Unsteady CFD Optimization using High-Order Discontinuous Galerkin Finite Element Methods

Matthew J. Zahr and Per-Olof Persson

Stanford University and University of California, Berkeley

13th US National Congress on Computational Mechanics, San Diego, CA TS4, Tuesday, July 28, 2015

Optimal Control: Flapping Flight

- Optimal control of a body immersed in a fluid leads to *unsteady PDE-constrained optimization*
- Goal: Determine **kinematics** of the body that minimizes some cost functional subject to **constraints**
 - Steady-state analysis insufficient
- Example: Energetically-optimal flapping at constant thrust
 - Biology
 - Micro Aerial Vehicles

Dragonfly Experiment (A. Song, Brown U)

Shape Optimization: Turbulence

- Shape optimization of a static or moving body in turbulent flow also leads to unsteady PDE-constrained optimization
 - Non-existence of steady-state necessitates unsteady analysis
- Goal: Determine **shape** (and possibly kinematics) that minimizes a cost functional, subject to constraints
- Applications
 - Shape of windmill blade for maximum energy harvesting
 - Maximum lift airfoil

Vertical Windmill

Problem Formulation

Goal: Find the solution of the unsteady PDE-constrained optimization problem

$$\begin{array}{ll} \underset{\boldsymbol{U},\ \boldsymbol{\mu}}{\text{minimize}} & \mathcal{J}(\boldsymbol{U},\boldsymbol{\mu}) \\ \text{subject to} & \boldsymbol{C}(\boldsymbol{U},\boldsymbol{\mu}) \leq 0 \\ & \frac{\partial \boldsymbol{U}}{\partial t} + \nabla \cdot \boldsymbol{F}(\boldsymbol{U},\nabla \boldsymbol{U}) = 0 \ \text{ in } \ v(\boldsymbol{\mu},t) \end{array}$$

where

• μ

• $\boldsymbol{U}(\boldsymbol{x},t)$

• $\mathcal{J}(\boldsymbol{U},\boldsymbol{\mu}) = \int_{T_0}^{T_f} \int_{\boldsymbol{\Gamma}} j(\boldsymbol{U},\boldsymbol{\mu},t) \, dS \, dt$

• $C(U, \mu) = \int_{T_0}^{T_f} \int_{\Gamma} c(U, \mu, t) \, dS \, dt$

PDE solution design/control parameters

イロト イポト イヨト イ

objective function

constraints

Approach to Unsteady Optimization

- Recast conservation law on deforming domain into one on *fixed*, reference domain (Arbitrary Lagrangian-Euler formulation)
- Globally high-order numerical discretization of transformed equations
 - Spatial Discretization: Discontinuous Galerkin FEM
 - Temporal Discretization: Diagonally-Implicit Runge-Kutta
 - Solver-consistent discretization of output quantities
- Fully-discrete adjoint method for high-order numerical discretization
- Gradient-based optimization

ALE Description of Conservation Law

- Map from fixed reference domain V to physical, deformable (parametrized) domain $v(\pmb{\mu},t)$
- A point $X \in V$ is mapped to $x(\mu, t) = \mathcal{G}(\mathbf{X}, \mu, t) \in v(\mu, t)$

- Require mapping $\boldsymbol{x} = \mathcal{G}(\boldsymbol{X}, t)$ to obtain derivatives $\nabla_{\boldsymbol{X}} \mathcal{G}, \frac{\partial}{\partial t} \mathcal{G}$
- Shape deformation, via Radial Basis Functions (RBFs), and translational kinematic motion, \boldsymbol{v} , applied to reference domain

$$oldsymbol{X}' = oldsymbol{X} + oldsymbol{v} + \sum oldsymbol{w}_i \Phi(||oldsymbol{X} - oldsymbol{c}_i||)$$

- Require mapping $\boldsymbol{x} = \mathcal{G}(\boldsymbol{X}, t)$ to obtain derivatives $\nabla_{\boldsymbol{X}} \mathcal{G}, \frac{\partial}{\partial t} \mathcal{G}$
- \bullet Rotational kinematic motion, ${\pmb Q},$ applied via blending map

$$\boldsymbol{x} = b(d_R(\boldsymbol{X}))\boldsymbol{X}' + (1 - b(d_R(\boldsymbol{X})))\boldsymbol{Q}\boldsymbol{X}$$

