Accelerating PDE-Constrained Optimization Problems using Adaptive Reduced-Order Models

Matthew J. Zahr

Advisor: Charbel Farhat Computational and Mathematical Engineering Stanford University

Lawrence Livermore National Laboratory, Livermore, CA December 7, 2015

Multiphysics Optimization Key Player in Next-Gen Problems

Current interest in computational physics reaches far beyond analysis of a single configuration of a physical system into **design** (shape and topology¹), control, and uncertainty quantification

EM Launcher

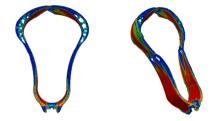
Micro-Aerial Vehicle

DOE CSGF

¹Emergence of additive manufacturing technologies has made topology optimization increasingly relevant, particularly in DOE.

Topology Optimization and Additive Manufacturing²

- Emergence of AM has made TO an increasingly relevant topic
- AM+TO lead to highly efficient designs that could not be realized previously
- Challenges: smooth topologies require very fine meshes and modeling of complex manufacturing process



Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

PDE-Constrained Optimization I

Goal: Rapidly solve PDE-constrained optimization problem of the form

$$\begin{array}{ll} \underset{\boldsymbol{u} \in \mathbb{R}^{n_{\boldsymbol{u}}}, \ \boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & \mathcal{J}(\boldsymbol{u}, \ \boldsymbol{\mu}) \\ \text{subject to} & \boldsymbol{r}(\boldsymbol{u}, \ \boldsymbol{\mu}) = 0 \end{array}$$

where

- $r: \mathbb{R}^{n_u} \times \mathbb{R}^{n_\mu} \to \mathbb{R}^{n_u}$ is the discretized partial differential equation
- $\mathcal{J}: \mathbb{R}^{n_u} \times \mathbb{R}^{n_\mu} \to \mathbb{R}$ is the objective function
- $\boldsymbol{u} \in \mathbb{R}^{n_{\boldsymbol{u}}}$ is the PDE state vector
- $\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}$ is the vector of parameters

red indicates a large-scale quantity, $\mathcal{O}(mesh)$

Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

Nested Approach to PDE-Constrained Optimization

Virtually all expense emanates from primal/dual PDE solvers

Optimizer

Primal PDE

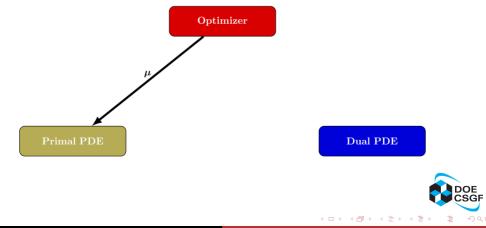
Dual PDE

<ロト (同ト (ヨト)

Zahr PDE-Constrained Optimization with Adaptive ROMs

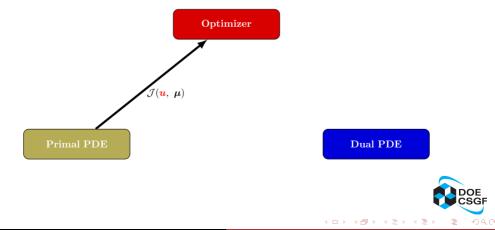
Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

Nested Approach to PDE-Constrained Optimization



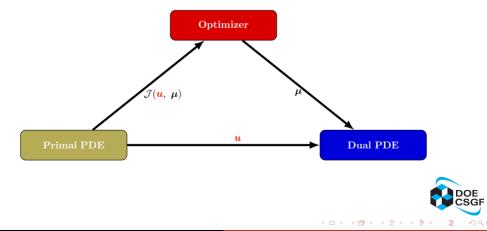
Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

Nested Approach to PDE-Constrained Optimization



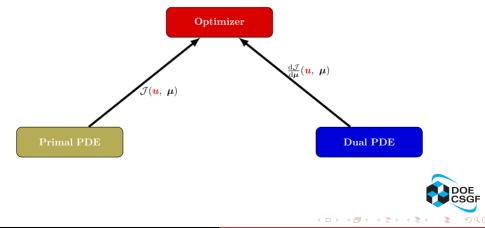
Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

Nested Approach to PDE-Constrained Optimization



Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

Nested Approach to PDE-Constrained Optimization



Projection-Based Model Reduction to Reduce PDE Size

• Model Order Reduction (MOR) assumption: state vector lies in low-dimensional subspace

$$oldsymbol{u}pprox oldsymbol{\Phi}_{oldsymbol{u}}oldsymbol{u}_r \qquad \qquad rac{\partialoldsymbol{u}}{\partialoldsymbol{\mu}}pprox oldsymbol{\Phi}_{oldsymbol{u}}rac{\partialoldsymbol{u}_r}{\partialoldsymbol{\mu}}pprox oldsymbol{\Phi}_{oldsymbol{u}}rac{\partialoldsymbol{u}_r}{\partialoldsymbol{\mu}}pprox oldsymbol{\Phi}_{oldsymbol{u}}rac{\partialoldsymbol{u}_r}{\partialoldsymbol{\mu}}pprox oldsymbol{\Phi}_{oldsymbol{u}}rac{\partialoldsymbol{u}_r}{\partialoldsymbol{\mu}}pprox oldsymbol{\Phi}_{oldsymbol{u}}rac{\partialoldsymbol{u}_r}{\partialoldsymbol{\mu}}$$

where

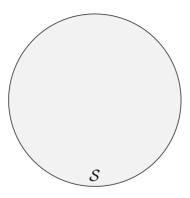
- $\Phi_u = \begin{bmatrix} \phi_u^1 & \cdots & \phi_u^{k_u} \end{bmatrix} \in \mathbb{R}^{n_u \times k_u}$ is the reduced basis
- $\boldsymbol{u}_r \in \mathbb{R}^{k_{\boldsymbol{u}}}$ are the reduced coordinates of \boldsymbol{u}
- $n_u \gg k_u$
- Substitute assumption into High-Dimensional Model (HDM), $r(u, \mu) = 0$, and project onto test subspace $\Psi_{u} \in \mathbb{R}^{n_{u} \times k_{u}}$

$$\boldsymbol{\Psi_u}^T \boldsymbol{r} (\boldsymbol{\Phi_u} \boldsymbol{u}_r, \ \boldsymbol{\mu}) = 0$$

• • • • • • • • • • • • • •

Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

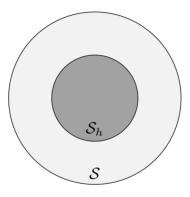
Connection to Finite Element Method: Hierarchical Subspaces



 $\bullet~\mathcal{S}$ - infinite-dimensional trial space

Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

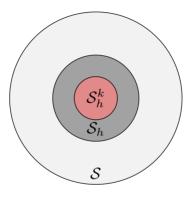
Connection to Finite Element Method: Hierarchical Subspaces



- $\bullet~\mathcal{S}$ infinite-dimensional trial space
- \mathcal{S}_h (large) finite-dimensional trial space

Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

Connection to Finite Element Method: Hierarchical Subspaces



- $\bullet~\mathcal{S}$ infinite-dimensional trial space
- \mathcal{S}_h (large) finite-dimensional trial space
- \mathcal{S}_h^k (small) finite-dimensional trial space

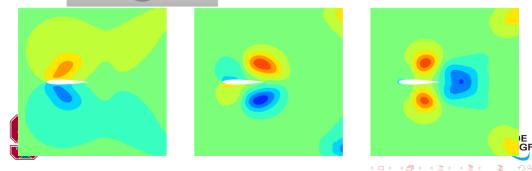
• $\mathcal{S}_h^k \subset \mathcal{S}_h \subset \mathcal{S}$

