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Motivation

PDE-constrained is ubiquitous in engineering
Design optimization
Optimal control
Parameter estimation (inverse problems)

Notoriously expensive as many calls to a PDE solver may
be required

CFD, structural dynamics, acoustic models
Good candidate for model reduction

Many-query application

REDUCED ORDER MODEL (ROM) 

 o Perturbation problems (stability, trends, control, etc.)!

 o Response problems (behavior, performance, etc.)!

 - linearized                                                                                                                 !

 - nonlinear                                                                            !

!   Complex, time-dependent problems!
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Problem Formulation

Goal: Rapidly solve PDE-constrained optimization problems of
the form

minimize
w∈RN , µ∈Rp

f(w,µ)

subject to R(w,µ) = 0

where R : RN ×Rp → RN is the discretized (nonlinear) PDE, w
is the PDE state vector, µ is the vector of parameters, and N is
assumed to be very large.

REDUCED ORDER MODEL (ROM) 

 o Perturbation problems (stability, trends, control, etc.)!

 o Response problems (behavior, performance, etc.)!

 - linearized                                                                                                                 !

 - nonlinear                                                                            !

!   Complex, time-dependent problems!

Zahr and Farhat Progressive ROM-Constrained Optimization



PDE-Constrained Optimization
ROM-Constrained Optimization

Numerical Experiments
Conclusion

Reduced-Order Model

Model Order Reduction (MOR) assumption: state vector
lies in low-dimensional affine subspace

w ≈ wr = w̄ + Φy

where y ∈ Rn are the reduced coordinates of w in the basis
Φ ∈ RN×n, w̄ piecewise constant in µ, and n� N

Substitute assumption into High-Dimensional Model
(HDM), R(w,µ) = 0

R(w̄ + Φy,µ) ≈ 0

Require projection of residual in low-dimensional left
subspace, with basis Ψ ∈ RN×n to be zero

Rr(y,µ) = ΨTR(w̄ + Φy,µ) = 0

Zahr and Farhat Progressive ROM-Constrained Optimization
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Basis Construction
Reduced Sensitivities
Training

Reduced Optimization Problem

ROM-constrained optimization problem

minimize
y∈Rn, µ∈Rp

f(w̄ + Φy,µ)

subject to ΨTR(w̄ + Φy,µ) = 0

Issues that must be considered

Basis construction
Reduced sensitivity derivation
Training

Zahr and Farhat Progressive ROM-Constrained Optimization
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Basis Construction
Reduced Sensitivities
Training

State-Sensitivity POD

MOR assumption: w ≈ wr = w̄ + Φy =⇒ ∂wr
∂µ = Φ ∂y

∂µ

Collect state and sensitivity snapshots by sampling HDM

X =
[
w(µ1)− w̄ w(µ2)− w̄ · · · w(µn)− w̄

]

Y =
[
∂w
∂µ (µ1)

∂w
∂µ (µ2) · · · ∂w

∂µ (µn)
]

Use Proper Orthogonal Decomposition to generate reduced
bases from each individually

ΦX = POD(X)

ΦY = POD(Y)

Concatenate to get ROB

Φ =
[
ΦX ΦY

]

Zahr and Farhat Progressive ROM-Constrained Optimization
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Sensitivities

For gradient-based optimization, sensitivities are required

HDM sensitivities

R(w(µ),µ) = 0 =⇒ ∂w

∂µ
= −

[
∂R

∂w

]−1 ∂R

∂µ

ROM sensitivities

Rr(y(µ),µ) = 0 =⇒ ∂wr

∂µ
= Φ

∂y

∂µ
= ΦA−1B

A =

N∑

j=1

Rj
∂
(
ΨTej

)

∂w
Φ + ΨT ∂R

∂w
Φ

B = −




N∑

j=1

Rj
∂
(
ΨTej

)

∂µ
+ ΨT ∂R

∂µ



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Basis Construction
Reduced Sensitivities
Training