- $b: \mathbb{R} \to \mathbb{R}$ is a polynomial on [0,1] with (n-1)/2 vanishing derivatives at 0,1
- $d_R(\boldsymbol{X})$ is signed distance between \boldsymbol{X} and circle of radius R

- Require mapping $\boldsymbol{x} = \mathcal{G}(\boldsymbol{X}, t)$ to obtain derivatives $\nabla_{\boldsymbol{X}} \mathcal{G}, \frac{\partial}{\partial t} \mathcal{G}$
- Rotational kinematic motion, \boldsymbol{Q} , applied via blending map

$$\boldsymbol{x} = b(d_R(\boldsymbol{X}))\boldsymbol{X}' + (1 - b(d_R(\boldsymbol{X})))\boldsymbol{Q}\boldsymbol{X}$$

- $b:\mathbb{R}\to\mathbb{R}$ is a polynomial on [0,1] with (n-1)/2 vanishing derivatives at 0,1
- $d_R(\boldsymbol{X})$ is signed distance between \boldsymbol{X} and circle of radius R

Spatial Discretization: Discontinuous Galerkin

• Re-write conservation law as first-order system

$$\left. \frac{\partial \boldsymbol{U}_{\boldsymbol{X}}}{\partial t} \right|_{\boldsymbol{X}} + \nabla_{\boldsymbol{X}} \cdot \boldsymbol{F}_{\boldsymbol{X}}(\boldsymbol{U}_{\boldsymbol{X}}, \ \boldsymbol{Q}_{\boldsymbol{X}}) = \boldsymbol{0}$$
$$\boldsymbol{Q}_{\boldsymbol{X}} - \nabla_{\boldsymbol{X}} \boldsymbol{U}_{\boldsymbol{X}} = \boldsymbol{0}$$

• Discretize using DG

- Roe's method for inviscid flux
- Compact DG (CDG) for viscous flux
- *Semi-discrete* equations

$$\mathbb{M}\frac{\partial \boldsymbol{u}}{\partial t} = \boldsymbol{r}(\boldsymbol{u}, \boldsymbol{\mu}, t)$$
$$\boldsymbol{u}(0) = \boldsymbol{u}_0(\boldsymbol{\mu})$$

High-Order Numerical Scheme Fully-Discrete Adjoint Method Applications

Temporal Discretization: Diagonally-Implicit Runge-Kutta

- Diagonally-Implicit RK (DIRK) are implicit Runge-Kutta schemes defined by lower triangular Butcher tableau \rightarrow decoupled implicit stages
- Overcomes issues with high-order BDF and IRK
 - Limited accuracy of A-stable BDF schemes (2nd order)
 - High cost of general implicit RK schemes (coupled stages)

$$u^{(0)} = u_0(\mu)$$

$$u^{(n)} = u^{(n-1)} + \sum_{i=1}^{s} b_i k_i^{(n)}$$

$$u_i^{(n)} = u^{(n-1)} + \sum_{j=1}^{i} a_{ij} k_j^{(n)}$$

$$\mathbb{M}k_i^{(n)} = \Delta t_n r \left(u_i^{(n)}, \ \mu, \ t_{n-1} + c_i \Delta t_n \right)$$

c_1	a_{11}			
c_2	a_{21}	a_{22}		
÷	:	÷	·	
c_s	a_{s1}	a_{s2}	•••	a_{ss}
	b_1	b_2	•••	b_s

Butcher Tableau for DIRK scheme

Consistent Discretization of Output Quantities

• Consider any output functional of the form

$$\mathcal{F}(\boldsymbol{U}, \boldsymbol{\mu}) = \int_{T_0}^{T_f} \int_{\boldsymbol{\Gamma}} f(\boldsymbol{U}, \boldsymbol{\mu}, t) \, dS \, dt$$

 \bullet Define f_h as the high-order approximation of the spatial integral via the DG shape functions

$$f_h(\boldsymbol{u}(t), \boldsymbol{\mu}, t) = \sum_{\mathcal{T}_e \in \mathcal{T}_{\Gamma}} \sum_{\mathcal{Q}_i \in \mathcal{Q}_{\mathcal{T}_e}} w_i f(\boldsymbol{u}_{ei}(t), \boldsymbol{\mu}, t) \approx \int_{\Gamma} f(\boldsymbol{U}, \boldsymbol{\mu}, t) \, dS$$