< D > < A > < B >

Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

Few Global, Data-Driven Basis Functions v. Many Local Ones

- Instead of using traditional *local* shape functions (e.g., FEM), use *global* shape functions
- Instead of a-priori, analytical shape functions, leverage data-rich computing environment by using *data-driven* modes



Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

Definition of Φ_u : Data-Driven Reduction

State-Sensitivity Proper Orthogonal Decomposition (POD)

• Collect state and sensitivity snapshots by sampling HDM

• Use Proper Orthogonal Decomposition to generate reduced basis for each individually

$$\Phi_{\boldsymbol{X}} = \text{POD}(\boldsymbol{X})$$
$$\Phi_{\boldsymbol{Y}} = \text{POD}(\boldsymbol{Y})$$

• Concatenate to get reduced-order basis

$$\Phi_u = \begin{bmatrix} \Phi_X & \Phi_Y \end{bmatrix}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

Definition of Ψ_u : Minimum-Residual ROM

Least-Squares Petrov-Galerkin $(LSPG)^3$ projection

$$\Psi_{\boldsymbol{u}} = \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \Phi_{\boldsymbol{u}}$$

Minimum-Residual Property

A ROM possesses the minimum-residual property if $\Psi_{u} r(\Phi_{u} u_{r}, \mu) = 0$ is equivalent to the optimality condition of $(\Theta \succ 0)$

 $\min_{oldsymbol{u}_r\in\mathbb{R}^{k_{oldsymbol{u}}}} ||oldsymbol{r}(oldsymbol{\Phi}_{oldsymbol{u}}oldsymbol{u}_r,oldsymbol{\,\mu})||_{\Theta}$

- Implications
 - Recover exact solution when basis not truncated (consistent³)
 - Monotonic improvement of solution as basis size increases
 - Ensures sensitivity information in Φ cannot degrade state approximation⁴
- LSPG possesses minimum-residual property

³[Bui-Thanh et al., 2008] ⁴[Fahl, 2001]

Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

Definition of $\frac{\partial u_r}{\partial \mu}$: Minimum-Residual Reduced Sensitivities

Traditional sensitivity analysis

$$\frac{\partial \boldsymbol{u}_{r}}{\partial \boldsymbol{\mu}} = -\left[\sum_{j=1}^{N} \boldsymbol{r}_{j} \boldsymbol{\Phi}_{\boldsymbol{u}}^{T} \frac{\partial \boldsymbol{r}_{j}}{\partial \boldsymbol{u} \partial \boldsymbol{u}} \boldsymbol{\Phi}_{\boldsymbol{u}} + \left(\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \boldsymbol{\Phi}_{\boldsymbol{u}}\right)^{T} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \boldsymbol{\Phi}_{\boldsymbol{u}}\right]^{-1} \\ \left(\sum_{j=1}^{N} \boldsymbol{r}_{j} \boldsymbol{\Phi}_{\boldsymbol{u}}^{T} \frac{\partial^{2} \boldsymbol{r}_{j}}{\partial \boldsymbol{u} \partial \boldsymbol{\mu}} + \left(\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \boldsymbol{\Phi}_{\boldsymbol{u}}\right)^{T} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}\right)$$

 $+\,$ Guaranteed to give rise to exact derivatives of ROM quantities of interest

- Requires 2nd derivatives of \boldsymbol{r}
- $\Phi_u \frac{\partial u_r}{\partial \mu}$ not guaranteed to be good approximate to full sensitivity $\frac{\partial u}{\partial \mu}$

Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

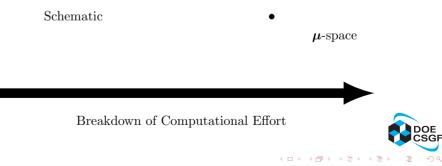
Definition of $\frac{\partial u_r}{\partial \mu}$: Minimum-Residual Reduced Sensitivities

Minimum-residual sensitivity analysis

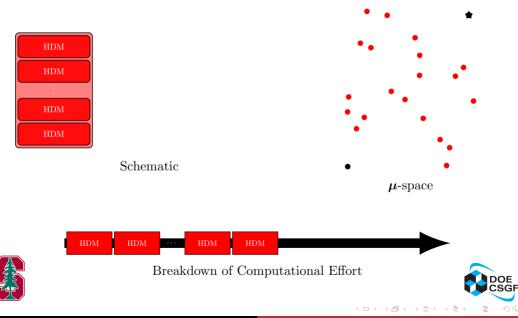
$$\frac{\widehat{\partial \boldsymbol{u}_r}}{\partial \boldsymbol{\mu}} = \arg\min_{\boldsymbol{a}} ||\boldsymbol{\Phi}_{\boldsymbol{u}}\boldsymbol{a} - \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\mu}}||_{\boldsymbol{\Theta}} = -\left[\left(\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}}\boldsymbol{\Phi}_{\boldsymbol{u}}\right)^T \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}}\boldsymbol{\Phi}_{\boldsymbol{u}}\right]^{-1} \left(\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}}\boldsymbol{\Phi}_{\boldsymbol{u}}\right)^T \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}}$$

- + Minimum-residual property $\Phi_{\boldsymbol{u}} \frac{\partial \widehat{\boldsymbol{u}_r}}{\partial \mu}$ is Θ -optimal solution to $\frac{\partial \boldsymbol{u}}{\partial \mu}$ in $\Phi_{\boldsymbol{u}}$
- + Does not require 2nd derivatives of r
- $\frac{\partial \widehat{u_r}}{\partial \mu} \neq \frac{\partial u_r}{\partial \mu}$, i.e., it is not the true ROM sensitivity

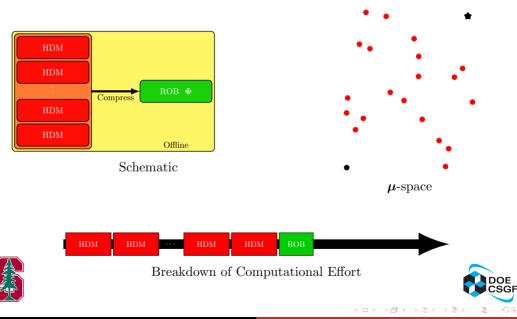
Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design



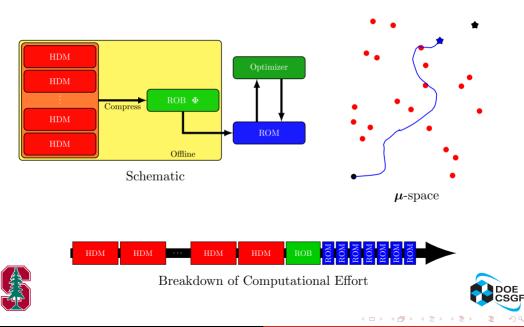
Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design



Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design



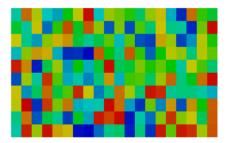
Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design



Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

Numerical Demonstration: Offline-Online Breakdown

- Parameter reduction (Φ_{μ})
 - apriori spatial clustering
 - $k_{\mu} = 200$
- *Greedy* Training
 - 5000 candidate points (LHS)
 - $\bullet~50$ snapshots
 - Error indicator: $||\mathbf{r}(\mathbf{\Phi}_{\boldsymbol{u}}\boldsymbol{u}_r, \ \mathbf{\Phi}_{\boldsymbol{\mu}}\boldsymbol{\mu}_r||)$
- State reduction (Φ_u)
 - POD
 - $k_u = 25$
 - Polynomialization acceleration