Minimum-Error Reduced Sensitivities

True sensitivities of the ROM
May be difficult to compute if Ψ = Ψ(µ)

LSPG [Bui-Thanh et al 2008, Carlberg et al 2011]

May not represent HDM sensitivities well

Gradients of reduced optimization functions may not be
close to the true gradients

Define quantity that minimizes the sensitivity error in
some norm Θ � 0

∂̂y

∂µ
= arg min

a
||∂w

∂µ
−Φa||Θ

=⇒ ∂̂y

∂µ
= −

(
Θ1/2Φ

)†
Θ1/2∂R

∂w

−1∂R

∂µ
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Basis Construction
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Minimum-Error Reduced Sensitivities

Select Θ1/2 = ∂R
∂w

∂̂y

∂µ
= −

(
∂R

∂w
Φ

)† ∂R

∂µ

Exactly reproduce sensitivities at training points if
sensitivity basis not truncated

May cause convergence issues for reduced optimization
problem

Zahr and Farhat Progressive ROM-Constrained Optimization
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Basis Construction
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Training

Training: Offline-Online (Database) Approach

Identify samples in offline phase to be used for training

Collect snapshots by running HDM (state vector and
sensitivities)

Build ROB Φ

Solve optimization problem

minimize
y∈Rn, µ∈Rp

f(w̄ + Φy,µ)

subject to ΨTR(w̄ + Φy,µ) = 0

[Lassila et al 2010, Rozza et al 2010, Manzoni et al 2012]
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Basis Construction
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Training

Offline-Online Approach
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Rapidly solve a PDE-constrained optimization problem using a Reduced-
Order Model (ROM) as a surrogate for the PDE

minimize
y∈Rr,µ∈Rp

f(Φy, µ)

subject to ΨT R(Φy, µ) = 0

where the discretized PDE is

    is the state vector,     is the parameter vector, and N is very large

Assume state vector lies in an r-dimensional subspace where r      N, 
defined by the Reduced Basis (RB), 

µw

minimize
w∈RN ,µ∈Rp

f(w, µ)

subject to R(w, µ) = 0

R(w, µ) = 0

�

ΨT R(Φy, µ) = 0

w = Φy

Project equations into another r-dimensional subspace

Φ

ROM-Constrained Optimization:

Offline/Online approach to ROM-constrained optimization

CPU effort breakdown for offline/online ROM-constrained optimization

HDM

HDM
 RB, Φ

ROM

Optimizer

Compress

HDM

HDM

HDM

HDM
 RB, Φ

ROM

Optimizer

Compress

HDM

U
pd

at
e

R
B

Consider local version to ROM-constrained optimization

minimize
y∈Rr,µ∈Rp

f(Φy, µ)

subject to ΨT R(Φy, µ) = 0

||R(Φy, µ)|| ≤ �

Progressive approach to ROM-constrained optimization

CPU effort breakdown for progressive ROM-constrained optimization

Flow governed by quasi-1D Euler 
equations,       is flow obtained from 
exact, pre-defined nozzle configuration

minimize
w∈RN ,µ∈Rp

1

2
||w∗ − w||22

subject to R(w, µ) = 0

c(w, µ) ≤ 0

Parameter estimation shape optimization:

Nozzle Configurationw∗

µ∗

HDM Samples: Offline/
Online Approach

HDM Samples: 
Progressive Approach

Table: Accuracy and performance comparison for various
PDE-constrained optimization methods for the shape optimization
problem

Progressive Offline/Online HDMOpt

µ∗ Error (%) 2.88 16.6 1.04 × 10−7

# HDM 9 12 202

# ROM 770 149 -

Zahr, Amsallem, Farhat Optimization-Based Sampling for ROMs
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Rapidly solve a PDE-constrained optimization problem using a Reduced-
Order Model (ROM) as a surrogate for the PDE 

where the discretized PDE is 

    is the state vector,     is the parameter vector, and N is very large 

Assume state vector lies in an r-dimensional subspace where r      N, 
defined by the Reduced Basis (RB),  