• Then, the output functional becomes

$$\mathcal{F}(oldsymbol{U},oldsymbol{\mu})pprox\mathcal{F}_h(oldsymbol{u},oldsymbol{\mu})=\int_{T_0}^{T_f}f_h(oldsymbol{u}(t),oldsymbol{\mu},t)\,dt$$

Consistent Discretization of Output Quantities

• Semi-discretized output functional

$$\mathcal{F}_h(\boldsymbol{u}, \boldsymbol{\mu}, t) = \int_{T_0}^t f_h(\boldsymbol{u}(t), \boldsymbol{\mu}, t) \, dt$$

• Differentiation w.r.t. time leads to the

$$\dot{\mathcal{F}}_h(\boldsymbol{u}, \boldsymbol{\mu}, t) = f_h(\boldsymbol{u}(t), \boldsymbol{\mu}, t)$$

• Write semi-discretized output functional *and* conservation law as monolithic system

$$\begin{bmatrix} \mathbb{M} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \dot{\boldsymbol{u}} \\ \dot{\mathcal{F}}_h \end{bmatrix} = \begin{bmatrix} \boldsymbol{r}(\boldsymbol{u}, \boldsymbol{\mu}, t) \\ f_h(\boldsymbol{u}, \boldsymbol{\mu}, t) \end{bmatrix}$$

• Apply DIRK scheme to obtain

$$\begin{split} \boldsymbol{u}^{(n)} &= \boldsymbol{u}^{(n-1)} + \sum_{i=1}^{s} b_{i} \boldsymbol{k}_{i}^{(n)} \\ \mathcal{F}_{h}^{(n)} &= \mathcal{F}_{h}^{(n-1)} + \sum_{i=1}^{s} b_{i} f_{h} \left(\boldsymbol{u}_{i}^{(n)}, \ \boldsymbol{\mu}, \ t_{i}^{(n-1)} \right) \\ \boldsymbol{u}_{i}^{(n)} &= \boldsymbol{u}^{(n-1)} + \sum_{j=1}^{i} a_{ij} \boldsymbol{k}_{j}^{(n)} \\ \mathbb{M} \boldsymbol{k}_{i}^{(n)} &= \Delta t_{n} \boldsymbol{r} \left(\boldsymbol{u}_{i}^{(n)}, \ \boldsymbol{\mu}, \ t_{i}^{(n-1)} \right) \end{split}$$

where
$$t_i^{(n-1)} = t_{n-1} + c_i \Delta t_n$$

• Only interested in *final* time

$$F(\boldsymbol{u}^{(n)}, \boldsymbol{k}_i^{(n)}, \boldsymbol{\mu}) = \mathcal{F}_h^{(N_t)}$$

<ロ> <同> <同> <同> < 同> < 同>

Adjoint Method

- Consider the *fully-discrete* output functional $F(\boldsymbol{u}^{(n)}, \boldsymbol{k}_i^{(n)}, \boldsymbol{\mu})$ corresponding to the continuous output functional $\mathcal{F}(\boldsymbol{U}, \boldsymbol{\mu}) = \int_{T_0}^{T_f} \int_{\boldsymbol{\Gamma}} f(\boldsymbol{U}, \boldsymbol{\mu}, t) \, dS \, dt$
 - May correspond to either the **objective** function or a **constraint**
- The *total derivative* with respect to the parameters μ , required in the context of gradient-based optimization, takes the form

$$\frac{\mathrm{d}F}{\mathrm{d}\boldsymbol{\mu}} = \frac{\partial F}{\partial \boldsymbol{\mu}} + \sum_{n=0}^{N_t} \frac{\partial F}{\partial \boldsymbol{u}^{(n)}} \frac{\partial \boldsymbol{u}^{(n)}}{\partial \boldsymbol{\mu}} + \sum_{n=1}^{N_t} \sum_{i=1}^s \frac{\partial F}{\partial \boldsymbol{k}_i^{(n)}} \frac{\partial \boldsymbol{k}_i^{(n)}}{\partial \boldsymbol{\mu}}$$

- The sensitivities, $\frac{\partial \boldsymbol{u}^{(n)}}{\partial \boldsymbol{\mu}}$ and $\frac{\partial \boldsymbol{k}_i^{(n)}}{\partial \boldsymbol{\mu}}$, are expensive to compute, requiring the solution of $n_{\boldsymbol{\mu}}$ linear evolution equations
- Adjoint method: alternative method for computing $\frac{dF}{d\mu}$ requiring one linear evolution evoluation for each output functional, F

