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Application I: Shape Optimization of Vehicle in Turbulent Flow

Volkswagen Passat

Shape optimization

Minimum drag configuration
Unsteady effects

Simulation

4M vertices, 24M dof
Compressible Navier-Stokes
Spalart-Allmaras

Single forward simulation

≈ 1 day on 2048 CPUs
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Application II: Optimal Control Flapping Wing

Biologically-inspired flight

Micro Aerial Vehicles (MAVs)

Mesh

43,000 vertices
231,000 tetra (p = 3)
2,310,000 DOF

CFD

Compressible Navier-Stokes
Discontinuous Galerkin

Shape optimization, control

unsteady effects
min energy, const thrust

Flapping Bat Flight Simulation

Visualization of Mach number on isosurface of entropy

Unphysical separation around simplified animal “body”

Figure: Flapping Wing (?)
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Application III: Topology Optimization

Design of new lacrosse head 1

Mesh

96,247 vertices
475,666 tetra
276,159 DOF

Single forward simulation

≈ 5 minutes on 1 core

Desired: topology optimization

Finer mesh (10-100x)
Realistic material model

1Collaboration with K. Washabaugh
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Reduced-Order Models (ROMs)

ROMs as Enabling Technology

Optimization: design, control

Single objective, single-point
Multiobjective, multi-point
Unsteady effects

Uncertainty Quantification

Optimization under uncertainty

Flapping Bat Flight Simulation

Visualization of Mach number on isosurface of entropy

Unphysical separation around simplified animal “body”

Figure: Flapping Wing
(?)

REDUCED ORDER MODEL (ROM) 

 o Perturbation problems (stability, trends, control, etc.)!

 o Response problems (behavior, performance, etc.)!

 - linearized                                                                                                                 !

 - nonlinear                                                                            !

!   Complex, time-dependent problems!
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Problem Formulation

Goal: Rapidly solve PDE-constrained optimization problems of the form

minimize
w∈RN , µ∈Rp

f(w,µ)

subject to R(w,µ) = 0
Discretize-then-optimize

where R : RN × Rp → RN is the discretized (steady, nonlinear) PDE, w is the
PDE state vector, µ is the vector of parameters, and N is assumed to be very
large.

REDUCED ORDER MODEL (ROM) 

 o Perturbation problems (stability, trends, control, etc.)!

 o Response problems (behavior, performance, etc.)!

 - linearized                                                                                                                 !

 - nonlinear                                                                            !

!   Complex, time-dependent problems!
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Reduced-Order Model

Model Order Reduction (MOR) assumption: state vector lies in
low-dimensional affine subspace

w ≈ wr = w̄ + Φy =⇒ ∂w

∂µ
≈ ∂wr

∂µ
= Φ

∂y

∂µ

where y ∈ Rn are the reduced coordinates of wr in the basis Φ ∈ RN×n, and
n� N

Substitute assumption into High-Dimensional Model (HDM), R(w,µ) = 0

R(w̄ + Φy,µ) ≈ 0

Require projection of residual in low-dimensional left subspace, with basis
Ψ ∈ RN×n to be zero

Rr(y,µ) = ΨTR(w̄ + Φy,µ) = 0
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Reduced Optimization Problem

ROM-Constrained Optimization

minimize
µ∈Rp

f(w̄ + Φy(µ),µ)

subject to ΨTR(w̄ + Φy,µ) = 0

Issues that must be considered

Construction of bases
Speedup potential
Sensitivity analysis (adjoint method)
Training
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Offline-Online Approach

Offline

HDM

HDM

HDM

HDM

ROB
Φ,Ψ

Compress

ROM

Optimizer

Figure: Schematic of Algorithm
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Offline-Online Approach

(a) Idealized Optimization Trajectory: Parameter Space
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Offline-Online (Database) Approach

Offline-Online Approach to ROM-Constrained Optimization

Identify samples in offline phase to be used for training

Space-fill sampling (i.e. latin hypercube)
Greedy sampling

Collect snapshots from HDM

Build ROB Φ

Solve optimization problem

minimize
y∈Rn, µ∈Rp

f(w̄ + Φy,µ)

subject to ΨTR(w̄ + Φy,µ) = 0

(?), (?), (?), (?)
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Adaptive Approach