Project equations into another r-dimensional subspace 

ROM-Constrained Optimization: 

Offline/Online approach to ROM-constrained optimization 

CPU effort breakdown for offline/online ROM-constrained optimization 

Compress 
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Consider local version to ROM-constrained optimization 

Progressive approach to ROM-constrained optimization 

CPU effort breakdown for progressive ROM-constrained optimization 

Flow governed by quasi-1D Euler 
equations,       is flow obtained from 
exact, pre-defined nozzle configuration 

Parameter estimation shape optimization: 

Nozzle Configuration 

HDM Samples: Offline/
Online Approach 

HDM Samples: 
Progressive Approach 

Progressive

vs Offline


ROM 

The following collaboration efforts are planned:

ARL/CSD: Pat Collins, on the CFD ROM component and its 
introduction at ARL/VTD where AERO-F is now known. Anticipated 
applications are design optimization of MAVs and flapping wings, among 
others 

TARDEC: Matt Castanier, on the structural dynamics ROM component
    with applications to armor design optimization

(a) Schematic of Algorithm
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Rapidly solve a PDE-constrained optimization problem using a Reduced-
Order Model (ROM) as a surrogate for the PDE

minimize
y∈Rr,µ∈Rp

f(Φy, µ)

subject to ΨT R(Φy, µ) = 0

where the discretized PDE is

    is the state vector,     is the parameter vector, and N is very large

Assume state vector lies in an r-dimensional subspace where r      N, 
defined by the Reduced Basis (RB), 

µw

minimize
w∈RN ,µ∈Rp

f(w, µ)

subject to R(w, µ) = 0

R(w, µ) = 0

�

ΨT R(Φy, µ) = 0

w = Φy

Project equations into another r-dimensional subspace

Φ
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CPU effort breakdown for offline/online ROM-constrained optimization

HDM

HDM
 RB, Φ

ROM

Optimizer

Compress

HDM

HDM

HDM

HDM
 RB, Φ

ROM

Optimizer

Compress

HDM

U
pd

at
e

R
B

Consider local version to ROM-constrained optimization

minimize
y∈Rr,µ∈Rp

f(Φy, µ)

subject to ΨT R(Φy, µ) = 0

||R(Φy, µ)|| ≤ �

Progressive approach to ROM-constrained optimization

CPU effort breakdown for progressive ROM-constrained optimization

Flow governed by quasi-1D Euler 
equations,       is flow obtained from 
exact, pre-defined nozzle configuration

minimize
w∈RN ,µ∈Rp

1

2
||w∗ − w||22

subject to R(w, µ) = 0

c(w, µ) ≤ 0

Parameter estimation shape optimization:

Nozzle Configurationw∗

µ∗

HDM Samples: Offline/
Online Approach

HDM Samples: 
Progressive Approach

Table: Accuracy and performance comparison for various
PDE-constrained optimization methods for the shape optimization
problem

Progressive Offline/Online HDMOpt

µ∗ Error (%) 2.88 16.6 1.04 × 10−7

# HDM 9 12 202
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where the discretized PDE is 
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Consider local version to ROM-constrained optimization 

Progressive approach to ROM-constrained optimization 

CPU effort breakdown for progressive ROM-constrained optimization 

Flow governed by quasi-1D Euler 
equations,       is flow obtained from 
exact, pre-defined nozzle configuration 

Parameter estimation shape optimization: 

Nozzle Configuration 

HDM Samples: Offline/
Online Approach 

HDM Samples: 
Progressive Approach 

Progressive

vs Offline


ROM 

The following collaboration efforts are planned:

ARL/CSD: Pat Collins, on the CFD ROM component and its 
introduction at ARL/VTD where AERO-F is now known. Anticipated 
applications are design optimization of MAVs and flapping wings, among 
others 

TARDEC: Matt Castanier, on the structural dynamics ROM component
    with applications to armor design optimization