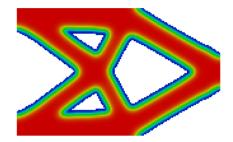


Material Basis

Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

Numerical Demonstration: Offline-Online Breakdown

Optimal Solution (ROM)



Optimal Solution (HDM)

HDM Solution	ROB Construction	Greedy Algorithm	ROM Optimization
$2.84 \times 10^{3} \text{ s}$	$5.48 \times 10^4 \text{ s}$	$1.67 \times 10^{5} { m s}$	30 s
1.26%	24.36%	74.37%	0.01%

HDM Optimization: 1.97×10^4 s

<ロト (同ト (ヨト)

Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

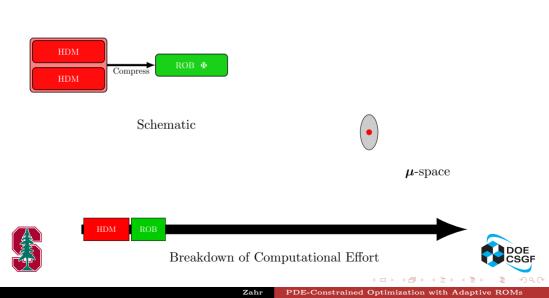
ROM-Based Trust-Region Framework for Optimization

Schematic

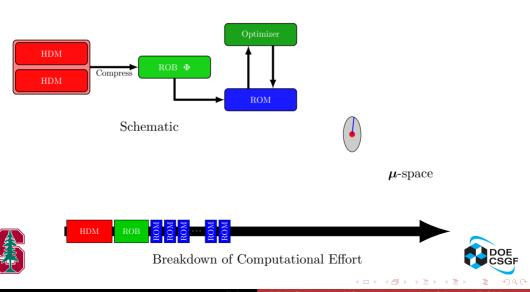
 μ -space

Breakdown of Computational Effort

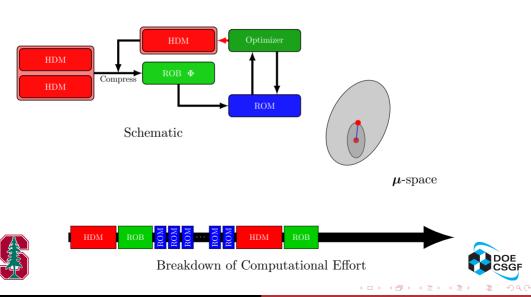
Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design



Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

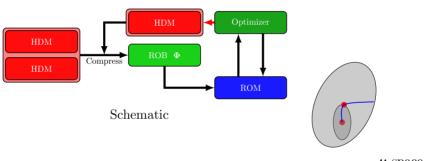


Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design



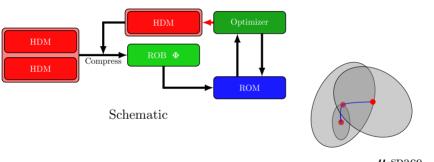
Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

ROM-Based Trust-Region Framework for Optimization

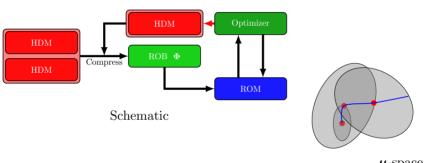


 μ -space

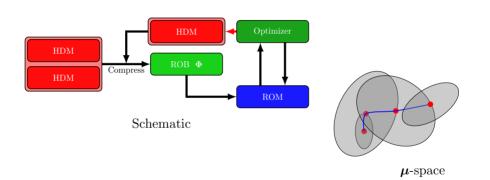
Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design



Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

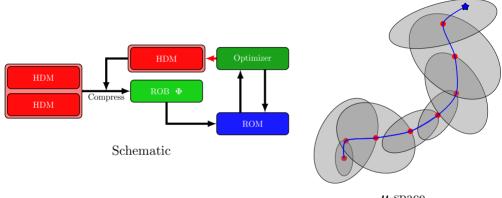


Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design



Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

ROM-Based Trust-Region Framework for Optimization



 μ -space

ROM-Based Trust-Region Framework for Optimization

Nonlinear Trust-Region Framework with Adaptive Model Reduction

- Collect snapshots from HDM at *sparse sampling* of the parameter space
- Build ROB $\pmb{\Phi_u}$ from sparse training
- Solve optimization problem

$$\begin{array}{ll} \underset{\boldsymbol{u}_r \in \mathbb{R}^{k_{\boldsymbol{u}}}, \ \boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & \mathcal{J}(\boldsymbol{\Phi}_{\boldsymbol{u}}\boldsymbol{u}_r, \ \boldsymbol{\mu}) \\ \text{subject to} & \boldsymbol{\Phi}_{\boldsymbol{u}}^T r(\boldsymbol{\Phi}_{\boldsymbol{u}}\boldsymbol{u}_r, \ \boldsymbol{\mu}) = 0 \\ & ||\boldsymbol{r}(\boldsymbol{\Phi}_{\boldsymbol{u}}\boldsymbol{u}_r, \ \boldsymbol{\mu})|| \leq \Delta \end{array}$$

• Use solution of above problem to enrich training, adapt Δ using standard trust-region methods, and repeat until convergence

ROM-Based Trust-Region Framework for Optimization

Ingredients of Proposed Approach [Zahr and Farhat, 2014]

• Minimum-residual ROM (LSPG) and minimum-error sensitivities

•
$$\mathcal{J}(\boldsymbol{u}, \boldsymbol{\mu}) = \mathcal{J}(\boldsymbol{\Phi}_{\boldsymbol{u}}\boldsymbol{u}_r, \boldsymbol{\mu}) \text{ and } \frac{\mathrm{d}\mathcal{J}}{\mathrm{d}\boldsymbol{\mu}}(\boldsymbol{u}, \boldsymbol{\mu}) = \frac{\mathrm{d}\mathcal{J}}{\mathrm{d}\boldsymbol{\mu}}(\boldsymbol{\Phi}_{\boldsymbol{u}}\boldsymbol{u}_r, \boldsymbol{\mu}) \text{ for training parameters } \boldsymbol{\mu}$$

• Reduced optimization (sub)problem

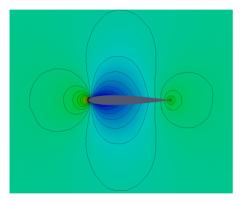
$$\begin{array}{l} \underset{\boldsymbol{u}_r \in \mathbb{R}^{n_{\boldsymbol{u}}}, \ \boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} \quad \mathcal{J}(\boldsymbol{\Phi}_{\boldsymbol{u}} \boldsymbol{u}_r, \ \boldsymbol{\mu}) \\ \text{subject to} \quad \boldsymbol{\Psi}_{\boldsymbol{u}}^{T} \boldsymbol{r}(\boldsymbol{\Phi}_{\boldsymbol{u}} \boldsymbol{u}_r, \ \boldsymbol{\mu}) = 0 \\ \quad ||\boldsymbol{r}(\boldsymbol{\Phi}_{\boldsymbol{u}} \boldsymbol{u}_r, \ \boldsymbol{\mu})||_{2}^{2} \leq \epsilon \end{array}$$

- Efficiently update ROB with additional snapshots or new translation vector
 - Without re-computing SVD of entire snapshot matrix
- $\bullet\,$ Adaptive selection of $\epsilon \to$ trust-region approach

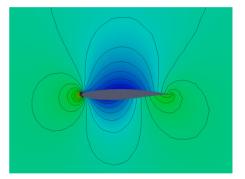
Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

Compressible, Inviscid Airfoil Inverse Design

Pressure discrepancy minimization (Euler equations)