HDM

HDM

ROB
Φ,ΨCompress

ROM

OptimizerHDM

Figure: Schematic of Algorithm
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Adaptive Approach

(a) Idealized Optimization Trajectory: Parameter Space
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Adaptive Approach

Adaptive Approach to ROM-Constrained Optimization

Collect snapshots from HDM at sparse sampling of the parameter space

Initial condition for optimization problem

Build ROB Φ from sparse training

Solve optimization problem

minimize
y∈Rn, µ∈Rp

f(w̄ + Φy,µ)

subject to ΨTR(w̄ + Φy,µ) = 0

1

2
||R(w̄ + Φy,µ)||22 ≤ ε

Use solution of above problem to enrich training and repeat until
convergence

(?), (?), (?), (?), (?), (?), (?)
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Difficulty of Breaking Offline-Online Barrier

Offline-Online Approach

HDM HDM HDM HDM ROB
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Figure: Offline-Online Approach

Offline/Online Barrier

+ Enables large online speedups
- Difficult to construct accurate, robust ROM

Minimize

R
O

M

!
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Difficulty of Breaking Offline-Online Barrier

Progressive Approach
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Figure: Progressive Approach

Requires minimizing HDM , ROB , and

R
O

M

!

Cost and Quantity
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Progressive Approach

Ingredients of Proposed Approach (?)

Minimum-residual ROM (LSPG) and minimum-residual sensitivities

fr(µ) = f(µ) and
dfr
dµ

(µ) =
df

dµ
(µ) for training parameters µ

Reduced optimization (sub)problem

minimize
y∈Rn, µ∈Rp

f(w̄ + Φy,µ)

subject to ΨTR(w̄ + Φy,µ) = 0

1

2
||R(w̄ + Φy,µ)||22 ≤ ε

Efficiently update ROB with additional snapshots or new translation vector

Without re-computing SVD of entire snapshot matrix

Adaptive selection of ε→ trust-region approach
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Outline
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Compressible, Inviscid Airfoil Inverse Design

(a) NACA0012: Pressure field
(M∞ = 0.5, α = 0.0◦)

(b) RAE2822: Pressure field (M∞ = 0.5,
α = 0.0◦)

Pressure discrepancy minimization (Euler equations)
Initial Configuration: NACA0012
Target Configuration: RAE2822
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Initial/Target Airfoils: Scaled
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Shape Parametrization

(a) µ(1) = 0.1 (b) µ(2) = 0.1

(c) µ(3) = 0.1 (d) µ(4) = 0.1

Figure: Shape parametrization of a NACA0012 airfoil using a cubic design element
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Shape Parametrization

(a) µ(5) = 0.1 (b) µ(6) = 0.1

(c) µ(7) = 0.1 (d) µ(8) = 0.1

Figure: Shape parametrization of a NACA0012 airfoil using a cubic design element
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Optimization Results
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Optimization Results

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Number of HDM queries

1 2
||p

(w̄
+

Φ
k
y

(µ
))
−

p
(w

(µ
R
A
E
2
8
2
2
))
||2 2

1 2
||p

(w̄
+

Φ
k
y

(0
))
−

p
(w

(µ
R
A
E
2
8
2
2
))
||2 2

HDM-based optimization
ROM-based optimization

Zahr Adaptive ROM-Constrained Optimization



Motivation
ROM-Constrained Optimization

Numerical Experiments
Extensions
Conclusion
References

Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Optimization Results
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Optimization Results

HDM-based
optimization

ROM-based
optimization

# of HDM Evaluations 29 7
# of ROM Evaluations - 346
||µ∗ − µRAE2822||
||µRAE2822|| 2.28× 10−3% 4.17× 10−6%

Table: Performance of the HDM- and ROM-based optimization methods
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Problem Setup

25

40

16000 8-node brick elements, 77760 dofs

Total Lagrangian form, finite strain, StVK 2

St. Venant-Kirchhoff material

Sparse Cholesky linear solver (CHOLMOD3)

Newton-Raphson nonlinear solver

Minimum compliance optimization problem

minimize
u∈Rnu , µ∈Rnµ

fext
Tu

subject to V (µ) ≤ 1

2
V0

r(u, µ) = 0

Gradient computations: Adjoint method

Optimizer: SNOPT (?)

