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Problem Formulation

Goal: Rapidly solve PDE-constrained optimization problem of the form

minimize
u∈Rnu , µ∈Rnµ

J (u, µ)

subject to c(u, µ) ≥ 0

r(u, µ) = 0

Aµ ≥ b

where

r : Rnu × Rnµ → Rnu is the discretized (steady, nonlinear) PDE

J : Rnu × Rnµ → R is the objective function

c : Rnu × Rnµ → Rnc are the side constraints

A ∈ RnA×nµ , b ∈ RnA are linear constraints (independent of u)

u ∈ Rnu is the PDE state vector

µ ∈ Rnµ is the vector of parameters

red indicates a large quantity (i.e. scales with size of FE mesh)

blue indicates a small quantity (i.e. size independent of size of FE mesh)
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Problem Setup

25

40

16000 8-node brick elements, 77760 dofs

Total Lagrangian form, finite strain, StVK 1

St. Venant-Kirchhoff material

Sparse Cholesky linear solver (CHOLMOD2)

Newton-Raphson nonlinear solver

Minimum compliance optimization problem

minimize
u∈Rnu , µ∈Rnµ

fext
Tu

subject to V (µ) ≤ 1

2
V0

r(u, µ) = 0

Gradient computations: Adjoint method

Optimizer: SNOPT [Gill et al., 2002]

1[Bonet and Wood, 1997, Belytschko et al., 2000]
2[Chen et al., 2008]
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Projection-Based Model Reduction

Model Order Reduction (MOR) assumption: state vector lies in
low-dimensional subspace

u ≈ Φuur

where

Φu =
[
φ1

u · · · φku
u

]
∈ Rnu×ku is the reduced basis

ur ∈ Rku are the reduced coordinates of u
nu � ku

Substitute assumption into High-Dimensional Model (HDM), r(u, µ) = 0,
and apply Galerkin projection

r̂r(ur, µ) = Φu
T r(Φuur, µ) = 0
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Connection to Finite Element Method

S

S - infinite-dimensional trial space

Sh - (large) finite-dimensional trial space

Skh - (small) finite-dimensional trial space

Skh ⊂ Sh ⊂ S
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Reduced Basis Construction

Method of Snapshots [Sirovich, 1987]

Collect state snapshots by sampling parameter space: u(µ)

X =
[
u(µ1) · · · u(µn)

]
Proper Orthogonal Decomposition (POD) [Sirovich, 1987, Holmes et al., 1998]

Compress snapshot matrix using POD, or truncated Singular Value
Decomposition (SVD)

Φu = POD(X)

Trial subspace selection

Finite element method: polynomial basis; local support
Rayleigh-Ritz: analytical, empirical basis functions; global support
POD: data-driven, empirical basis functions; global support
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Restriction of Parameter Space

Parameter restriction: restrict parameter to a low-dimensional subspace

µ ≈ Φµµr

Φµ =
[
φ1

µ · · · φ
kµ
µ

]
∈ Rnµ×kµ is the reduced basis

µr ∈ Rkµ are the reduced coordinates of µ
nµ � kµ

Substitute restriction into Reduced-Order Model, r̂r(ur, µ) = 0 to obtain

rr(ur, µr) = Φu
T r(Φuur, Φµµr) = 0

Related work:
[Maute and Ramm, 1995, Lieberman et al., 2010, Constantine et al., 2014]
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Restriction of Parameter Space

Parameter space Cantilever mesh
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Restriction of Parameter Space

Parameter space Macroelements
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Standard Difficulty: Binary Solutions

Relaxed, Penalized Problem Setup

minimize
u∈Rnu , µ∈Rnµ

fext
Tu

subject to V (µ) ≤ 1

2
V0

r(u, µp) = 0

µ ∈ [0, 1]kµ

Effect of Penalization

Ke ← (µe)pKe

Ke : eth element stiffness matrix

(a) Without penalization

(b) With penalization
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Standard Difficulty: Binary Solutions