NACA0012: Initial

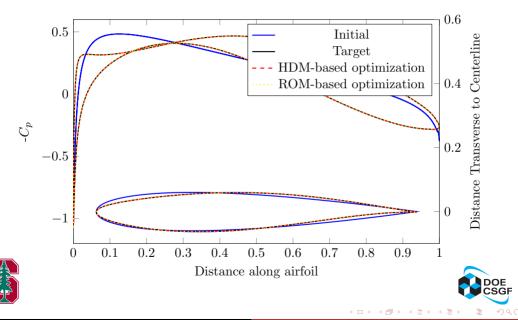


RAE2822: Target

Pressure field for airfoil configurations at $M_{\infty} = 0.5$, $\alpha = 0.0^{\circ}$

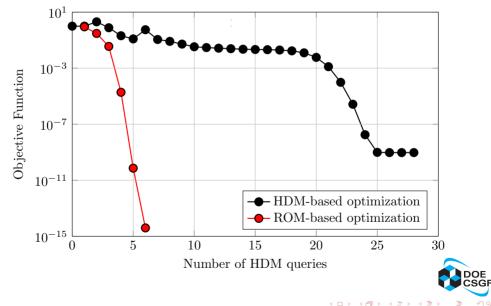
Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

ROM-Constrained Optimization Solver Recovers Target



Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

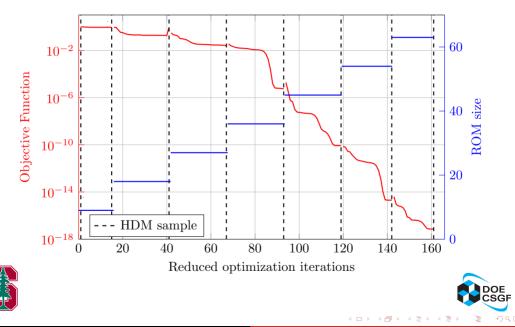
ROM Solver Requires $4 \times$ Fewer HDM Queries



Zahr PDE-Constrained Optimization with Adaptive ROMs

Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

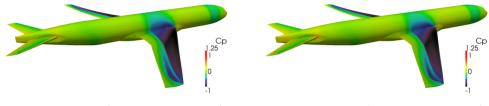
At the Cost of ROM Queries



Model Order Reduction Non-Quadratic Trust-Region Solver Shape Optimization: Airfoil Design

Next: Shape Optimization of Full Aircraft (CRM)

ROMs are fast, accurate, and require limited resources



HDM solution (Drag = 142.336kN)

ROM solution (Drag = 142.304kN)

- HDM: 70×10^6 DOF, **2hr on 1024** Intel Xeon E5-2698 v3 cores (2.3GHz)
- ROM: **170s on 2** Intel i7 cores (1.8GHz)
- $\bullet~{\rm Relative~error}$ in drag 0.022%
- CPU-time speedup greater than 2.15×10^4
- \bullet Wall-time speedup greater than 42
- Washabaugh, Zahr, Farhat (AIAA, 2016)

Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

PDE-Constrained Optimization II

Goal: Rapidly solve PDE-constrained optimization problem of the form

$$\begin{array}{ll} \underset{\boldsymbol{u} \in \mathbb{R}^{n_{\boldsymbol{u}}}, \ \boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & \mathcal{J}(\boldsymbol{u}, \ \boldsymbol{\mu}) \\ \text{subject to} & \boldsymbol{r}(\boldsymbol{u}, \ \boldsymbol{\mu}) = 0 \\ & \boldsymbol{c}(\boldsymbol{u}, \ \boldsymbol{\mu}) \geq 0 \end{array}$$

where

- $r: \mathbb{R}^{n_u} \times \mathbb{R}^{n_\mu} \to \mathbb{R}^{n_u}$ is the discretized partial differential equation
- $\mathcal{J}: \mathbb{R}^{n_{\boldsymbol{u}}} \times \mathbb{R}^{n_{\boldsymbol{\mu}}} \to \mathbb{R}$ is the objective function
- $c: \mathbb{R}^{n_u} \times \mathbb{R}^{n_\mu} \to \mathbb{R}^{n_c}$ are the side constraints
- $\boldsymbol{u} \in \mathbb{R}^{n_{\boldsymbol{u}}}$ is the PDE state vector
- $\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}$ is the vector of parameters

Problem Setup

25		
	40	



- 16000 8-node brick elements, 77760 dofs ۲
- Total Lagrangian form, finite strain, StVK ⁵
- St. Venant-Kirchhoff material
- Sparse Cholesky linear solver (CHOLMOD⁶)
- Newton-Raphson nonlinear solver
- Minimum compliance optimization problem

 $f_{\text{ext}}^{T}u$ $\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{u}}}, \boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\min }$ $V(\boldsymbol{\mu}) \le \frac{1}{2}V_0$ subject to $r(\boldsymbol{u}, \boldsymbol{\mu}) = 0$

- Gradient computations: Adjoint method ۲
- Optimizer: SNOPT [Gill et al., 2002]

4 **A b b b b**

Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

Restrict Parameter Space to Low-Dimensional Subspace

• Restrict parameter to a low-dimensional subspace

$$\boldsymbol{\mu} \approx \boldsymbol{\Phi}_{\boldsymbol{\mu}} \boldsymbol{\mu}_r$$

• Substitute restriction into reduced-order model to obtain

$$\boldsymbol{\Phi}_{\boldsymbol{u}}^{T}\boldsymbol{r}(\boldsymbol{\Phi}_{\boldsymbol{u}}\boldsymbol{u}_{r}, \ \boldsymbol{\Phi}_{\boldsymbol{\mu}}\boldsymbol{\mu}_{r}) = 0$$

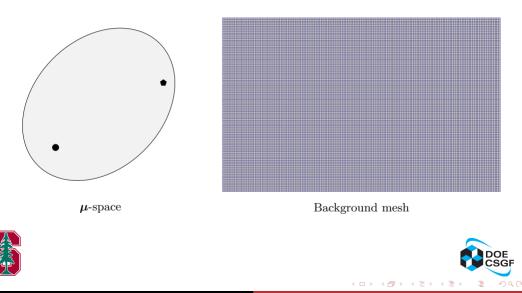
• Related work:

[Maute and Ramm, 1995, Lieberman et al., 2010, Constantine et al., 2014]

4 D b 4 A b

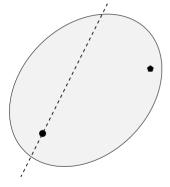
Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

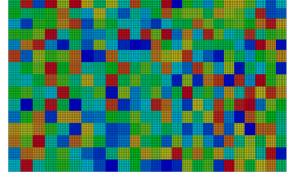
Restrict Parameter Space to Low-Dimensional Subspace



Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

Restrict Parameter Space to Low-Dimensional Subspace





 μ -space

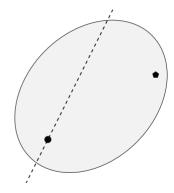
Macroelements

<ロ> <同> <同> <同> < 同> <

Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

Optimality Conditions to Adapt Reduced-Order Basis, Φ_{μ}

• Selection of Φ_{μ} amounts to a *restriction* of the parameter space

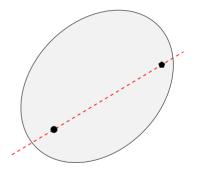


4 A 1

Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

Optimality Conditions to Adapt Reduced-Order Basis, Φ_{μ}

- Selection of Φ_{μ} amounts to a *restriction* of the parameter space
- Adaptation of Φ_μ should attempt to include the optimal solution in the restricted parameter space, i.e. μ^{*} ∈ col(Φ_μ)
- Adaptation based on **first-order optimality conditions** of HDM optimization problem



Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

Optimality Conditions to Adapt Reduced-Order Basis, Φ_{μ}

Lagrangian

$$\mathcal{L}(\boldsymbol{\mu}, \ \boldsymbol{\lambda}) = \mathcal{J}(\boldsymbol{u}(\boldsymbol{\mu}), \ \boldsymbol{\mu}) - \boldsymbol{\lambda}^T \boldsymbol{c}(\boldsymbol{u}(\boldsymbol{\mu}), \ \boldsymbol{\mu})$$

Karush-Kuhn Tucker (KKT) Conditions⁷

$$egin{aligned}
abla_{oldsymbol{\mu}} \mathcal{L}(oldsymbol{\mu}, \ oldsymbol{\lambda}) &= 0 \ oldsymbol{\lambda} &\geq 0 \ oldsymbol{\lambda}_i oldsymbol{c}_i(oldsymbol{u}(oldsymbol{\mu}), \ oldsymbol{\mu}) &= 0 \ oldsymbol{c}(oldsymbol{u}(oldsymbol{\mu}), oldsymbol{\mu}) &\geq 0 \end{aligned}$$

⁷[Nocedal and Wright, 2006]

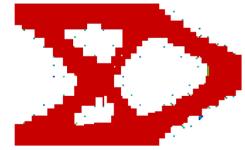
Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

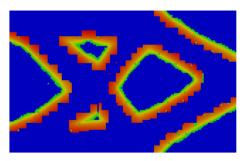
Lagrangian Gradient Refinement Indicator

• From Lagrange multiplier estimates, only KKT condition not satisfied automatically:

$$\nabla_{\boldsymbol{\mu}} \mathcal{L}(\boldsymbol{\mu}, \ \boldsymbol{\lambda}) = 0$$

• Use $|\nabla_{\mu} \mathcal{L}(\mu, \lambda)|$ as indicator for **refinement** of discretization of μ -space





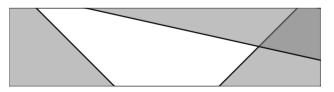
 μ

 $|\nabla_{\boldsymbol{\mu}} \mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\lambda})|$

<ロト (同ト (ヨト)

Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

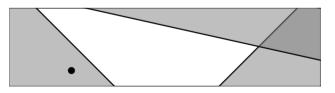
Constraints may lead to infeasible sub-problems



SGF

Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

Constraints may lead to infeasible sub-problems

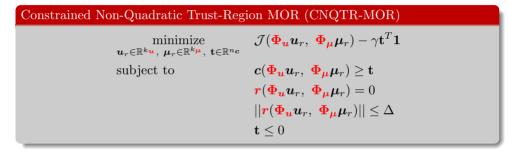


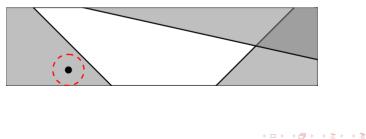
Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

Constraints may lead to infeasible sub-problems

Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

Elastic constraints to circumvent infeasible subproblems

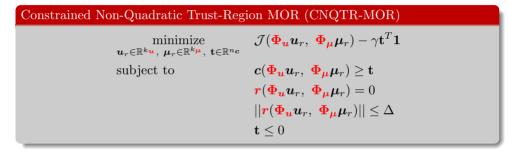


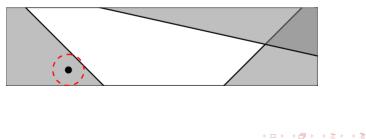


SGF

Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

Elastic constraints to circumvent infeasible subproblems

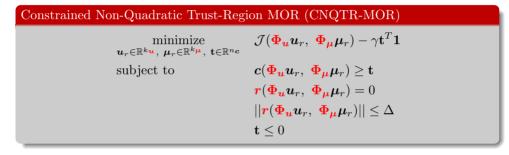


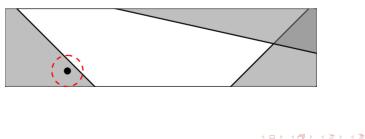


SGF

Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

Elastic constraints to circumvent infeasible subproblems

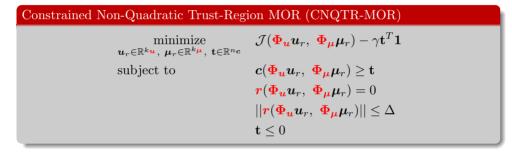


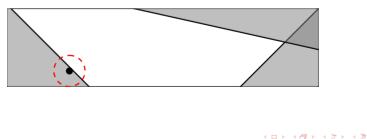


SGI

Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

Elastic constraints to circumvent infeasible subproblems

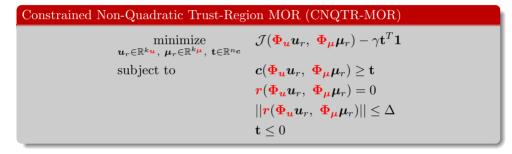


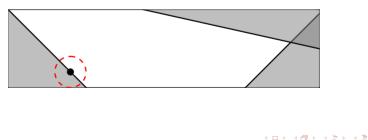


SGI

Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

Elastic constraints to circumvent infeasible subproblems





SGF

Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

Compliance Minimization: 2D Cantilever

25		
20	40	

- 16000 8-node brick elements, 77760 dofs
- Total Lagrangian form, finite strain, StVK⁸
- St. Venant-Kirchhoff material
- Sparse Cholesky linear solver (CHOLMOD⁹)
- Newton-Raphson nonlinear solver
- Minimum compliance optimization problem

 $\begin{array}{ll} \underset{\boldsymbol{u} \in \mathbb{R}^{n_{\boldsymbol{u}}}, \ \boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & \boldsymbol{f}_{\text{ext}}^{T}\boldsymbol{u} \\ \text{subject to} & V(\boldsymbol{\mu}) \leq \frac{1}{2}V_{0} \\ & \boldsymbol{r}(\boldsymbol{u}, \ \boldsymbol{\mu}) = 0 \end{array}$

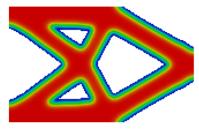
- Gradient computations: Adjoint method
- Optimizer: SNOPT [Gill et al., 2002]
- Maximum ROM size: $k_u \leq 5$

DOE

 $^8[\mbox{Bonet}$ and Wood, 1997, Belytschko et al., 2000] $^9[\mbox{Chen}$ et al., 2008]

Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

Order of Magnitude Speedup to Suboptimal Solution



HDM

CNQTR-MOR + Φ_{μ} adaptivity

HDM Solution	HDM Gradient	HDM Optimization
7458s (450)	4018s (411)	8284s

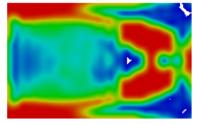
HDM

Elapsed time = 19761s

	HDM Solution	HDM Gradient	ROB Construction	ROM Optimization
, [1049s~(64)	88s(9)	727s (56)	39s~(3676)

CNQTR-MOR + Φ_{μ} adaptivity Elapsed time = 2197s, Speedup $\approx 9x$ Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

Better Solution after 64 HDM Evaluations



HDM

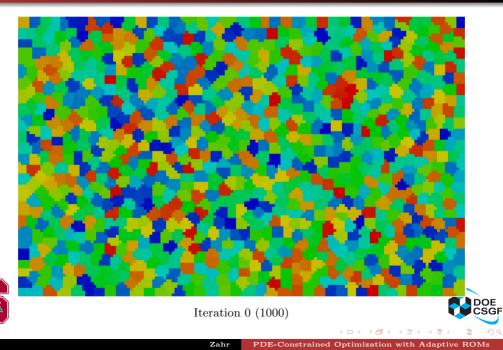
CNQTR-MOR + Φ_{μ} adaptivity

- CNQTR-MOR + Φ_{μ} adaptivity: superior approximation to optimal solution than HDM approach after fixed number of HDM solves (64)
- Reasonable option to warm-start HDM topology optimization