(b) Idealized
Optimization Trajectory
in Parameter Space
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Rapidly solve a PDE-constrained optimization problem using a Reduced-
Order Model (ROM) as a surrogate for the PDE

minimize
y∈Rr,µ∈Rp

f(Φy, µ)

subject to ΨT R(Φy, µ) = 0

where the discretized PDE is

    is the state vector,     is the parameter vector, and N is very large

Assume state vector lies in an r-dimensional subspace where r      N, 
defined by the Reduced Basis (RB), 

µw

minimize
w∈RN ,µ∈Rp

f(w, µ)

subject to R(w, µ) = 0

R(w, µ) = 0
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ΨT R(Φy, µ) = 0

w = Φy

Project equations into another r-dimensional subspace

Φ
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Consider local version to ROM-constrained optimization

minimize
y∈Rr,µ∈Rp

f(Φy, µ)

subject to ΨT R(Φy, µ) = 0

||R(Φy, µ)|| ≤ �

Progressive approach to ROM-constrained optimization

CPU effort breakdown for progressive ROM-constrained optimization

Flow governed by quasi-1D Euler 
equations,       is flow obtained from 
exact, pre-defined nozzle configuration

minimize
w∈RN ,µ∈Rp

1

2
||w∗ − w||22

subject to R(w, µ) = 0

c(w, µ) ≤ 0

Parameter estimation shape optimization:

Nozzle Configurationw∗

µ∗

HDM Samples: Offline/
Online Approach

HDM Samples: 
Progressive Approach
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Rapidly solve a PDE-constrained optimization problem using a Reduced-
Order Model (ROM) as a surrogate for the PDE

minimize
y∈Rr,µ∈Rp

f(Φy, µ)

subject to ΨT R(Φy, µ) = 0

where the discretized PDE is

    is the state vector,     is the parameter vector, and N is very large

Assume state vector lies in an r-dimensional subspace where r      N, 
defined by the Reduced Basis (RB), 

µw

minimize
w∈RN ,µ∈Rp

f(w, µ)

subject to R(w, µ) = 0
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Flow governed by quasi-1D Euler 
equations,       is flow obtained from 
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minimize
w∈RN ,µ∈Rp
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subject to R(w, µ) = 0

c(w, µ) ≤ 0
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Consider local version to ROM-constrained optimization 

Progressive approach to ROM-constrained optimization 

CPU effort breakdown for progressive ROM-constrained optimization 

Flow governed by quasi-1D Euler 
equations,       is flow obtained from 
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Parameter estimation shape optimization: 

Nozzle Configuration 
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Online Approach 
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The following collaboration efforts are planned:

ARL/CSD: Pat Collins, on the CFD ROM component and its 
introduction at ARL/VTD where AERO-F is now known. Anticipated 
applications are design optimization of MAVs and flapping wings, among 
others 

TARDEC: Matt Castanier, on the structural dynamics ROM component
    with applications to armor design optimization

(c) Breakdown of Computational Effort
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Training: Progressive Approach

Collect snapshots by running HDM (state vector and
sensitivities) at initial guess for optimization problem

Build ROB Φ from sparse training

Solve optimization problem

minimize
y∈Rn, µ∈Rp

f(w̄ + Φy,µ)

subject to ΨTR(w̄ + Φy,µ) = 0

1

2
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repeat until convergence

Similar approaches found in: [Arian et al 2000, Afanasiev et al
2001, Fahl 2001]
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Rapidly solve a PDE-constrained optimization problem using a Reduced-
Order Model (ROM) as a surrogate for the PDE

minimize
y∈Rr,µ∈Rp

f(Φy, µ)

subject to ΨT R(Φy, µ) = 0

where the discretized PDE is

    is the state vector,     is the parameter vector, and N is very large

Assume state vector lies in an r-dimensional subspace where r      N, 
defined by the Reduced Basis (RB), 

