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ROM-Constrained Optimization

Model Or: Reduction
Paramete i
Reduced

Reduced

Reduced Order

Problem Formulation

Goal: Rapidly solve PDE-constrained optimization problem of the form

minimize
ueR”u, peR"~

subject to

where

J(u, p)

C

Y

u, p)
u, p) =
>b

( 0
( 0

-

>
=

o r:R"™ x R™ — R™ is the discretized (steady, nonlinear) PDE
o J:R™ x R™ — R is the objective function

o c:R"™ x R™ — R™ are the side constraints

o A e R"a*"™ b € R™ are linear constraints (independent of u)

e u € R" is the PDE state vector

Zahr

o pu € R™ is the vector of parameters
o red indicates a large quantity (i.e. scales with size of FE mesh) DOE
o blue indicates a small quantity (i.e. size independent of size of FE mes C\SG,F

~
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ROM-Constrained Optimization

Problem Setup

16000 8-node brick elements, 77760 dofs
Total Lagrangian form, finite strain, StVK !
St. Venant-Kirchhoff material

25 Sparse Cholesky linear solver (CHOLMOD?)

e o

o Newton-Raphson nonlinear solver
40 o Minimum compliance optimization problem
minimize £ u
u€R”u, peR™H
1

subject to Vip) < §Vo

r(u, p) =0
é} # o Gradient computations: Adjoint method
' e Optimizer: SNOPT [Gill et al., 2002] ~

DOE

@ ![Bonet and Wood, 1997, Belytschko et al., 2000] GQGJ:

2[Chen et al., 2008]
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Model Order R
ROM-Constrained Optimization

Reduced Order
Reduced Order B

Projection-Based Model Reduction

@ Model Order Reduction (MOR) assumption: state vector lies in
low-dimensional subspace

u~r d,u,
where
o By=[pp, - o] € R™=**u s the reduced basis
o u, € R* are the reduced coordinates of u
o Ny > ku

@ Substitute assumption into High-Dimensional Model (HDM), r(u, p) =0,
and apply Galerkin projection

fr(uv‘a H) = q)uTr((buura /J’) =0

~
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Model Order Reduction
Reduction
R duced Topology Op a
Reduced Order Basis Adaptivity: ®y
Reduced Order B Adaptivity: &,

ROM-Constrained Optimization

Connection to Finite Element Method

o S - infinite-dimensional trial space
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Model Order Reduction

Parameter Reduction
Reduced Topology Optimization
Reduced Order B Adaptivity: &y
Reduced Order B Adaptivity: &,

ROM-Constrained Optimization

Connection to Finite Element Method

S

o S - infinite-dimensional trial space

o S, - (large) finite-dimensional trial space
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Model Order Reduction

Parameter Space duction

Reduced Topolo

Reduced Orde i de v: @y
Reduced Order Adaptivity: &,

ROM-Constrained Optimization

Connection to Finite Element Method

Sh

S

S - infinite-dimensional trial space

o S, - (large) finite-dimensional trial space

o SF - (small) finite-dimensional trial space —~

e SFcs,cS Ogg&
N
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Model Order Reduction

Parameter Space Reduction

Reduced Topo ptimization
Reduced Orde Adaptivity: &y
Reduced Order Adaptivity: &,

ROM-Constrained Optimization

Reduced Basis Construction

Method of Snapshots [Sirovich, 1987]

o Collect state snapshots by sampling parameter space: u(u)

X=[u(p) - u(p,)]

Proper Orthogonal Decomposition (POD) [Sirovich, 1987, Holmes et al., 1998]

o Compress snapshot matrix using POD, or truncated Singular Value
Decomposition (SVD)

®, = POD(X)

o Trial subspace selection
o Finite element method: polynomial basis; local support
o Rayleigh-Ritz: analytical, empirical basis functions; global support
e POD: data-driven, empirical basis functions; global support ~
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Model Order Reduction