<ロト (同ト (ヨト)

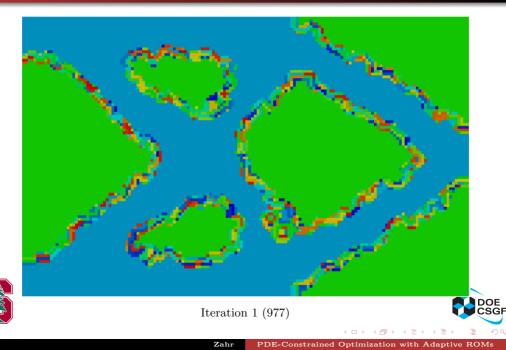
Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

Macro-element Evolution



Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints Topology Optimization: 2D Cantilever

Macro-element Evolution



Reduction of High-Dimensional Parameter Space Elastic Nonlinear Constraints **Topology Optimization: 2D Cantilever**

$CNQTR-MOR + \Phi_{\mu}$ adaptivity

Ongoing Research Projects Future Research

High-Order Methods for Optimization of Conservation Laws

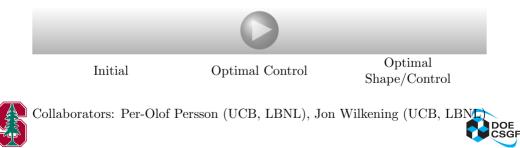
- Derived, implemented fully discrete adjoint method for globally high-order discretization of conservation laws on deforming domains
- Incorporation of time-periodicity constraints

$$\begin{array}{ll} \underset{U, \mu}{\operatorname{minimize}} & \mathcal{W}(U, \mu) & \underset{U, \mu}{\operatorname{minimize}} & \mathcal{W}(U, \mu) \\ \text{subject to} & \mathcal{J}_x(U, \mu) = 2.5 & \text{subject to} & \mathcal{J}_x(U, \mu) = 2.5 \\ & U(x, \ 0) = \bar{U}(x) & U(x, \ 0) = U(x, \ T) \\ & \frac{\partial U}{\partial t} + \nabla \cdot F(U, \ \nabla U) = 0 & \frac{\partial U}{\partial t} + \nabla \cdot F(U, \ \nabla U) = 0 \end{array}$$

Ongoing Research Projects Future Research

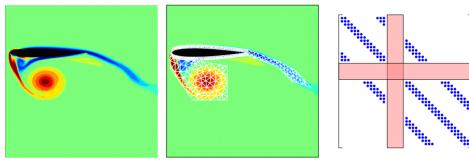
Energetically Optimal Flapping under Thrust Constraint

Energy = 9.4095839014e+00Thrust = 1.76604514000e-01 Energy =4.9475637668e+00 Thrust = 2.5000000000e+00 Energy =4.6110004198e+00 Thrust = 2.5000000000e+00



Ongoing Research Projects Future Research

Faster Computational Physics: Adaptive Data-Driven Discretization



(a) Vorticity around heaving airfoil (b) Potential Ω^l , Ω^g decomposition

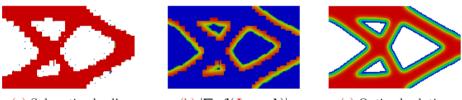
- (c) Idealized sparsity structure
- Methods to *transform* features in global basis functions minimize reliance on local shape functions
- Linear algebra for sparse operators with a few dense rows and columns
- Integration mesh to mitigate "variational crimes"

Ongoing Research Projects Future Research

Faster Solvers: Adaptive Reduction of High-Dimensional Optimization

$$\begin{array}{ll} \underset{\mu}{\text{minimize}} & f(\mu) \\ \text{subject to} & \boldsymbol{c}(\mu) = 0 \end{array}$$

 $\begin{array}{ll} \underset{\boldsymbol{y}}{\text{minimize}} & f(\boldsymbol{\Phi}_{\boldsymbol{\mu}}\boldsymbol{\mu}_{r})\\ \text{subject to} & \boldsymbol{c}(\boldsymbol{\Phi}_{\boldsymbol{\mu}}\boldsymbol{\mu}_{r}) = 0 \end{array}$



(a) Sub-optimal sol'n

(b) $|\nabla_{\boldsymbol{\mu}} \mathcal{L}(\boldsymbol{\Phi}_{\boldsymbol{\mu}} \boldsymbol{\mu}_r, \boldsymbol{\lambda})|$

(c) Optimal solution

DOE CSGF

Prove global convergence and develop into general, constrained optimizer
Further develop into topology optimization solver - overcome checkerboarding

4 D b 4 A b

Fewer Queries: Second-Order Methods for Accelerated Convergence

Hessian information highly desired in optimization and UQ, but expensive due to $\mathcal{O}(N_{\mu})$ required linear system solves

Sensitivity/Adjoint Method for Computing Hessian

$$\frac{\mathrm{d}^{2}\mathcal{J}}{\mathrm{d}\mu_{j}\mathrm{d}\mu_{k}} = \frac{\partial^{2}\mathcal{J}}{\partial\mu_{j}\partial\mu_{k}} + \frac{\partial^{2}\mathcal{J}}{\partial\mu_{j}\partial\boldsymbol{u}}\frac{\partial\boldsymbol{u}}{\partial\mu_{k}} + \frac{\partial\boldsymbol{u}}{\partial\mu_{j}}^{T}\frac{\partial^{2}\mathcal{J}}{\partial\boldsymbol{u}\partial\mu_{k}} + \frac{\partial\boldsymbol{u}}{\partial\mu_{j}}^{T}\frac{\partial^{2}\mathcal{J}}{\partial\boldsymbol{u}\partial\boldsymbol{u}}\frac{\partial\boldsymbol{u}}{\partial\mu_{k}} - \frac{\partial\mathcal{J}}{\partial\boldsymbol{u}}\frac{\partial\boldsymbol{r}}{\partial\boldsymbol{u}}^{-1}\left[\frac{\partial^{2}\boldsymbol{r}}{\partial\mu_{j}\partial\mu_{k}} + \frac{\partial^{2}\boldsymbol{r}}{\partial\mu_{j}\partial\boldsymbol{u}}\frac{\partial\boldsymbol{u}}{\partial\mu_{k}} + \frac{\partial^{2}\boldsymbol{r}}{\partial\mu_{k}\partial\boldsymbol{u}}\frac{\partial\boldsymbol{u}}{\partial\mu_{j}} + \frac{\partial^{2}\boldsymbol{r}}{\partial\boldsymbol{u}\partial\boldsymbol{u}}:\frac{\partial\boldsymbol{u}}{\partial\mu_{j}}\otimes\frac{\partial\boldsymbol{u}}{\partial\mu_{k}}\right]$$
ere
$$\frac{\partial\boldsymbol{u}}{\partial\mu_{i}} = \frac{\partial\boldsymbol{r}}{\partial\boldsymbol{u}}^{-1}\frac{\partial\boldsymbol{r}}{\partial\mu_{j}}$$

where

.