µw

minimize
w∈RN ,µ∈Rp

f(w, µ)

subject to R(w, µ) = 0

R(w, µ) = 0

�

ΨT R(Φy, µ) = 0

w = Φy

Project equations into another r-dimensional subspace

Φ

ROM-Constrained Optimization:

Offline/Online approach to ROM-constrained optimization

CPU effort breakdown for offline/online ROM-constrained optimization
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Consider local version to ROM-constrained optimization

minimize
y∈Rr,µ∈Rp

f(Φy, µ)

subject to ΨT R(Φy, µ) = 0

||R(Φy, µ)|| ≤ �

Progressive approach to ROM-constrained optimization

CPU effort breakdown for progressive ROM-constrained optimization

Flow governed by quasi-1D Euler 
equations,       is flow obtained from 
exact, pre-defined nozzle configuration

minimize
w∈RN ,µ∈Rp

1

2
||w∗ − w||22

subject to R(w, µ) = 0

c(w, µ) ≤ 0

Parameter estimation shape optimization:

Nozzle Configurationw∗

µ∗

HDM Samples: Offline/
Online Approach

HDM Samples: 
Progressive Approach

Table: Accuracy and performance comparison for various
PDE-constrained optimization methods for the shape optimization
problem
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µ∗ Error (%) 2.88 16.6 1.04 × 10−7
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    is the state vector,     is the parameter vector, and N is very large 

Assume state vector lies in an r-dimensional subspace where r      N, 
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Consider local version to ROM-constrained optimization 

Progressive approach to ROM-constrained optimization 

CPU effort breakdown for progressive ROM-constrained optimization 

Flow governed by quasi-1D Euler 
equations,       is flow obtained from 
exact, pre-defined nozzle configuration 

Parameter estimation shape optimization: 

Nozzle Configuration 

HDM Samples: Offline/
Online Approach 

HDM Samples: 
Progressive Approach 

Progressive

vs Offline


ROM 

The following collaboration efforts are planned:

ARL/CSD: Pat Collins, on the CFD ROM component and its 
introduction at ARL/VTD where AERO-F is now known. Anticipated 
applications are design optimization of MAVs and flapping wings, among 
others 

TARDEC: Matt Castanier, on the structural dynamics ROM component
    with applications to armor design optimization

(a) Schematic of Algorithm
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Rapidly solve a PDE-constrained optimization problem using a Reduced-
Order Model (ROM) as a surrogate for the PDE

minimize
y∈Rr,µ∈Rp

f(Φy, µ)

subject to ΨT R(Φy, µ) = 0

where the discretized PDE is

    is the state vector,     is the parameter vector, and N is very large

Assume state vector lies in an r-dimensional subspace where r      N, 
defined by the Reduced Basis (RB), 

µw

minimize
w∈RN ,µ∈Rp

f(w, µ)

subject to R(w, µ) = 0

R(w, µ) = 0

�

ΨT R(Φy, µ) = 0

w = Φy

Project equations into another r-dimensional subspace

Φ

ROM-Constrained Optimization:

Offline/Online approach to ROM-constrained optimization

CPU effort breakdown for offline/online ROM-constrained optimization
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Consider local version to ROM-constrained optimization

minimize
y∈Rr,µ∈Rp

f(Φy, µ)

subject to ΨT R(Φy, µ) = 0

||R(Φy, µ)|| ≤ �

Progressive approach to ROM-constrained optimization

CPU effort breakdown for progressive ROM-constrained optimization

Flow governed by quasi-1D Euler 
equations,       is flow obtained from 
exact, pre-defined nozzle configuration

minimize
w∈RN ,µ∈Rp

1

2
||w∗ − w||22

subject to R(w, µ) = 0

c(w, µ) ≤ 0

Parameter estimation shape optimization:

Nozzle Configurationw∗

µ∗

HDM Samples: Offline/
Online Approach

HDM Samples: 
Progressive Approach

Table: Accuracy and performance comparison for various
PDE-constrained optimization methods for the shape optimization
problem

