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PDE-Constrained Optimization

Motivation

o PDE-constrained is ubiquitous in engineering
o Design optimization
o Optimal control
o Parameter estimation (inverse problems)
@ Notoriously expensive as many calls to a PDE solver may
be required
e CFD, structural dynamics, acoustic models
o Good candidate for model reduction
o Many-query application
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PDE-Constrained Optimization

Problem Formulation

Goal: Rapidly solve PDE-constrained optimization problems of
the form

minimize  f(w, p)
weRN | ueRp
subject to  R(w,pu) =0
where R : RY x R? — R¥ is the discretized (nonlinear) PDE, w

is the PDE state vector, p is the vector of parameters, and N is
assumed to be very large.
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PDE-Constrained Optimization

Reduced-Order Model

@ Model Order Reduction (MOR) assumption: state vector
lies in low-dimensional affine subspace

wraw, =w+ Py

where y € R" are the reduced coordinates of w in the basis
® ¢ RVX" W piecewise constant in p, and n < N

o Substitute assumption into High-Dimensional Model
(HDM), R(w, ) =0

R(W + @y, pu) ~ 0

o Require projection of residual in low-dimensional left

@‘ subspace, with basis ¥ € RY*" to be zero

(3 R,(y,p) = $'R(W+ ®y,pu) =0 03\855;
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Basis Construction
Reduced Sensitivities
Training

ROM-Constrained Optimization

Reduced Optimization Problem

o ROM-constrained optimization problem
minimize w + Py,
Jninimize - f( Y, 1)
subject to \IITR(V_V + Py, u) =0

@ Issues that must be considered

o Basis construction
o Reduced sensitivity derivation
o Training
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Basis Construction
Reduced Sensitivities
Training

ROM-Constrained Optimization

State-Sensitivity POD

(]

oW, - P oy

MOR assumption: w & w, = w + dy — i o

o Collect state and sensitivity snapshots by sampling HDM
X=[wp)-w wgy)—w - w(p,)— W]
Y = [ Gtm) Gilma) - G,

o Use Proper Orthogonal Decomposition to generate reduced
bases from each individually

Px = POD(X)
Py = POD(Y)
o Concatenate to get ROB ~
enos
P = [‘I’X <I>Y] cser
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. - . Basis Construction
ROM-Constrained Optimization Reduced Sensitivities

Training

Sensitivities

For gradient-based optimization, sensitivities are required
o HDM sensitivities

o ROM sensitivities
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. - . Basis Construction
ROM-Constrained Optimization Reduced Sensitivities

Training

Minimum-Error Reduced Sensitivities

o True sensitivities of the ROM
o May be difficult to compute if ¥ = ¥(u)
o LSPG [Bui-Thanh et al 2008, Carlberg et al 2011]
o May not represent HDM sensitivities well
o Gradients of reduced optimization functions may not be
close to the true gradients
@ Define quantity that minimizes the sensitivity error in
some norm © > 0

dy i W
o= arg min Ha — ®alleg
[‘ = @ — (@1/2'1>> @1/26R 'OR DOE
3 ou ow 8# GCSGF
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. - . Basis Construction
ROM-Constrained Optimization Reduced Sensitivities

Training

Minimum-Error Reduced Sensitivities

e Select ®1/2 = 8—R

oy (0Rg\'OR
on ow ou

o FEzactly reproduce sensitivities at training points if
sensitivity basis not truncated

o May cause convergence issues for reduced optimization
problem
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Basis Construction
Reduced Sensitivities
Training

ROM-Constrained Optimization

Training: Offline-Online (Database) Approach

(]

Identify samples in offiine phase to be used for training

Collect snapshots by running HDM (state vector and
sensitivities)
Build ROB &

Solve optimization problem

(]

(]

minimize w+ P
Jninimize f(W+ @y, p)

subject to WTR(w 4+ @y, pu) =0
@Lassﬂa et al 2010, Rozza et al 2010, Manzoni et al 2012] 4~
< Fonss
~
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Basis Construction
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ROM-Constrained Optimization

Offline-Online Approach

Optimizer

Compress
Initial Guess

4 Optimization Iterates

*  Optimal Solution

O HDM Samples

(b) Idealized

(a) Schematic of Algorithm thimization Trajectory
in Parameter Space
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ROM-Constrained Optimization

ining: Progressive Approach

e Collect snapshots by running HDM (state vector and
sensitivities) at initial guess for optimization problem
o Build ROB @® from sparse training
@ Solve optimization problem
[ninimize f(W+ @y, p)
subject to WIR(w 4 @y, pu) =0

1 _
SIR(W + @y, w)f < e

o Use solution of above problem to enrich training and

repeat until convergence
—~

imilar approaches found in: [Arian et al 2000, Afanasiev ea 29,
001, Fahl 2001] ~
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ROM-Constrained Optimization

Progressive Approach

Initial Guess
4 Optimization Iterates
* Optimal Solution
O HDM Samples

(b) Idealized

(a) Schematic of Algorithm Optimization Trajectory
in Parameter Space
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Numerical Experiments Airfoil Design

Compressible, Inviscid Airfoil Inverse Design

(a) NACAO0012: Pressure field (b) RAE2822: Pressure field
(Mo = 0.5, @ =0.0°) (Moo = 0.5, « =10.0°)

[ M o Pressure discrepancy minimization (Euler equations) — ~_
] o Initial Configuration: NACA0012
e

3 o Target Configuration: RAE2822
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Numerical Experiments Airfoil Design

Shape Parametrization

Figure : Shape parametrization of a NACA0012 airfoil using a cubic

Fxlesign element o
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Numerical Experiments Airfoil Design

Shape Parametrization

(c) w(7)=0.1 (d) u(8) =0.1

Figure : Shape parametrization of a NACAQ012 airfoil using a cubic

Cjﬂg‘ esign element
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Airfoil Design

Numerical Experiments

Optimization Results
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Numerical Experiments ANl DR e

Optimization Results
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Airfoil Design

Reduced optimization iterations
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Airfoil Design

Numerical Experiments

Optimization Results
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Numerical Experiments Airfoil Design

Optimization Results

HDM-based ROM-based
optimization optimization

# of HDM

Evaluations 29 7

# of ROM

Evaluations ) 346

|| — pliAE2822)|
[RAFE] 2.28 x 1073% 4.17 x 107%

I able : Performance of the HDM- and ROM-based optimization
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Conclusion

Conclusion

Overview
o Introduced progressive, nonlinear trust region framework
for reduced optimization
@ Proposed minimum-error reduced sensitivity analysis
@ Demonstrated approach on canonical problem from
aerodynamic shape optimization
Future work
e Extend to hyper-reduced models (i.e. reduce nonlinear
term) to achieve significant speedup
o Application to large-scale, 3D problems
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