Implication for ROM

From parameter restriction, µp = (Φµµr)p

Precomputation relies on separability of Φµ and µr

Separability maintained if (Φµµr)p = Φµµr
p

Sufficient condition: columns of Φµ have non-overlapping non-zeros
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Reduced Optimization Problem

minimize
ur∈Rku , µr∈Rkµ

J (Φuur, Φµµr)

subject to c(Φuur, Φµµr) ≥ 0

r(Φuur, Φµµr) = 0

Φµ
TAΦµµr ≥ Φµ

Tb

Adaptation of Φu

Control accuracy of ROM

Trust region approach

Adaptation of Φµ

Control restriction of parameter space
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State-Adaptive Approach to ROM Optimization

HDM

HDM

ROB
Φ,ΨCompress

ROM

OptimizerHDM

Figure: Schematic of Adaptive for ROM Optimization
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Trust-Region POD

Trust-Region POD (TRPOD) [Arian et al., 2000]

minimize
ur∈Rku , µr∈Rkµ

J (Φuur, Φµµr)

subject to c(Φuur, Φµµr) ≥ 0

r(Φuur, Φµµr) = 0

Φµ
TAΦµµr ≥ Φµ

Tb

||µr − µ̄r|| ≤ ∆
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Constrained Trust-Region POD

Constrained Trust-Region POD

minimize
ur∈Rku , µr∈Rkµ , t∈Rnc

J (Φuur, Φµµr)− γtT1

subject to c(Φuur, Φµµr) ≥ t

r(Φuur, Φµµr) = 0

Φµ
TAΦµµr ≥ Φµ

Tb

||µr − µ̄r|| ≤ ∆

t ≤ 0
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Reduced Optimization Problem

minimize
ur∈Rku , µr∈Rkµ

J (Φuur, Φµµr)

subject to c(Φuur, Φµµr) ≥ 0

r(Φuur, Φµµr) = 0

Φµ
TAΦµµr ≥ Φµ

Tb

Adaptation of Φu

Control accuracy of ROM

Trust region approach

Adaptation of Φµ

Control restriction of parameter space
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Reduced Order Basis Adaptivity: Φµ

Selection of Φµ amounts to a
restriction of the parameter space

Adaptation of Φµ should attempt
to include the optimal solution in
the restricted parameter space,
i.e. µ∗ ∈ col(Φµ)

Adaptation based on first-order
optimality conditions of HDM
optimization problem
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Lagrangian

L(µ, λ, τ ) = J (u(µ), µ)− λT c(u(µ), µ)− τT (Aµ− b)

Karush-Kuhn Tucker (KKT) Conditions 3

∇µL(µ, λ, τ ) = 0

λ ≥ 0

τ ≥ 0

λici(u(µ), µ) = 0

τ j (Aµ− b) = 0

c(u(µ),µ) ≥ 0

Aµ ≥ b

Relies heavily on Lagrange multipliers estimates [Zahr, 2015]

3[Nocedal and Wright, 2006]
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Refinement Indicator

From Lagrange multiplier estimates, only KKT condition not satisfied
automatically:

∇µL(µ, λ, τ ) = 0

Use |∇µL(µ, λ, τ )| as indicator for refinement of discretization of µ-space

µ |∇µL(µ, λ, τ )|
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Refinement Indicator

From Lagrange multiplier estimates, only KKT condition not satisfied
automatically:

∇µL(µ, λ, τ ) = 0

Use |∇µL(µ, λ, τ )| as indicator for refinement of discretization of µ-space

µ Updated Macroelements

Zahr Topology Optimization with ROMs



Motivation
ROM-Constrained Optimization

Numerical Experiments
Conclusion

Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Problem Setup

25

40

16000 8-node brick elements, 77760 dofs

Total Lagrangian form, finite strain, StVK 4

St. Venant-Kirchhoff material

Sparse Cholesky linear solver (CHOLMOD5)

Newton-Raphson nonlinear solver

Minimum compliance optimization problem

minimize
u∈Rnu , µ∈Rnµ

fext
Tu

subject to V (µ) ≤ 1

2
V0

r(u, µ) = 0

Gradient computations: Adjoint method

Optimizer: SNOPT [Gill et al., 2002]