Snstral PR Parameter Space Reduction
ROM-Constrained Optimization Reduced Topology Optimization
Reduced Ord Adaptivity: ®y
Reduced Order Adaptivity: &,

Restriction of Parameter Space

o Parameter restriction: restrict parameter to a low-dimensional subspace

Py,
o ®, = [d)L e (j)ﬁ“} € R™*ku i the reduced basis
o i, € R** are the reduced coordinates of
o ny >k

o Substitute restriction into Reduced-Order Model, r,.(u,, p) =0 to obtain
r.(u,, p,) =2, r(®,u,, ®,u,)=0

o Related work:
[Maute and Ramm, 1995, Lieberman et al., 2010, Constantine et al., 2014]
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Model Order Reduction
Parameter Space Reduction
Reduced Topology Optimiz
Reduced Order Basis Adap
Reduced Order B

ROM-Constrained Optimization

Restriction of Parameter Space

+
i
+
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Parameter space Cantilever mesh
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rained Optimization

Restriction of Parameter Space

Parameter space Macroelements
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Reduction
Reduction

rained Optimization Reduced Topology ©rsiifrmtet
A

Standard Difficulty: Binary Solutions

(a) Without penalization
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ROM-Constrained Optimization

Model O r Reduction

pace Reduction

Reduced Order
Reduced Order

Standard Difficulty: Binary Solutions

ized Problem Setup

minimize foTu
u€ER™u, peR™®

1
subject to Vp) < §VO
r(u, p) =0
p € [0, 1)

V.

Effect of Penalization

K* ()K"

o K¢ : eth element stiffness matrix )

<)

Zahr

(a) Without penalization

Topology Optimization with ROMs

—~

&

DOE
CSGF



ROM-Constrained Optimization

eduction
e Reduction
Topology Optimization
Reduced Or i
Reduced Order

Standard Difficulty: Binary Solutions

Relaxed, Penalized Problem Setup

minimize foTu
u€ER™u, peR™®
1
subject to Vp) < §VO
r(u, p) =0
p € [0, 1)

V.

Effect of Penalization

K* ()K"

€

: eth element stiffness matrix |

Zahr

(a) Without penalization

Nad

N

(b) With penalization

/
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Model Order Reduction
Paramete ce Reduction
Reduced Topology Optimization

ROM-Constrained Optimization

Reduced Order B Adaptiv Py
Reduced Order B Adaptivity: &,

Standard Difficulty: Binary Solutions

Implication for ROM

o From parameter restriction, u? = (®,,u,.)?

o Precomputation relies on separability of ®,, and g,
o Separability maintained if (®,u,)? = ®,pn,?

o Sufficient condition: columns of ®,, have non-overlapping non-zeros

Zahr Topology Optimization with ROMs



ROM-Constrained Optimization

Reduced Optimization Problem

Model Order Reduction

Paramete ce Reduction
Reduced Topology Optimization
Reduced Order B Adaptiv Py
Reduced Order B Adaptivity: &,

minimize J(®uu,, ®,u,)

u,€R*u, ERFu

subject to c(®uu,, ®,p,) >0
r(®uu,, ®,p,)=0
&, AP, u, > 2,"b

Adaptation of @,

o Control accuracy of ROM

o Trust region approach

Adaptation of ®,,

o Control restriction of parameter space

Zahr
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Model O r Reduction

mete 1iction

ROM-Constrained Optimization Reduced T

Reduced Order B s Adaptivity: &,

State-Adaptive Approach to ROM Optimization

Optimizer

Compress

ROM

Figure: Schematic of Adaptive for ROM Optimization
e
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Model Order Reduction

Parameter Space Reduction

Reduced Topology Optimization
Reduced Order Basis Adapt y: Py
Reduced Order Basis Adaptivity: &,