Maximum ROM size: ku ≤ 5
2(?), (?)
3(?)
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Optimal Solution Comparison

HDM CTRPOD + Φµ adaptivity

HDM Solution HDM Gradient HDM Optimization

7458s (450) 4018s (411) 8284s

HDM
Elapsed time = 19761s

HDM Solution HDM Gradient ROB Construction ROM Optimization

1049s (64) 88s (9) 727s (56) 39s (3676)

CTRPOD + Φµ adaptivity
Elapsed time = 2197s, Speedup ≈ 9x
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Solution after 64 HDM Evaluations

HDM CTRPOD + Φµ adaptivity

CTRPOD + Φµ adaptivity: superior approximation to optimal solution
than HDM approach after fixed number of HDM solves (64)

Reasonable option to warm-start HDM topology optimization
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

CTRPOD + Φµ adaptivity
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Problem Setup

10

10

(a) XY view

10

10

(b) XZ view

64000 8-node brick elements, 206715 dofs

Total Lagrangian formulation, finite strain

St. Venant-Kirchhoff material

Jacobi-Preconditioned Conjugate Gradient

Newton-Raphson nonlinear solver

Minimum compliance optimization problem

minimize
u∈Rnu , µ∈Rnµ

fext
Tu

subject to V (µ) ≤ 0.15 · V0

r(u, µ) = 0

Gradient computations: Adjoint method

Optimizer: SNOPT

Maximum ROM size: ku ≤ 5
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Optimal Solution Comparison

HDM CTRPOD + Φµ adaptivity

HDM, elapsed time = 179176s

CTRPOD+Φµ adaptivity, elapsed time = 15208s

Speedup ≈ 12×
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Shape Optimization: Airfoil Design
Minimum Compliance: 2D Cantilever
Minimum Compliance: 3D Trestle

Solution after 68 HDM Evaluations

HDM CTRPOD + Φµ adaptivity

CTRPOD + Φµ adaptivity: superior approximation to optimal solution
than HDM approach after fixed number of HDM solves (68)

Reasonable option to warm-start HDM topology optimization
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Unsteady Optimization
Stochastic Optimization

Outline
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Unsteady Optimization
Stochastic Optimization

Problem Formulation

Goal: Rapidly solve PDE-constrained optimization problems of the form

minimize
U , µ

∫ Tf

T0

f(U(t),µ, t) dt

subject to
∂U

∂t
+∇ · F (U ,∇U ,µ) = 0

Two-Phase approach

Develop globally high-order numerical scheme (HDM)
Adapt proposed trust-region approach with adaptive model reduction (ROM)

Collaboration with P.-O. Persson (UCB)
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Unsteady Optimization
Stochastic Optimization

Highlights

Spatial discretization

High-order Discontinuous Galerkin Arbitrary-Lagrangian-Eulerian (DG-ALE)
GCL augmentation

Temporal discretization

Diagonally-Implicit Runge Kutta

Output integration

Solver-consistent
DG-ALE for spatial integrals
DIRK for temporal integrals

Fully-discrete unsteady adjoint method
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Unsteady Optimization
Stochastic Optimization

Energetically-Optimal Trajectory

Zahr Adaptive ROM-Constrained Optimization
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Unsteady Optimization
Stochastic Optimization

Coming soon(ish) ...

Collaboration with Kevin Carlberg and Drew Kouri
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Summary

Summary

Introduced nonlinear trust region framework for optimization using adaptive
reduced-order models

Demonstrated approach on canonical problem from aerodynamic shape
optimization

Factor of 4 fewer queries to HDM than standard PDE-constrained
optimization approaches

Extension to problems with large-dimensional parameter space and
constraints (topology optimization)

Order of magnitude speedup on canonical 2D/3D problems
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Future Work

Convergence proof for proposed progressive optimization framework

Incorporate hyperreduction to realize speedups

Application to large-scale, 3D problems

Extension to unsteady PDE-constrained optimization

Extension to stochastic PDE-constrained optimization
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