Maximum ROM size: ku ≤ 5
4[Bonet and Wood, 1997, Belytschko et al., 2000]
5[Chen et al., 2008]
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Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Optimal Solution Comparison

HDM CTRPOD + Φµ adaptivity

HDM Solution HDM Gradient HDM Optimization

7458s (450) 4018s (411) 8284s

HDM
Elapsed time = 19761s

HDM Solution HDM Gradient ROB Construction ROM Optimization

1049s (64) 88s (9) 727s (56) 39s (3676)

CTRPOD + Φµ adaptivity
Elapsed time = 2197s, Speedup ≈ 9x
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Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Solution after 64 HDM Evaluations

HDM CTRPOD + Φµ adaptivity

CTRPOD + Φµ adaptivity: superior approximation to optimal solution
than HDM approach after fixed number of HDM solves (64)

Reasonable option to warm-start HDM topology optimization
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Macro-element Evolution

Iteration 0 (1000)
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Macro-element Evolution

Iteration 1 (977)
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Macro-element Evolution

Iteration 2 (935)

Iteration 3 (972)

Zahr Topology Optimization with ROMs



Motivation
ROM-Constrained Optimization

Numerical Experiments
Conclusion

Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Macro-element Evolution

Iteration 3 (1152)
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Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Problem Setup

10

10

(a) XY view

10

10

(b) XZ view

64000 8-node brick elements, 206715 dofs

Total Lagrangian formulation, finite strain

St. Venant-Kirchhoff material

Jacobi-Preconditioned Conjugate Gradient

Newton-Raphson nonlinear solver

Minimum compliance optimization problem

minimize
u∈Rnu , µ∈Rnµ

fext
Tu

subject to V (µ) ≤ 0.15 · V0
r(u, µ) = 0

Gradient computations: Adjoint method

Optimizer: SNOPT

Maximum ROM size: ku ≤ 5
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Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Optimal Solution Comparison

HDM CTRPOD + Φµ adaptivity

HDM, elapsed time = 179176s

CTRPOD+Φµ adaptivity, elapsed time = 15208s

Speedup ≈ 12×
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Minimum Compliance: 3D Trestle

Solution after 68 HDM Evaluations

HDM CTRPOD + Φµ adaptivity

CTRPOD + Φµ adaptivity: superior approximation to optimal solution
than HDM approach after fixed number of HDM solves (68)

Reasonable option to warm-start HDM topology optimization
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Summary and Future Work

Summary

Framework introduced for accelerating PDE-constrained optimization
problem with side constraints and large-dimensional parameter space

Speedup attained via adaptive reduction of state space and parameter space

Concepts/techniques borrowed from FEA and optimization theory

Dual-weighted residual error estimates
Theory of constrained optimization: Lagrangian, KKT system

Applied to nonlinear topology optimization

Future Work

Incorporation of error surrogates (ROMES) [Drohmann and Carlberg, 2014]

Add fidelity to ROM using AMR instead of HDM solve [Carlberg, 2014]

Incorporation of more sophisticated nonlinear model reduction methods to
avoid O(k4u · kµ) ROM cost

Extension to unsteady PDE-constrained optimization [Zahr, Persson]

Extension to stochastic PDE-constrained optimization [Zahr, Carlberg]
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Contributions

(MJZ) First work to define a framework for incorporating projection-based
reduced-order models in topology optimization setting

Built on element volume fraction topology optimization formulation
Condition on Φµ to enable use of SIMP (binary solutions) in reduced
optimization problems
HDM Lagrange multiplier estimates from ROM Lagrange multipliers

(MJZ) Generalization of TRPOD to work with constraints, i.e. CTRPOD

(MJZ) Use of constrained optimization theory (KKT system) to
update/modify parameter basis, Φµ

(KW, MJZ) Practical details of framework

Local minima avoidance
Macroelement refinement

(MJZ) Implementation: pyMORTestbed (C++/Python)