ROM-Constrained Optimization

Trust-Region POD

minimize J(®uu,, ,u,)
u,€RFu, p,.ERFL

subject to c(®uu,, & p,) >0
r(®uu,, ®,pu,)=0
&, AP, u, > 2, b
lpr — ]| < A

~
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Parameter Space Reduction

Reduced Topology Optimization
Reduced Order Basis Adapt y: Py
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ROM-Constrained Optimization

Trust-Region POD

minimize J(®uu,, ,u,)
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Model Order Reduction

Parameter Space Reduction

Reduced Topology Optimization
Reduced Order Basis Adapt y: Py
Reduced Order Basis Adaptivity: &,

ROM-Constrained Optimization

Trust-Region POD

minimize J(®uu,, ,u,)
u,€RFu, p,.ERFL

subject to c(®uu,, & p,) >0
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Model Order Reduction
- . P . Parameter Space Reduction
ROM-Constrained Optimization e el Meraellemy Oieriemiien
Reduced Order Basis Adapt y: Py
Reduced Order Basis Adaptivity: &,

Constrained Trust-Region POD

minimize J(®,u,, ®,pu,)—ytT1
u,€R*u, p,.€RFL | teR"e
subject to c(®yu,, &,p,) >t

r(®uu,, ®,p,)=0
&, AP, . > 2, b
lpr — ]| < A

t<0

~
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Model Order Reduction
- . P . Parameter Space Reduction
ROM-Constrained Optimization e el Meraellemy Oieriemiien
Reduced Order Basis Adapt y: Py
Reduced Order Basis Adaptivity: &,

Constrained Trust-Region POD

minimize J(®,u,, ®,pu,)—ytT1
u,€R*u, p,.€RFL | teR"e
subject to c(®yu,, &,p,) >t

r(®uu,, ®,p,)=0
&, AP, . > 2, b
lpr — ]| < A

t<0
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Model Order Reduction
- . P . Parameter Space Reduction
ROM-Constrained Optimization e el Meraellemy Oieriemiien
Reduced Order Basis Adapt y: Py
Reduced Order Basis Adaptivity: &,

Constrained Trust-Region POD

minimize J(®,u,, ®,pu,)—ytT1
u,€R*u, p,.€RFL | teR"e
subject to c(®yu,, &,p,) >t

r(®uu,, ®,p,)=0
&, AP, . > 2, b
lpr — ]| < A

t<0
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Model Order Reduction
- . P . Parameter Space Reduction
ROM-Constrained Optimization e el Meraellemy Oieriemiien
Reduced Order Basis Adapt y: Py
Reduced Order Basis Adaptivity: &,

Constrained Trust-Region POD

minimize J(®,u,, ®,pu,)—ytT1
u,€R*u, p,.€RFL | teR"e
subject to c(®yu,, &,p,) >t
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Model Order Reduction
- . P . Parameter Space Reduction
ROM-Constrained Optimization e el Meraellemy Oieriemiien
Reduced Order Basis Adapt y: Py
Reduced Order Basis Adaptivity: &,

Constrained Trust-Region POD

minimize J(®,u,, ®,pu,)—ytT1
u,€R*u, p,.€RFL | teR"e
subject to c(®yu,, &,p,) >t

r(®uu,, ®,p,)=0
&, AP, . > 2, b
lpr — ]| < A

t<0

\
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Reduction
Reduction
Reduced Topol Optimizat
Reduced Order Basis Adaptivity: ®y
Reduced Order Basis Adaptivity: L)

ROM-Constrained Optimization

Reduced Optimization Problem

minimize J(@uu,, ®,u,)
u, €RFu, HreRk”’

subject to c(®uu,, ®,p,) >0
r(®uu,, ®,p,)=0
&, AP, u, > 2,"b

Adaptation of @,

o Control accuracy of ROM

o Trust region approach

Adaptation of ®,,

o Control restriction of parameter space
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Model O

Paramet R

Reduced Topology Op

Reduced Order B Adaptivity: &y
Reduced Order Basis Adaptivity: L)