• Fast, multiple right-hand side linear solver by building data-driven subspace
for image of
$$\frac{\partial \mathbf{r}}{\partial u}^{-1}$$
, $\frac{\partial \mathbf{r}}{\partial u}^{-T}$

• Similar to Krylov methods that use *a-priori*, *analytical* subspace

Ongoing Research Projects Future Research

Approaching Many-Query, Extreme-Scale Computational Physics

- Framework introduced for accelerating PDE-constrained optimization problem with **side constraints** and **large-dimensional parameter space**
- Speedup attained via adaptive reduction of state space and parameter space
- Concepts borrowed from constrained optimization theory
- Applied to aerodynamic design and topology optimization
 - Order of magnitude speedup speedup observed
 - Competitive warm-start method

< D > < A > < B >

Acknowledgement

Future Research

 $\mathbf{Z}_{\mathbf{a}\mathbf{h}\mathbf{r}}$

References I

Barbič, J. and James, D. (2007).

Time-critical distributed contact for 6-dof haptic rendering of adaptively sampled reduced deformable models.

In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 171–180. Eurographics Association.

Barrault, M., Maday, Y., Nguyen, N. C., and Patera, A. T. (2004).

An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations.

Comptes Rendus Mathematique, 339(9):667-672.

Belytschko, T., Liu, W., Moran, B., et al. (2000).Nonlinear finite elements for continua and structures, volume 26.Wiley New York.

Bonet, J. and Wood, R. (1997).

Nonlinear continuum mechanics for finite element analysis. Cambridge university press.

Bui-Thanh, T., Willcox, K., and Ghattas, O. (2008). Model reduction for large-scale systems with high-dimensional parametric input space SIAM Journal on Scientific Computing, 30(6):3270–3288.

4 D b 4 A b

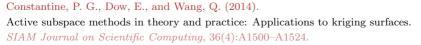
References II

Carlberg, K., Bou-Mosleh, C., and Farhat, C. (2011).

 ${\rm Efficient}$ non-linear model reduction via a least-squares petrov–galerkin projection and compressive tensor approximations.

International Journal for Numerical Methods in Engineering, 86(2):155–181.

- Chapman, T., Collins, P., Avery, P., and Farhat, C. (2015). Accelerated mesh sampling for model hyper reduction. International Journal for Numerical Methods in Engineering.
- Chaturantabut, S. and Sorensen, D. C. (2010).
 Nonlinear model reduction via discrete empirical interpolation.
 SIAM Journal on Scientific Computing, 32(5):2737–2764.
- Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S. (2008). Algorithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate. ACM Transactions on Mathematical Software (TOMS), 35(3):22.



< D > < A > < B >

References III

Fahl, M. (2001).

Trust-region methods for flow control based on reduced order modelling. PhD thesis, Universitätsbibliothek.

Gill, P. E., Murray, W., and Saunders, M. A. (2002). Snopt: An sqp algorithm for large-scale constrained optimization. SIAM journal on optimization, 12(4):979–1006.

Lawson, C. L. and Hanson, R. J. (1974). Solving least squares problems, volume 161. SIAM.

Lieberman, C., Willcox, K., and Ghattas, O. (2010). Parameter and state model reduction for large-scale statistical inverse problems. SIAM Journal on Scientific Computing, 32(5):2523–2542.

Maute, K. and Ramm, E. (1995). Adaptive topology optimization. Structural optimization, 10(2):100–112.

4 A 1

References IV

Nguyen, N. and Peraire, J. (2008).

An efficient reduced-order modeling approach for non-linear parametrized partial differential equations.

International journal for numerical methods in engineering, 76(1):27-55.

Nocedal, J. and Wright, S. (2006).

Numerical optimization, series in operations research and financial engineering. Springer.

Rewienski, M. J. (2003).

A trajectory piecewise-linear approach to model order reduction of nonlinear dynamical systems.

PhD thesis, Citeseer.

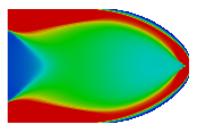
Zahr, M. J. and Farhat, C. (2014).

Progressive construction of a parametric reduced-order model for pde-constrained optimization.

International Journal for Numerical Methods in Engineering.

Ongoing Research Projects Future Research

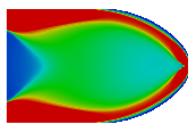
Standard Difficulty: Binary Solutions



(a) Without penalization

Ongoing Research Projects Future Research

Standard Difficulty: Binary Solutions



(a) Without penalization

Effect of Penalization

$$\mathbf{K}^{e} \leftarrow (\boldsymbol{\mu}^{e})^{p} \mathbf{K}^{e}$$

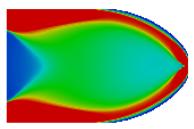
Ongoing Research Projects Future Research

Standard Difficulty: Binary Solutions

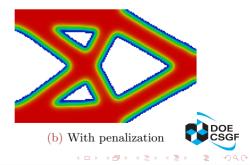
Relaxed, Penalized Problem Setup	
$\underset{\boldsymbol{u} \in \mathbb{R}^{n_{\boldsymbol{u}}}, \ \boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}}$	$oldsymbol{f}_{\mathrm{ext}}{}^Toldsymbol{u}$
subject to	$V({oldsymbol \mu}) \leq rac{1}{2}V_0$
	$\mathbf{r}(\boldsymbol{u}, \ \boldsymbol{\mu}^p) = 0$
	$\boldsymbol{\mu} \in [0,1]^{k_{\boldsymbol{\mu}}}$

Effect of Penalization

$$\mathbf{K}^{e} \leftarrow (\boldsymbol{\mu}^{e})^{p} \mathbf{K}^{e}$$



(a) Without penalization

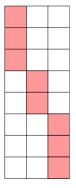


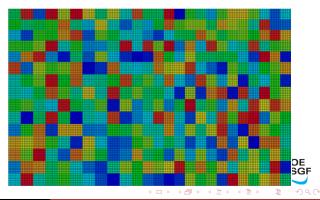
Ongoing Research Projects Future Research

Standard Difficulty: Binary Solutions

Implication for ROM

- From parameter restriction, $\mu^p = (\Phi_{\mu}\mu_r)^p$
- Precomputation relies on separability of Φ_{μ} and μ_r
- Separability maintained if $(\mathbf{\Phi}_{\mu}\boldsymbol{\mu}_{r})^{p} = \mathbf{\Phi}_{\mu}\boldsymbol{\mu}_{r}^{p}$
- Sufficient condition: columns of Φ_{μ} have non-overlapping non-zeros





Ongoing Research Projects Future Research

Efficient Evaluation of Nonlinear Terms

• Due to the mixing of high-dimensional and low-dimensional terms in the ROM expression, only limited speedups available

$$\mathbf{r}_r(\boldsymbol{u}_r, \ \boldsymbol{\mu}_r) = \boldsymbol{\Phi}_{\boldsymbol{u}}^T \mathbf{r}(\boldsymbol{\Phi}_{\boldsymbol{u}} \boldsymbol{u}_r, \ \boldsymbol{\Phi}_{\boldsymbol{\mu}} \boldsymbol{\mu}_r) = 0$$