3D FEM, topology optimization, model reduction
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PDE-Constrained Optimization: CFD Shape Optimization 6

Biologically-inspired flight

Micro aerial vehicles

Mesh

43,000 vertices
231,000 tetra (p = 3)
2,310,000 DOF

CFD

Compressible Navier-Stokes
Discontinuous Galerkin

Desired: shape optimization,
control

unsteady effects
maximize thrust

Flapping Bat Flight Simulation

Visualization of Mach number on isosurface of entropy

Unphysical separation around simplified animal “body”

Figure: Flapping Wing [Persson et al., 2012]

6Current collaboration underway with P.-O. Persson to apply techniques outlined in this
presentation to accelerate unsteady CFD shape optimization problems (3DG).
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PDE-Constrained Optimization: CFD Shape Optimization

Benchmark in automotive
industry

Mesh

2,890,434 vertices
17,017,090 tetra
17,342,604 DOF

CFD

Compressible
Navier-Stokes
DES + Wall func

Single forward simulation

≈ 0.5 day on 512 cores

Desired: shape optimization

unsteady effects
minimize average drag

and LES turbulence models, as well as a wall function. It performs a second-order semi-discretization of the convective fluxes
using a method based on the Roe, HLLE, or HLLC upwind scheme. It can also perform second- and fourth-order explicit and
implicit temporal discretizations using a variety of time integrators. The GNAT implementation in AERO-F is characterized by
the sample-mesh concept described in Section 5. All linear least-squares problems and singular value decompositions are
computed in parallel using the ScaLAPACK library [50]. AERO-F is used here to demonstrate GNAT’s potential when applied
to a realistic, large-scale, nonlinear benchmark CFD problem: turbulent flow around the Ahmed body.

The Ahmed-body geometry [47] is a simplied car geometry. It can be described as a modified parallelepiped featuring
round corners at the front end and a slanted face at the rear end (see Fig. 6). Depending on the inclination of this face, dif-
ferent flow characteristics and wake structure may be observed. For a slant angle uP 30!, the flow features a large detach-
ment. For smaller slant angles, the flow reattaches on the slant. Consequently, the drag coefficient suddenly decreases when
the slant angle is increased beyond its critical value of u ¼ 30!. Due to this phenomenon, predicting the flow past the Ahmed
body for varying slant angles has become a popular benchmark in the automotive industry.

This work considers the subcritical angleu ¼ 20! and treats the drag coefficient CD ¼ D
1
2q1V2

15:6016#10$2 m2 around the body as

the output of interest. The free-stream velocity is set to V1 ¼ 60 m/s, and the Reynolds number based on a reference length
of 1.0 m is set to Re ¼ 4:29# 106. The free-stream angle of attack is set to 0!.

6.2.1. High-dimensional CFD model
The high-dimensional CFD model corresponds to an unsteady Navier–Stokes simulation using AERO-F’s DES turbulence

model and wall function. The fluid domain is discretized by a mesh with 2,890,434 nodes and 17,017,090 tetrahedra (Fig. 7).
A symmetry plane is employed to exploit the symmetry of the body about the x–z plane. Due to the turbulence model and
three-dimensional domain, the number of conservation equations per node is m ¼ 6, and therefore the dimension of the CFD
model is N ¼ 17;342;604. Roe’s scheme is employed to discretize the convective fluxes; a linear variation of the solution is
assumed within each control volume, which leads to a second-order space-accurate scheme.

Flow simulations are performed within a time interval t 2 0 s;0:1 s½ &, the second-order accurate implicit three-point
backward difference scheme is used for time integration, and the computational time-step size is fixed to Dt ¼ 8# 10$5 s.
For the chosen CFD mesh, this time-step size corresponds to a maximum CFL number of roughly 2000. The nonlinear system
of algebraic equations arising at each time step is solved by Newton’s method. Convergence is declared at the kth iteration
for the nth time step when the residual satisfies kRnðkÞk 6 0:001kRnð0Þk. All flow computations are performed in a non-dimen-
sional setting.