ROM-Constrained Optimization

Reduced Order Basis Adaptivity: ®,,

@ Selection of ®,, amounts to a
restriction of the parameter space

~
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Model O

Paramet

Reduced Topology Op

Reduced Order B Adaptivity: &y
Reduced Order Basis Adaptivity: L)

ROM-Constrained Optimization

Reduced Order Basis Adaptivity: ®,,

@ Selection of ®,, amounts to a
restriction of the parameter space

o Adaptation of ®,, should attempt .-
to include the optimal solution in
the restricted parameter space,
ie. pu* € col(®,)

~
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Model Order Reduction
e trmd na? iction
ROM-Constrained Optimization e ey e
Reduced Order Basis Ad: v: @y
Reduced Order Basis Adaptivity: L)

Reduced Order Basis Adaptivity: ®,,

@ Selection of ®,, amounts to a
restriction of the parameter space

o Adaptation of ®,, should attempt .-
to include the optimal solution in
the restricted parameter space,
ie. pu* € col(®,)

o Adaptation based on first-order
optimality conditions of HDM
optimization problem P

~
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Model Order Reduction

Parameter Space Reduction

Reduced Topology Optimization
Reduced Order Basis Adaptivity: &4
Reduced Order Basis Adaptivity: L)

ROM-Constrained Optimization

Reduced Order Basis Adaptivity: ®,,

Lagrangian

L(p, A, ) =T (), p) = Ac(u(p), p) -7 (Ap—Db)

Karush-Kuhn Tucker (KKT) Conditions 3

Vi L(p, X, 7)=0
A>0
>0

Aici(u(p), p) =0

7; (Ap—b) =0
c(u(p), ) >0
Au>b

'3] o Relies heavily on Lagrange multipliers estimates [Zahr, 2015] ODOE

CSGF
N

3[Nocedal and Wright, 2006]
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Model Order Reduction

ROM-Constrained Optimization e

Reduced Topolo
Reduced Order Basis Ad: v: @y
Reduced Order Basis Adaptivity: L)

Refinement Indicator

o From Lagrange multiplier estimates, only KKT condition not satisfied
automatically:
VuL(p, A, 7)=0

e Use |V, ,L(p, A, 7)| as indicator for refinement of discretization of p-space

IVuL(p, A, 7)) 0\
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Model Order Reduction
ROM-Constrained Optimization

Reduced Order Basis Adaptivity: &,

Refinement Indicator

o From Lagrange multiplier estimates, only KKT condition not satisfied
automatically:
VuL(p, A, 7)=0

e Use |V, ,L(p, A, 7)| as indicator for refinement of discretization of p-space
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Minimum Compliance: 2D Cantilever
Numerical Experiments Minimum Compliance: 3D Trestle

Problem Setup

(]

16000 8-node brick elements, 77760 dofs
Total Lagrangian form, finite strain, StVK 4
St. Venant-Kirchhoff material

Sparse Cholesky linear solver (CHOLMOD?)

Newton-Raphson nonlinear solver

e o o

Minimum compliance optimization problem

25 minimize fori L1
ueR™u, peR"H

1
subject to Vin) < =W
40 2

r(u, p) =0

(]

Gradient computations: Adjoint method
o Optimizer: SNOPT [Gill et al., 2002]

(%‘j o Maximum ROM size: ky <5 FO\DOE

(") 4[Bonet and Wood, 1997, Belytschko et al., 2000] QGJF
5[Chen et al., 2008]
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Minimum Compliance: 2D Cantilever
Numerical Experiments Minimum Compliance: 3D Trestle

Optimal Solution Comparison

HDM CTRPOD + ®,, adaptivity
HDM Solution | HDM Gradient | HDM Optimization
7458s (450) 4018s (411) 8284s
HDM