Progressive Offline/Online HDMOpt

µ∗ Error (%) 2.88 16.6 1.04 × 10−7
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Order Model (ROM) as a surrogate for the PDE 
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    is the state vector,     is the parameter vector, and N is very large 

Assume state vector lies in an r-dimensional subspace where r      N, 
defined by the Reduced Basis (RB),  

Project equations into another r-dimensional subspace 

ROM-Constrained Optimization: 

Offline/Online approach to ROM-constrained optimization 

CPU effort breakdown for offline/online ROM-constrained optimization 
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Consider local version to ROM-constrained optimization 

Progressive approach to ROM-constrained optimization 

CPU effort breakdown for progressive ROM-constrained optimization 

Flow governed by quasi-1D Euler 
equations,       is flow obtained from 
exact, pre-defined nozzle configuration 

Parameter estimation shape optimization: 

Nozzle Configuration 

HDM Samples: Offline/
Online Approach 

HDM Samples: 
Progressive Approach 

Progressive

vs Offline


ROM 

The following collaboration efforts are planned:

ARL/CSD: Pat Collins, on the CFD ROM component and its 
introduction at ARL/VTD where AERO-F is now known. Anticipated 
applications are design optimization of MAVs and flapping wings, among 
others 

TARDEC: Matt Castanier, on the structural dynamics ROM component
    with applications to armor design optimization

(b) Idealized
Optimization Trajectory
in Parameter Space
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Rapidly solve a PDE-constrained optimization problem using a Reduced-
Order Model (ROM) as a surrogate for the PDE

minimize
y∈Rr,µ∈Rp

f(Φy, µ)

subject to ΨT R(Φy, µ) = 0

where the discretized PDE is

    is the state vector,     is the parameter vector, and N is very large

Assume state vector lies in an r-dimensional subspace where r      N, 
defined by the Reduced Basis (RB), 

µw

minimize
w∈RN ,µ∈Rp

f(w, µ)

subject to R(w, µ) = 0

R(w, µ) = 0
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ΨT R(Φy, µ) = 0

w = Φy

Project equations into another r-dimensional subspace

Φ

ROM-Constrained Optimization:

Offline/Online approach to ROM-constrained optimization
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Consider local version to ROM-constrained optimization

minimize
y∈Rr,µ∈Rp

f(Φy, µ)

subject to ΨT R(Φy, µ) = 0

||R(Φy, µ)|| ≤ �

Progressive approach to ROM-constrained optimization

CPU effort breakdown for progressive ROM-constrained optimization

Flow governed by quasi-1D Euler 
equations,       is flow obtained from 
exact, pre-defined nozzle configuration

minimize
w∈RN ,µ∈Rp

1

2
||w∗ − w||22

subject to R(w, µ) = 0

c(w, µ) ≤ 0

Parameter estimation shape optimization:

Nozzle Configurationw∗

µ∗

HDM Samples: Offline/
Online Approach

HDM Samples: 
Progressive Approach
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Consider local version to ROM-constrained optimization 

Progressive approach to ROM-constrained optimization 

CPU effort breakdown for progressive ROM-constrained optimization 

Flow governed by quasi-1D Euler 
equations,       is flow obtained from 
exact, pre-defined nozzle configuration 

Parameter estimation shape optimization: 

Nozzle Configuration 

HDM Samples: Offline/
Online Approach 

HDM Samples: 
Progressive Approach 

Progressive

vs Offline


ROM 

The following collaboration efforts are planned:

ARL/CSD: Pat Collins, on the CFD ROM component and its 
introduction at ARL/VTD where AERO-F is now known. Anticipated 
applications are design optimization of MAVs and flapping wings, among 
others 

TARDEC: Matt Castanier, on the structural dynamics ROM component
    with applications to armor design optimization
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Rapidly solve a PDE-constrained optimization problem using a Reduced-
Order Model (ROM) as a surrogate for the PDE

minimize
y∈Rr,µ∈Rp

f(Φy, µ)

subject to ΨT R(Φy, µ) = 0

where the discretized PDE is

    is the state vector,     is the parameter vector, and N is very large

Assume state vector lies in an r-dimensional subspace where r      N, 
defined by the Reduced Basis (RB), 