A steady-state simulation computes the initial condition for the unsteady simulation. This steady-state calculation is
characterized by the same parameters as above, except that it employs local time stepping with a maximum CFL number
of 50, it uses the first-order implicit backward Euler time integration scheme, and it employs only one Newton iteration
per (pseudo) time step.

All computations are performed in double-precision arithmetic on a parallel Linux cluster5 using a variable number of
cores.

6.2.2. Comparison with experiment
Ref. [47] reports an experimental drag coefficient of 0.250 around the Ahmed body for a slant angle of u ¼ 20!. Fig. 8

reports the time history of the drag coefficient computed using the high-dimensional CFD model described in the previous
section. Indeed, the time-averaged value of the computed drag coefficient obtained using the trapezoidal rule is CD ¼ 0:2524.

Fig. 6. Geometry of the Ahmed body (from Ref. [51].)

5 The cluster contains compute nodes with 16 GB of memory. Each node consists of two quad-core Intel Xeon E5345 processors running at 2.33 GHz inside a
DELL Poweredge 1950. The interconnect is Cisco DDR InfiniBand.

K. Carlberg et al. / Journal of Computational Physics 242 (2013) 623–647 637

(a) Ahmed Body: Geometry (Ahmed et al, 1984)

Hence, it is within less than 1% of the reported experimental value. This asserts the quality of the constructed CFD model and
AERO-F’s computations. For reference, this high-dimensional CFD simulation consumed 13.28 h on 512 cores.

6.2.3. ROM performance metrics
The following metrics will be used to assess GNAT’s performance. The relative discrepancy in the drag coefficient, which

assesses the accuracy of a GNAT simulation, is measured as follows:

RD ¼
1
nt

Xnt

n¼1
jCn

DI " Cn
DIII

j
max

n
Cn
DI "min

n
Cn
DI

; ð31Þ

where Cn
DI denotes the drag coefficient computed at the nth time step using the high-dimensional CFD model (tier I model),

and Cn
DIII denotes the corresponding value computed using the GNAT ROM (tier III model).

The improvement in CPU performance delivered by GNAT as measured in wall time is defined as

WT ¼ T I

T III
; ð32Þ

where T I denotes the wall time consumed by a flow simulation associated with the high-dimensional CFD model, and T III

denotes the wall time consumed online by its counterpart based on a GNAT ROM. For the high-dimensional model, the
reported wall time includes the solution of the governing equations and the output of the state vector; for the GNAT
reduced-order model, it includes the execution of Algorithm 2. After the completion of Algorithms 1 and 2 is executed to

Fig. 7. CFD mesh with 2,890,434 grid points and 17,017,090 tetrahedra (partial view, u ¼ 20%). Darker areas indicate a more refined area of the mesh.

Fig. 8. Time history of the drag coefficient predicted for u ¼ 20% using DES and a CFD mesh with N ¼ 17;342;604 unknowns. Oscillatory behavior due to
vortex shedding is apparent.

638 K. Carlberg et al. / Journal of Computational Physics 242 (2013) 623–647

(b) Ahmed Body: Mesh (Carlberg et al, 2011)
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Efficient Evaluation of Nonlinear Terms

Due to the mixing of high-dimensional and low-dimensional terms in the
ROM expression, only limited speedups available

rr(ur, µr) = Φu
T r(Φuur, Φµµr) = 0

To enable pre-computation of all large-dimensional quantities into
low-dimensional ones, leverage Taylor series expansion

[rr(ur, µr)]i = D0
im(µr)m + D1

ijm(ur × µr)jm + D2
ijkm(ur × ur × µr)jkm

+ D3
ijklm(ur × ur × ur × µr)jklm = 0

where

D3
ijklm =

∂3rt
∂up∂uq∂us

(û, φm
µ )(φi

u × φj
u × φk

u × φl
u)tpqs

Related work: [Rewienski, 2003, Barrault et al., 2004,
Barbič and James, 2007, Nguyen and Peraire, 2008,
Chaturantabut and Sorensen, 2010, Carlberg et al., 2011]
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Offline/Online Decomposition for Optimization