Elapsed time = 19761s

HDM Solution | HDM Gradient | ROB Construction | ROM Optimization

1049s (64) 88s (9) 727s (56) 39s (3676) ~
CTRPOD + @, adaptivity gggéF
~

Elapsed time = 2197s, Speedup &~ 9x
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Minimum Compliance: 2D Cantilever
Numerical Experiments Minimum Compliance: 3D Trestle

Solution after 64 HDM Evaluations

CTRPOD + @®,, adaptivity

o CTRPOD + @, adaptivity: superior approximation to optimal solution
than HDM approach after fixed number of HDM solves (64)

o Reasonable option to warm-start HDM topology optimization

) s
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Minimum Compliance: 2D Cantilever
Numerical Experiments

Macro-element Evolution

Iteration 0 (1000)
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Minimum Compliance: 2D Cantilever
Numerical Experiments

Macro-element Evolution

Tteration 1 (977)
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Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

W CsGF
Iteration 2 (935)
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Minimum Compliance: 2D Cantilever
Numerical Experiments

Macro-element Evolution

Iteration 3 (1152)
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Minimum Compliance: 2D Cantilever
Numerical Experiments

CTRPOD + adaptivity
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Minimum Compliance: 2D Cantilever
Numerical Experiments Minimum Compliance: 3D Trestle

Problem Setup

64000 8-node brick elements, 206715 dofs
Total Lagrangian formulation, finite strain
St. Venant-Kirchhoff material

Jacobi-Preconditioned Conjugate Gradient

e © o

10

(]

Newton-Raphson nonlinear solver

10

(]

Minimum compliance optimization problem
(a) XY view

! minimize £ u
ueRnu, pEeR™

subject to V(p) <0.15-V,

r(u, p) =0
10

(]

Gradient computations: Adjoint method
Optimizer: SNOPT ~

10 o Maximum ROM size: k, <5 egg&:
(b) XZ view ~~
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Minimum Compliance: 2D Cantilever
Numerical Experiments Minimum Compliance: 3D Trestle

Optimal Solution Comparison

HDM CTRPOD + &, adaptivity

o HDM, elapsed time = 179176s
%‘ o CTRPOD+®,, adaptivity, elapsed time = 15208s ~_

3 @ Speedup ~ 12x eggéF
N
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Minimum Compliance: 2D Cantilever
Numerical Experiments Minimum Compliance: 3D Trestle

Solution after 68 HDM Evaluations

HDM CTRPOD + &, adaptivity

e CTRPOD + @, adaptivity: superior approximation to optimal solution

[‘ W) than HDM approach after fixed number of HDM solves (68) ~
'L ; o Reasonable option to warm-start HDM topology optimization ROE.
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Conclusion

Summary and Future Work

Summary

o Framework introduced for accelerating PDE-constrained optimization
problem with side constraints and large-dimensional parameter space

o Speedup attained via adaptive reduction of state space and parameter space

o Concepts/techniques borrowed from FEA and optimization theory

o Dual-weighted residual error estimates
o Theory of constrained optimization: Lagrangian, KKT system

o Applied to nonlinear topology optimization

Future Work

o Incorporation of error surrogates (ROMES) [Drohmann and Carlberg, 2014]
o Add fidelity to ROM using AMR instead of HDM solve [Carlberg, 2014]

o Incorporation of more sophisticated nonlinear model reduction methods to
avoid O(kf - k,,) ROM cost

o Extension to unsteady PDE-constrained optimization [Zahr, Persson] E
o Extension to stochastic PDE-constrained optimization [Zahr, Carlberg] 3':
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Conclusion

Contributions

(]