µw

minimize
w∈RN ,µ∈Rp

f(w, µ)

subject to R(w, µ) = 0

R(w, µ) = 0
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ΨT R(Φy, µ) = 0

w = Φy

Project equations into another r-dimensional subspace

Φ

ROM-Constrained Optimization:

Offline/Online approach to ROM-constrained optimization
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Consider local version to ROM-constrained optimization

minimize
y∈Rr,µ∈Rp

f(Φy, µ)

subject to ΨT R(Φy, µ) = 0

||R(Φy, µ)|| ≤ �

Progressive approach to ROM-constrained optimization

CPU effort breakdown for progressive ROM-constrained optimization

Flow governed by quasi-1D Euler 
equations,       is flow obtained from 
exact, pre-defined nozzle configuration

minimize
w∈RN ,µ∈Rp

1

2
||w∗ − w||22

subject to R(w, µ) = 0

c(w, µ) ≤ 0

Parameter estimation shape optimization:

Nozzle Configurationw∗

µ∗

HDM Samples: Offline/
Online Approach

HDM Samples: 
Progressive Approach

Table: Accuracy and performance comparison for various
PDE-constrained optimization methods for the shape optimization
problem
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µ∗ Error (%) 2.88 16.6 1.04 × 10−7
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    is the state vector,     is the parameter vector, and N is very large 

Assume state vector lies in an r-dimensional subspace where r      N, 
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Consider local version to ROM-constrained optimization 

Progressive approach to ROM-constrained optimization 

CPU effort breakdown for progressive ROM-constrained optimization 

Flow governed by quasi-1D Euler 
equations,       is flow obtained from 
exact, pre-defined nozzle configuration 

Parameter estimation shape optimization: 

Nozzle Configuration 
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Online Approach 
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Progressive Approach 

Progressive

vs Offline


ROM 

The following collaboration efforts are planned:

ARL/CSD: Pat Collins, on the CFD ROM component and its 
introduction at ARL/VTD where AERO-F is now known. Anticipated 
applications are design optimization of MAVs and flapping wings, among 
others 

TARDEC: Matt Castanier, on the structural dynamics ROM component
    with applications to armor design optimization

(c) Breakdown of Computational Effort
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Airfoil Design

Compressible, Inviscid Airfoil Inverse Design

(a) NACA0012: Pressure field
(M∞ = 0.5, α = 0.0◦)

(b) RAE2822: Pressure field
(M∞ = 0.5, α = 0.0◦)

Pressure discrepancy minimization (Euler equations)
Initial Configuration: NACA0012
Target Configuration: RAE2822
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Shape Parametrization

(a) µ(1) = 0.1 (b) µ(2) = 0.1

(c) µ(3) = 0.1 (d) µ(4) = 0.1

Figure : Shape parametrization of a NACA0012 airfoil using a cubic
design element
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Airfoil Design

Shape Parametrization

(a) µ(5) = 0.1 (b) µ(6) = 0.1

(c) µ(7) = 0.1 (d) µ(8) = 0.1

Figure : Shape parametrization of a NACA0012 airfoil using a cubic
design element
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Optimization Results
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Optimization Results

HDM-based
optimization

ROM-based
optimization

# of HDM
Evaluations

29 7

# of ROM
Evaluations

- 346

||µ∗ − µRAE2822||
||µRAE2822|| 2.28× 10−3% 4.17× 10−6%

Table : Performance of the HDM- and ROM-based optimization
methods
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Conclusion

Overview

Introduced progressive, nonlinear trust region framework
for reduced optimization
Proposed minimum-error reduced sensitivity analysis
Demonstrated approach on canonical problem from
aerodynamic shape optimization

Future work

Extend to hyper-reduced models (i.e. reduce nonlinear
term) to achieve significant speedup
Application to large-scale, 3D problems
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