Offline

HDM

HDM

HDM

HDM

ROB
Φ,Ψ

Compress

ROM

Optimizer

(a) Schematic of Offline/Online Decomposition for ROM Optimization
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(b) Breakdown of Computational Effort
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Offline/Online Decomposition for ROM Optimization

(a) Idealized Optimization Trajectory: Parameter Space
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(a) Idealized Optimization Trajectory: Parameter Space
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Offline/Online Decomposition for ROM Optimization

(a) Idealized Optimization Trajectory: Parameter Space
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Problem Setup

25

40

16000 8-node brick elements, 77760 dofs

Total Lagrangian form, finite strain, StVK 7

St. Venant-Kirchhoff material

Sparse Cholesky linear solver (CHOLMOD8)

Newton-Raphson nonlinear solver

Minimum compliance optimization problem

minimize
u∈Rnu , µ∈Rnµ

fext
Tu

subject to V (µ) ≤ 1

2
V0

r(u, µ) = 0

Gradient computations: Adjoint method

Optimizer: SNOPT [Gill et al., 2002]

7[Bonet and Wood, 1997, Belytschko et al., 2000]
8[Chen et al., 2008]
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Numerical Experiment: Offline-Online

Parameter reduction (Φµ)

apriori spatial clustering
kµ = 200

Greedy Training

5000 candidate points (LHS)
50 snapshots
Error indicator: ||r(Φuur, Φµµr)||

State reduction (Φu)

POD
ku = 25
Polynomialization acceleration

Material Basis
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Numerical Experiment: Offline-Online

Optimal Solution (ROM) Optimal Solution (HDM)

HDM Solution ROB Construction Greedy Algorithm ROM Optimization

2.84× 103 s 5.48× 104 s 1.67× 105 s 30 s

1.26% 24.36% 74.37% 0.01%

HDM Optimization: 1.97× 104 s

Zahr Topology Optimization with ROMs



Motivation
ROM-Constrained Optimization

Numerical Experiments
Conclusion

Lagrange Multiplier Estimate

Lagrange Multiplier, Constraint Pairs

λ λr τ τ r

c(u, µ) ≥ 0 c(Φuur, Φµµ) ≥ 0 Aµ ≥ b Arµr ≥ br

Goal: Given ur, µr, τ r ≥ 0, λr ≥ 0, estimate τ̃ ≥ 0, λ̃ ≥ 0 to compute

∇µL(Φµµr, λ̃, τ̃ ) =
∂J
∂µ

(Φuur, Φµµr)− ∂c

∂µ
(Φuur, Φµµr)T λ̃−AT τ̃

Lagrange Multiplier Estimates

λ̃ = λr

τ̃ = arg min
τ≥0

∣∣∣∣∣∣∣∣AT τ −
(
∂J
∂µ

(Φuur, Φµµr)− ∂c

∂µ
(Φuur, Φµµr)T λ̃

)∣∣∣∣∣∣∣∣
Non-negative least squares: [Lawson and Hanson, 1974, Chapman et al., 2015]
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Standard Difficulty: Checkerboarding

Gradient Filtering, Nodal Projection

Minimum length scale, rmin

Gradient Filtering 9

∂̂J
∂µk

=

∑
j∈Sk

Hkjµi
∂J
∂µi

µk

∑
j∈Sk

Hkj

Nodal Projection

µk =

∑
j∈Sk τ jHjk∑
j∈Sk Hjk

(a) Without projection/filtering

(b) With projection

9Hki = rmin − dist(k, i)
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Standard Difficulty: Checkerboarding

Implication for ROM

Nonlocal introduced through projection/filtering

µe influences volume fraction of all elements within rmin of element/node e

Clashes with requirement on Φµ of columns with non-overlapping non-zeros

Handled heuristically by performing parameter basis adaptation to eliminate
“checkerboard” regions of parameter space, uses concept of rmin

Gradient of Lagrangian Updated Macroelements
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