(MJZ) First work to define a framework for incorporating projection-based
reduced-order models in topology optimization setting

o Built on element volume fraction topology optimization formulation
o Condition on ®,, to enable use of SIMP (binary solutions) in reduced
optimization problems
o HDM Lagrange multiplier estimates from ROM Lagrange multipliers
(MJZ) Generalization of TRPOD to work with constraints, i.e. CTRPOD

o (MJZ) Use of constrained optimization theory (KKT system) to
update/modify parameter basis, ®,,
(KW, MJZ) Practical details of framework

o Local minima avoidance
o Macroelement refinement

(MJZ) Implementation: pyMORTestbed (C++/Python)

o 3D FEM, topology optimization, model reduction
[( 2 ~
3 0 DOE

CSGF
N/
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PDE-Constrained Optimization: CFD Shape Optimization °

e CFD

o Compressible Navier-Stokes
o Discontinuous Galerkin

o Biologically-inspired flight
o Micro aerial vehicles
@ Mesh

e 43,000 vertices
e 231,000 tetra (p = 3)

e 2,310,000 DOF o unsteady effects
T o maximize thrust

@ Desired: shape optimization,
control

Figure: Flapping Wing [Persson et al., 2012] A~

DOE
CSGF
N/

6Current collaboration underway with P.-O. Persson to apply techniques outlined in th15
presentation to accelerate unsteady CFD shape optimization problems (3DG).
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Conclusion

PDE-Constrained Optimization: CFD Shape Optimization

1044 mm 389

@ Benchmark in automotive
industry

@ Mesh

o 2,890,434 vertices

e 17,017,090 tetra

e 17,342,604 DOF : d Body: Geometry (Ahmed ot al, 1984)
e CFD

o Compressible

Navier-Stokes
o DES + Wall func

o Single forward simulation

(XN
)

o =~ 0.5 day on 512 cores
@ Desired: shape optimization

o unsteady effects
e minimize average drag

~

(b) Ahmed Body: Mesh (cariberg et al, 20110835':
A/
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Efficient Evaluation of Nonlinear Terms

@ Due to the mixing of high-dimensional and low-dimensional terms in the
ROM expression, only limited speedups available
r.(u,, p,) =2, r(®,u,, ®,u,)=0
@ To enable pre-computation of all large-dimensional quantities into
low-dimensional ones, leverage Taylor series expansion

[ (ur, l’l’r)]i = D?m(ﬂr)m + Dz‘ljm(ur X ) jm + D?jkm(ur X up X Nr)jkm

3
+ Dijklm(ur X Uy X Uy X fh,)jkim =0

where 5
D3 — L
wgklm —
Ju,du,Ou,

o Related work: [Rewienski, 2003, Barrault et al., 2004,

(0, @) (Pi X Pl X Bl X Pl)ipgs

[(‘] Barbi¢ and James, 2007, Nguyen and Peraire, 2008, ~
: Chaturantabut and Sorensen, 2010, Carlberg et al., 2011] DOE
s CSGF
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Conclusion

Offline/Online Decomposition for Optimization

Compress

(a) Schematic of Offline/Online Decomposition for ROM Optimization

(b) Breakdown of Computational Effort 0%':
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Conclusion

Offline /Online Decomposition for ROM Optimization

=
L 4
(%‘j (a) Idealized Optimization Trajectory: Parameter Space -
DOE
am ' gCSGF
(™) 3 NG

Zahr Topology Optimization with ROMs



Conclusion

Offline /Online Decomposition for ROM Optimization

@
o o
=
@ @ @
@
@
®
o @ L 4
@
@ (a) Idealized Optimization Trajectory: Parameter Space [N

DOE
GCSGF
N/
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Conclusion

Offline /Online Decomposition for ROM Optimization

® @ 4
®

@ (a) Idealized Optimization Trajectory: Parameter Space [N

DOE
GCSGF
N/
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Problem Setup

16000 8-node brick elements, 77760 dofs
Total Lagrangian form, finite strain, StVK 7
St. Venant-Kirchhoff material

Sparse Cholesky linear solver (CHOLMOD?)