• To enable *pre-computation* of all large-dimensional quantities into low-dimensional ones, leverage *Taylor series expansion*

$$\begin{aligned} \left[\mathbf{r}_r(\boldsymbol{u}_r, \ \boldsymbol{\mu}_r)\right]_i &= \mathbf{D}_{im}^0(\boldsymbol{\mu}_r)_m + \mathbf{D}_{ijm}^1(\boldsymbol{u}_r \times \boldsymbol{\mu}_r)_{jm} + \mathbf{D}_{ijkm}^2(\boldsymbol{u}_r \times \boldsymbol{u}_r \times \boldsymbol{\mu}_r)_{jkm} \\ &+ \mathbf{D}_{ijklm}^3(\boldsymbol{u}_r \times \boldsymbol{u}_r \times \boldsymbol{u}_r \times \boldsymbol{\mu}_r)_{jklm} = 0 \end{aligned}$$

where

$$\mathbf{D}_{ijklm}^{3} = \frac{\partial^{3}\mathbf{r}_{t}}{\partial \boldsymbol{u}_{p}\partial \boldsymbol{u}_{q}\partial \boldsymbol{u}_{s}} (\hat{\boldsymbol{u}}, \ \boldsymbol{\phi}_{\boldsymbol{\mu}}^{m}) (\boldsymbol{\phi}_{\boldsymbol{u}}^{i} \times \boldsymbol{\phi}_{\boldsymbol{u}}^{j} \times \boldsymbol{\phi}_{\boldsymbol{u}}^{k} \times \boldsymbol{\phi}_{\boldsymbol{u}}^{l})_{tpqs}$$

• Related work: [Rewienski, 2003, Barrault et al., 2004, Barbič and James, 2007, Nguyen and Peraire, 2008, Chaturantabut and Sorensen, 2010, Carlberg et al., 2011]

4 D b 4 A b

Ongoing Research Projects Future Research

Lagrange Multiplier Estimate

Lagrange Multiplier, Constraint Pairs

$$\begin{tabular}{|c|c|c|c|c|} \hline \lambda & \lambda_r & \tau & \tau_r \\ \hline c(u,\ \mu) \ge 0 & c(\Phi_u u_r,\ \Phi_\mu \mu) \ge 0 & \mathbf{A}\mu \ge \mathbf{b} & \mathbf{A}_r \mu_r \ge \mathbf{b}_r \\ \hline \end{tabular}$$

Goal: Given $\boldsymbol{u}_r, \ \boldsymbol{\mu}_r, \ \boldsymbol{\tau}_r \geq 0, \ \boldsymbol{\lambda}_r \geq 0$, estimate $\tilde{\boldsymbol{\tau}} \geq 0, \ \tilde{\boldsymbol{\lambda}} \geq 0$ to compute

$$\nabla_{\boldsymbol{\mu}} \mathcal{L}(\boldsymbol{\Phi}_{\boldsymbol{\mu}} \boldsymbol{\mu}_{r}, \ \tilde{\boldsymbol{\lambda}}, \ \tilde{\boldsymbol{\tau}}) = \frac{\partial \mathcal{J}}{\partial \boldsymbol{\mu}} (\boldsymbol{\Phi}_{\boldsymbol{u}} \boldsymbol{u}_{r}, \ \boldsymbol{\Phi}_{\boldsymbol{\mu}} \boldsymbol{\mu}_{r}) - \frac{\partial \mathbf{c}}{\partial \boldsymbol{\mu}} (\boldsymbol{\Phi}_{\boldsymbol{u}} \boldsymbol{u}_{r}, \ \boldsymbol{\Phi}_{\boldsymbol{\mu}} \boldsymbol{\mu}_{r})^{T} \tilde{\boldsymbol{\lambda}} - \mathbf{A}^{T} \tilde{\boldsymbol{\tau}}$$

Lagrange Multiplier Estimates

$$\tilde{\boldsymbol{\lambda}} = \boldsymbol{\lambda}_{r}$$

$$\tilde{\boldsymbol{\tau}} = \underset{\boldsymbol{\tau} \ge 0}{\operatorname{arg\,min}} \left\| \mathbf{A}^{T} \boldsymbol{\tau} - \left(\frac{\partial \mathcal{J}}{\partial \boldsymbol{\mu}} (\boldsymbol{\Phi}_{\boldsymbol{u}} \boldsymbol{u}_{r}, \ \boldsymbol{\Phi}_{\boldsymbol{\mu}} \boldsymbol{\mu}_{r}) - \frac{\partial \mathbf{c}}{\partial \boldsymbol{\mu}} (\boldsymbol{\Phi}_{\boldsymbol{u}} \boldsymbol{u}_{r}, \ \boldsymbol{\Phi}_{\boldsymbol{\mu}} \boldsymbol{\mu}_{r})^{T} \tilde{\boldsymbol{\lambda}} \right) \right\|$$

Non-negative least squares: [Lawson and Hanson, 1974, Chapman et al., 2013

 \mathbf{Zahr}

< D > < A > < B > <</p>

CSGF

Ongoing Research Projects Future Research

Standard Difficulty: Checkerboarding

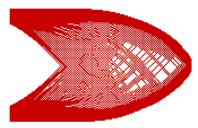
Gradient Filtering, Nodal Projection

- Minimum length scale, $r_{\rm min}$
- Gradient Filtering ¹⁰

$$\frac{\widehat{\partial \mathcal{J}}}{\partial \boldsymbol{\mu}_k} = \frac{\sum_{j \in S_k} H_{kj} \boldsymbol{\mu}_i \frac{\partial \mathcal{J}}{\partial \boldsymbol{\mu}_i}}{\boldsymbol{\mu}_k \sum_{j \in S_k} H_{kj}}$$

• Nodal Projection

$$\boldsymbol{\mu}_k = \frac{\sum_{j \in \mathcal{S}_k} \boldsymbol{\tau}_j H_{jk}}{\sum_{j \in \mathcal{S}_k} H_{jk}}$$



(a) Without projection/filtering

< D > < A > < B >

Ongoing Research Projects Future Research

Standard Difficulty: Checkerboarding

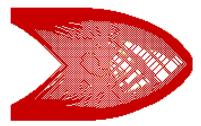
Gradient Filtering, Nodal Projection

- Minimum length scale, $r_{\rm min}$
- Gradient Filtering ¹⁰

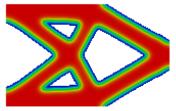
$$\frac{\widehat{\partial \mathcal{J}}}{\partial \boldsymbol{\mu}_k} = \frac{\sum_{j \in S_k} H_{kj} \boldsymbol{\mu}_i \frac{\partial \mathcal{J}}{\partial \boldsymbol{\mu}_i}}{\boldsymbol{\mu}_k \sum_{j \in S_k} H_{kj}}$$

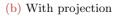
• Nodal Projection

$$\boldsymbol{\mu}_k = \frac{\sum_{j \in \mathcal{S}_k} \boldsymbol{\tau}_j H_{jk}}{\sum_{j \in \mathcal{S}_k} H_{jk}}$$



(a) Without projection/filtering



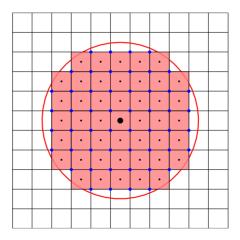


< D > < A > < B >

$${}^{10}H_{ki} = r_{\min} - \operatorname{dist}(k, i)$$

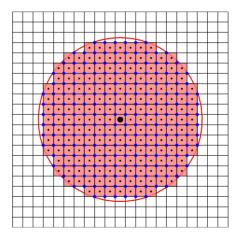
Ongoing Research Projects Future Research

Standard Difficulty: Checkerboarding



Ongoing Research Projects Future Research

Standard Difficulty: Checkerboarding



Ongoing Research Projects Future Research

Standard Difficulty: Checkerboarding

Implication for ROM

- Nonlocality introduced through projection/filtering
- μ_e influences volume fraction of all elements within r_{\min} of element/node e
- Clashes with requirement on Φ_{μ} of columns with non-overlapping non-zeros
- Handled heuristically by performing parameter basis adaptation to eliminate "checkerboard" regions of parameter space, uses concept of r_{\min}
- Next: Helmholtz filtering

