¼ 0:2524.

Fig. 6. Geometry of the Ahmed body (from Ref. [51].)

5 The cluster contains compute nodes with 16 GB of memory. Each node consists of two quad-core Intel Xeon E5345 processors running at 2.33 GHz inside a
DELL Poweredge 1950. The interconnect is Cisco DDR InfiniBand.

K. Carlberg et al. / Journal of Computational Physics 242 (2013) 623–647 637

(a) Ahmed Body: Geometry [Ahmed et al 1984]

Hence, it is within less than 1% of the reported experimental value. This asserts the quality of the constructed CFD model and
AERO-F’s computations. For reference, this high-dimensional CFD simulation consumed 13.28 h on 512 cores.

6.2.3. ROM performance metrics
The following metrics will be used to assess GNAT’s performance. The relative discrepancy in the drag coefficient, which

assesses the accuracy of a GNAT simulation, is measured as follows:

RD ¼
1
nt

Xnt

n¼1
jCn

DI " Cn
DIII

j
max

n
Cn
DI "min

n
Cn
DI

; ð31Þ

where Cn
DI denotes the drag coefficient computed at the nth time step using the high-dimensional CFD model (tier I model),

and Cn
DIII denotes the corresponding value computed using the GNAT ROM (tier III model).

The improvement in CPU performance delivered by GNAT as measured in wall time is defined as

WT ¼ T I

T III
; ð32Þ

where T I denotes the wall time consumed by a flow simulation associated with the high-dimensional CFD model, and T III

denotes the wall time consumed online by its counterpart based on a GNAT ROM. For the high-dimensional model, the
reported wall time includes the solution of the governing equations and the output of the state vector; for the GNAT
reduced-order model, it includes the execution of Algorithm 2. After the completion of Algorithms 1 and 2 is executed to

Fig. 7. CFD mesh with 2,890,434 grid points and 17,017,090 tetrahedra (partial view, u ¼ 20%). Darker areas indicate a more refined area of the mesh.

Fig. 8. Time history of the drag coefficient predicted for u ¼ 20% using DES and a CFD mesh with N ¼ 17;342;604 unknowns. Oscillatory behavior due to
vortex shedding is apparent.

638 K. Carlberg et al. / Journal of Computational Physics 242 (2013) 623–647

(b) Ahmed Body: Mesh [Carlberg et al 2011]
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Low-Rank SVD Updates

Potential impact of low-rank SVD updates for ROM applications
demonstrated (Zahr et al., 2014) 15

Local ROMs with online basis updates
Better accuracy for given size of online bases than without updates
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15Work presented at SIAM Annual Meeting 2014 - Chicago, IL
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Future Work

Incorporate state-of-the-art ROM technology into proposed framework

Local ROMs, ROB updates, approx SVD, temporal forecasting, ROMES16

Convergence proof for proposed progressive optimization framework

Further development of hyperreduced sensitivity framework

Extensive study to compare with existing methods

Detailed parametric study to assess contribution of each component

Extend ideas to adjoint approach (vs. sensitivity approach)

Application to large-scale, 3D problems

Extension to unsteady PDEs with static parameters

Extension to unsteady PDEs with dynamic parameters
16(Drohmann and Carlberg, 2014)
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