°
o Newton-Raphson nonlinear solver

25

40 o Minimum compliance optimization problem

minimize fextTu
ueR”?u, peR"®

subject to Vip) <

Gradient computations: Adjoint method
Optimizer: SNOPT [Gill et al., 2002] o~

t& e
w 7[Bonet and Wood, 1997, Belytschko et al., 2000] N
8[Chen et al., 2008]
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Numerical Experiment: Offline-Online

e Parameter reduction (®,,)

o apriori spatial clustering

o k, =200
o Greedy Training

o 5000 candidate points (LHS)

o 50 snapshots

o Error indicator: ||r(®@wu,, ®.p,.)||
e State reduction (@)

o POD
o ky =25
o Polynomialization acceleration

Material Basis

DOE
OCSGF
N/
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Numerical Experiment: Offline-Online

Optimal Solution (ROM)

2D

Optimal Solution (HDM)

HDM Solution

ROB Construction

Greedy Algorithm

ROM Optimization

2.84 x 10% s

5.48 x 10% s

1.67 x 10° s

30 s

1.26%

24.36%

74.37%

0.01%

A N

A i
JDM Optimization: 1.97 x 10% s

Zahr

—~

&
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Lagrange Multiplier Estimate

Lagrange Multiplier, Constraint Pairs

A A 7 Tp
c(u, p) 20 | c(Puuy, up)>0 | Ap>b | Arp, > b,

Goal: Given u,, p,, 7. >0, A, >0, estimate 7 > 0, A > 0 to compute

o oJ Jdc ~ -
VuL(®upr, X, T) = a(Quur, D) — @(q)uur, @Mur)T)\ —ATF

Lagrange Multiplier Estimates

3
Il

Ar
9T dc

AT — _Qu r,tﬁ r__(I’u T r

‘ ! <3H( ey Buapir) = 5, (Ruties Bejar) )H

T = arg min

(! >0

S

@ CSGF
on-negative least squares: [Lawson and Hanson, 1974, Chapman et al., 2015 -/

Topology Optimization with ROMs
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Conclusion

Standard Difficulty: Checkerboarding

Gradient Filtering, Nodal Projection
o Minimum length scale, rpyip
o Gradient Filtering °
—_— a
oJ D ies, kamﬁ_;i

= a) Without projection/filterin
Our  bres, Hij (a) proj / g

o Nodal Projection

= > jes, TiHj
Ejesk H]k
t‘j ~
~‘ e
“w 385

QHM = Tmin — dist(k, )
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Conclusion

Standard Difficulty: Checkerboarding

Gradient Filtering, Nodal Projection
o Minimum length scale, rpyip
o Gradient Filtering °
—_— a
oJ D ies, kamﬁ_;i

= a) Without projection/filterin
Oun e 2es, Hig (a) proj / g

o Nodal Projection @ \

>jes, TiH;

Pe = <= .
Zjesk ij @
[tﬁ o~
> 3 (b) With projection ODOE

A CSGF
() N/

9H]ﬂ' = Tmin — dist(k, )

Zahr Topology Optimization with ROMs



Conclusion

Standard Difficulty: Checkerboarding
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Conclusion

Standard Difficulty: Checkerboarding
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DOE
CSGF
N/

Topology Optimization with ROMs




Conclusion

Standard Difficulty: Checkerboarding

Implication for ROM
o Nonlocal introduced through projection /filtering
o . influences volume fraction of all elements within 7,;, of element/node e
o Clashes with requirement on ®,, of columns with non-overlapping non-zeros

o Handled heuristically by performing parameter basis adaptation to eliminate
“checkerboard” regions of parameter space, uses concept of rmiy

DOE
Updated Macroelements OCSGF
N
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	Motivation
	ROM-Constrained Optimization
	Model Order Reduction
	Parameter Space Reduction
	Reduced Topology Optimization
	Reduced Order Basis Adaptivity: bold0mu mumu u
	Reduced Order Basis Adaptivity: bold0mu mumu bold0mu mumu 

	Numerical Experiments
	Minimum Compliance: 2D Cantilever
	Minimum Compliance: 3D Trestle

	Conclusion

