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Problem Formulation

Goal: Rapidly solve PDE-constrained optimization problems of
the form

minimize
w∈RN , µ∈Rp

f(w,µ)

subject to R(w,µ) = 0
(1)

where R : RN ×Rp → RN is the discretized (nonlinear) PDE, w
is the PDE state vector, µ is the vector of parameters, and N is
assumed to be very large.

REDUCED ORDER MODEL (ROM) 

 o Perturbation problems (stability, trends, control, etc.)!

 o Response problems (behavior, performance, etc.)!

 - linearized                                                                                                                 !

 - nonlinear                                                                            !

!   Complex, time-dependent problems!
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Reduced-Order Model

Model Order Reduction (MOR) assumption: state vector
lies in low-dimensional affine subspace

w = w̄ + Φy

where y ∈ Rn are the reduced coordinates of w in the basis
Φ ∈ RN×n and n� N

Substitute assumption into High-Dimensional Model
(HDM), R(w,µ) = 0

R(w̄ + Φy,µ) ≈ 0

Require projection of residual in low-dimensional left
subspace, with basis Ψ ∈ RN×n to be zero

Rr(y,µ) = ΨTR(w̄ + Φy,µ) = 0

Zahr and Farhat Hyper-Reduced Optimization



PDE-Constrained Optimization
HROM-Constrained Optimization

Numerical Experiment

Bottleneck

Rr(y,µ) = ΨTR(w̄ + Φy,µ) = 0

Φ

y
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Bottleneck
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w̄ + Φ
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Bottleneck

Rr(y,µ) = ΨTR(w̄ + Φy,µ) = 0

ΨT

R
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Bottleneck

Rr(y,µ) = ΨTR(w̄ + Φy,µ) = 0

Rr = ΨT

R ( w̄ + Φ

y

)
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Bottleneck

∂Rr

∂y
(y,µ) = ΨT ∂R

∂y
(w̄ + Φy,µ)Φ

Φ

y

Zahr and Farhat Hyper-Reduced Optimization



PDE-Constrained Optimization
HROM-Constrained Optimization

Numerical Experiment

Bottleneck

∂Rr

∂y
(y,µ) = ΨT ∂R

∂y
(w̄ + Φy,µ)Φ

w̄ + Φ

y

Zahr and Farhat Hyper-Reduced Optimization



PDE-Constrained Optimization
HROM-Constrained Optimization

Numerical Experiment

Bottleneck

∂Rr

∂y
(y,µ) = ΨT ∂R

∂y
(w̄ + Φy,µ)Φ

∂R
∂w ( )w̄ + Φ

y

Zahr and Farhat Hyper-Reduced Optimization



PDE-Constrained Optimization
HROM-Constrained Optimization

Numerical Experiment

Bottleneck

∂Rr

∂y
(y,µ) = ΨT ∂R

∂y
(w̄ + Φy,µ)Φ

ΨT

∂R
∂w Φ

Zahr and Farhat Hyper-Reduced Optimization



PDE-Constrained Optimization
HROM-Constrained Optimization

Numerical Experiment

Bottleneck

∂Rr

∂y
(y,µ) = ΨT ∂R

∂y
(w̄ + Φy,µ)Φ

∂Rr
∂y

= ΨT

∂R
∂w ( ) Φw̄ + Φ

y

Zahr and Farhat Hyper-Reduced Optimization



PDE-Constrained Optimization
HROM-Constrained Optimization

Numerical Experiment

Solution: Gappy POD Approximation

Assume nonlinear terms (residual/Jacobian) lie in
low-dimensional subspace

R(w,µ) ≈ ΦRr(w,µ)

where Φ ∈ RN×nR and r : RN × Rp → RnR are the reduced
coordinates; nR � N

Determine R by solving gappy least-squares problem

r(w,µ) = arg min
a∈Rnr

||ZTΦRa− ZTR(w,µ)||

where Z is a restriction operator

Analytical solution

r(w,µ) =
(
ZTΦR

)† (
ZTR(w,µ)

)
Zahr and Farhat Hyper-Reduced Optimization
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Gappy POD in Practice

Figure 11. Surface mesh for post-processing with 124,047 nodes and 492,445 tetrahedral volumes.
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Figure 12. Drag coefficient generated by the GNAT model using 378 sample nodes and different snapshot procedures.
GNAT(i) refers to GNAT with snapshot procedure i.

(a) 253 sample nodes (b) 378 sample nodes (c) 505 sample nodes

Figure 13. Sample meshes generated using snapshot method 1.
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Hyper-Reduced Model

Using the Gappy POD approximation, the hyper-reduced
governing equations are

Rh(y,µ) = ΨTΦR

(
ZTΦR

)† (
ZTR(w̄ + Φy,µ)

)
= 0

where
E = ΨTΦR

(
ZTΦR

)†
is known offline and can be precomputed

Rr = E ZTR

Zahr and Farhat Hyper-Reduced Optimization
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Hyper-Reduced Optimization

Using the hyper-reduced model as a surrogate for the HDM in
the PDE-constrained optimization, we have the hyper-reduced
optimization problem

minimize
y∈Rn, µ∈Rp

f̃(y,µ)

subject to Rh(y,µ) = 0

where Rh : Rk × Rp → Rk is the hyper-reduced PDE and
y ∈ Rk are the reduced coordinates, where k � N .

Zahr and Farhat Hyper-Reduced Optimization
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Hyper-Reduced Optimization Procedure
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PDE-Constrained Optimization 
using Progressively-Constructed 
Reduced-Order Models

Investigators:
Matthew J. Zahr
Charbel Farhat

Goal

Progressively-Constructed ROMs for Optimization

ROM-Constrained Optimization

Shape Design of Simplifed Rocket Nozzle

Collaborations
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Rapidly solve a PDE-constrained optimization problem using a Reduced-
Order Model (ROM) as a surrogate for the PDE

minimize
y∈Rr,µ∈Rp

f(Φy, µ)

subject to ΨT R(Φy, µ) = 0

where the discretized PDE is

    is the state vector,     is the parameter vector, and N is very large

Assume state vector lies in an r-dimensional subspace where r      N, 
defined by the Reduced Basis (RB), 

µw

minimize
w∈RN ,µ∈Rp

f(w, µ)

subject to R(w, µ) = 0

R(w, µ) = 0

�

ΨT R(Φy, µ) = 0

w = Φy

Project equations into another r-dimensional subspace

Φ

ROM-Constrained Optimization:

Offline/Online approach to ROM-constrained optimization

CPU effort breakdown for offline/online ROM-constrained optimization

HDM
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ROM
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Compress
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HDM
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Consider local version to ROM-constrained optimization

minimize
y∈Rr,µ∈Rp

f(Φy, µ)

subject to ΨT R(Φy, µ) = 0

||R(Φy, µ)|| ≤ �

Progressive approach to ROM-constrained optimization

CPU effort breakdown for progressive ROM-constrained optimization

Flow governed by quasi-1D Euler 
equations,       is flow obtained from 
exact, pre-defined nozzle configuration

minimize
w∈RN ,µ∈Rp

1

2
||w∗ − w||22

subject to R(w, µ) = 0

c(w, µ) ≤ 0

Parameter estimation shape optimization:

Nozzle Configurationw∗

µ∗

HDM Samples: Offline/
Online Approach

HDM Samples: 
Progressive Approach

Table: Accuracy and performance comparison for various
PDE-constrained optimization methods for the shape optimization
problem

Progressive Offline/Online HDMOpt

µ∗ Error (%) 2.88 16.6 1.04 × 10−7

# HDM 9 12 202

# ROM 770 149 -

Zahr, Amsallem, Farhat Optimization-Based Sampling for ROMs
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Rapidly solve a PDE-constrained optimization problem using a Reduced-
Order Model (ROM) as a surrogate for the PDE 
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Consider local version to ROM-constrained optimization 

Progressive approach to ROM-constrained optimization 

CPU effort breakdown for progressive ROM-constrained optimization 

Flow governed by quasi-1D Euler 
equations,       is flow obtained from 
exact, pre-defined nozzle configuration 

Parameter estimation shape optimization: 

Nozzle Configuration 

HDM Samples: Offline/
Online Approach 

HDM Samples: 
Progressive Approach 

Progressive
vs Offline

ROM 

The following collaboration efforts are planned:

ARL/CSD: Pat Collins, on the CFD ROM component and its 
introduction at ARL/VTD where AERO-F is now known. Anticipated 
applications are design optimization of MAVs and flapping wings, among 
others 

TARDEC: Matt Castanier, on the structural dynamics ROM component
    with applications to armor design optimization
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Rapidly solve a PDE-constrained optimization problem using a Reduced-
Order Model (ROM) as a surrogate for the PDE

minimize
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subject to ΨT R(Φy, µ) = 0

where the discretized PDE is
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defined by the Reduced Basis (RB), 
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Rapidly solve a PDE-constrained optimization problem using a Reduced-
Order Model (ROM) as a surrogate for the PDE

minimize
y∈Rr,µ∈Rp

f(Φy, µ)

subject to ΨT R(Φy, µ) = 0

where the discretized PDE is

    is the state vector,     is the parameter vector, and N is very large

Assume state vector lies in an r-dimensional subspace where r      N, 
defined by the Reduced Basis (RB), 

µw

minimize
w∈RN ,µ∈Rp

f(w, µ)

subject to R(w, µ) = 0

R(w, µ) = 0

�

ΨT R(Φy, µ) = 0

w = Φy

Project equations into another r-dimensional subspace

Φ

ROM-Constrained Optimization:

Offline/Online approach to ROM-constrained optimization

CPU effort breakdown for offline/online ROM-constrained optimization

HDM

HDM
 RB, Φ

ROM

Optimizer

Compress

HDM

HDM

HDM

HDM
 RB, Φ

ROM

Optimizer

Compress

HDM

U
pd

at
e

R
B

Consider local version to ROM-constrained optimization

minimize
y∈Rr,µ∈Rp

f(Φy, µ)

subject to ΨT R(Φy, µ) = 0

||R(Φy, µ)|| ≤ �

Progressive approach to ROM-constrained optimization

CPU effort breakdown for progressive ROM-constrained optimization

Flow governed by quasi-1D Euler 
equations,       is flow obtained from 
exact, pre-defined nozzle configuration

minimize
w∈RN ,µ∈Rp

1

2
||w∗ − w||22

subject to R(w, µ) = 0

c(w, µ) ≤ 0

Parameter estimation shape optimization:

Nozzle Configurationw∗

µ∗

HDM Samples: Offline/
Online Approach

HDM Samples: 
Progressive Approach

Table: Accuracy and performance comparison for various
PDE-constrained optimization methods for the shape optimization
problem

Progressive Offline/Online HDMOpt

µ∗ Error (%) 2.88 16.6 1.04 × 10−7

# HDM 9 12 202

# ROM 770 149 -

Zahr, Amsallem, Farhat Optimization-Based Sampling for ROMs
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Applications
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Design Optimization

Control 

Rapidly solve a PDE-constrained optimization problem using a Reduced-
Order Model (ROM) as a surrogate for the PDE 

where the discretized PDE is 

    is the state vector,     is the parameter vector, and N is very large 

Assume state vector lies in an r-dimensional subspace where r      N, 
defined by the Reduced Basis (RB),  

Project equations into another r-dimensional subspace 

ROM-Constrained Optimization: 

Offline/Online approach to ROM-constrained optimization 

CPU effort breakdown for offline/online ROM-constrained optimization 
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Consider local version to ROM-constrained optimization 

Progressive approach to ROM-constrained optimization 

CPU effort breakdown for progressive ROM-constrained optimization 

Flow governed by quasi-1D Euler 
equations,       is flow obtained from 
exact, pre-defined nozzle configuration 

Parameter estimation shape optimization: 

Nozzle Configuration 

HDM Samples: Offline/
Online Approach 

HDM Samples: 
Progressive Approach 

Progressive
vs Offline

ROM 

The following collaboration efforts are planned:

ARL/CSD: Pat Collins, on the CFD ROM component and its 
introduction at ARL/VTD where AERO-F is now known. Anticipated 
applications are design optimization of MAVs and flapping wings, among 
others 

TARDEC: Matt Castanier, on the structural dynamics ROM component
    with applications to armor design optimization

Zahr and Farhat Hyper-Reduced Optimization
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Quasi-1D Euler Flow

Quasi-1D Euler equations:

∂U

∂t
+

1

A

∂(AF)

∂x
= Q

where

U =

 ρρu
e

 , F =

 ρu
ρu2 + p
(e+ p)u

 , Q =

 0
p
A

∂A
∂x
0


Semi-discretization =⇒ finite volumes with Roe flux and
entropy corrections

Full discretization =⇒ Backward Euler → steady state

Zahr and Farhat Hyper-Reduced Optimization
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Nozzle Parametrization

Nozzle parametrized with cubic splines using 13 control points
and constraints requiring

convexity A′′(x) ≥ 0
bounds on A(x) Al(x) ≤ A(x) ≤ Au(x)
bounds on A′(x) at inlet/outlet A′(xl) ≤ 0, A′(xr) ≥ 0
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Student Version of MATLAB
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Parameter Estimation/Inverse Design

For this problem, the goal is to determine the parameter µ∗

such that the flow achieves some optimal or desired state w∗

minimize
w∈RN , µ∈Rp

||w(µ)−w∗||

subject to R(w,µ) = 0

c(w,µ) ≤ 0

(2)

where c are the nozzle constraints.

This problem is solved using
the HDM as the governing equation

HDM-based optimization

the HROM as the governing equation

HROM-based optimization

Zahr and Farhat Hyper-Reduced Optimization



PDE-Constrained Optimization
HROM-Constrained Optimization

Numerical Experiment

Objective Function Convergence

(a) Convergence (# HDM Evals)
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(b) Convergence (CPU Time)
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Hyper-Reduced Optimization Progression

(a) Parameter (µ) Progression
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(b) Pressure Progression
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Optimization Summary

HDM-Based Opt HROM-Based Opt
Rel. Error in µ∗ (%) 1.82 5.26
Rel. Error in w∗ (%) 0.11 0.12
# HDM Evals 27 8
# HROM Evals 0 161
CPU Time (s) 3361.51 2001.74

Zahr and Farhat Hyper-Reduced Optimization
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