Overview of Adjoint Derivation

• Define **auxiliary** PDE-constrained optimization problem

$$\begin{array}{l} \underset{\boldsymbol{u}^{(0)}, \ \dots, \ \boldsymbol{u}^{(N_t)} \in \mathbb{R}^{N_{\boldsymbol{u}}}, \\ \boldsymbol{k}_1^{(1)}, \ \dots, \ \boldsymbol{k}_s^{(N_t)} \in \mathbb{R}^{N_{\boldsymbol{u}}}, \\ \end{array} \quad F(\boldsymbol{u}^{(0)}, \ \dots, \ \boldsymbol{u}^{(N_t)}, \ \boldsymbol{k}_1^{(1)}, \ \dots, \ \boldsymbol{k}_s^{(N_t)}, \ \bar{\boldsymbol{\mu}}) \\ \text{subject to} \quad \tilde{\boldsymbol{r}}^{(0)} = \boldsymbol{u}^{(0)} - \boldsymbol{u}_0(\boldsymbol{\mu}) = 0 \\ \qquad \tilde{\boldsymbol{r}}^{(n)} = \boldsymbol{u}^{(n)} - \boldsymbol{u}^{(n-1)} + \sum_{i=1}^s b_i \boldsymbol{k}_i^{(n)} = 0 \\ \qquad \boldsymbol{R}_i^{(n)} = \mathbb{M} \boldsymbol{k}_i^{(n)} - \Delta t_n \boldsymbol{r} \left(\boldsymbol{u}_i^{(n)}, \ \boldsymbol{\mu}, \ \boldsymbol{t}_i^{(n-1)} \right) = 0 \end{array}$$

• Define Lagrangian

$$\mathcal{L}(\boldsymbol{u}^{(n)}, \, \boldsymbol{k}_{i}^{(n)}, \, \boldsymbol{\lambda}^{(n)}, \, \boldsymbol{\kappa}_{i}^{(n)}) = F - \boldsymbol{\lambda}^{(0)}{}^{T} \tilde{\boldsymbol{r}}^{(0)} - \sum_{n=1}^{N_{t}} \boldsymbol{\lambda}^{(n)}{}^{T} \tilde{\boldsymbol{r}}^{(n)} - \sum_{n=1}^{N_{t}} \sum_{i=1}^{s} \boldsymbol{\kappa}_{i}^{(n)}{}^{T} \boldsymbol{R}_{i}^{(n)}$$

Fully-Discrete Adjoint Equations

• The solution of the optimization problem is given by the Karush-Kuhn-Tucker (KKT) sytem

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{u}^{(n)}} = 0, \quad \frac{\partial \mathcal{L}}{\partial \boldsymbol{k}_i^{(n)}} = 0, \quad \frac{\partial \mathcal{L}}{\partial \boldsymbol{\lambda}^{(n)}} = 0, \quad \frac{\partial \mathcal{L}}{\partial \boldsymbol{\kappa}_i^{(n)}} = 0$$

• The derivatives w.r.t. the state variables, $\frac{\partial \mathcal{L}}{\partial u^{(n)}} = 0$ and $\frac{\partial \mathcal{L}}{\partial k_i^{(n)}} = 0$, yield the fully-discrete adjoint equations

$$\boldsymbol{\lambda}^{(N_t)} = \frac{\partial F}{\partial \boldsymbol{u}^{(N_t)}}^T$$
$$\boldsymbol{\lambda}^{(n-1)} = \boldsymbol{\lambda}^{(n)} + \frac{\partial F}{\partial \boldsymbol{u}^{(n-1)}}^T + \sum_{i=1}^s \Delta t_n \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \left(\boldsymbol{u}_i^{(n)}, \ \boldsymbol{\mu}, \ t_{n-1} + c_i \Delta t_n\right)^T \boldsymbol{\kappa}_i^{(n)}$$
$$\mathbb{M}^T \boldsymbol{\kappa}_i^{(n)} = \sum_{j=i}^s a_{ji} \Delta t_n \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \left(\boldsymbol{u}_j^{(n)}, \ \boldsymbol{\mu}, \ t_{n-1} + c_j \Delta t_n\right)^T \boldsymbol{\kappa}_j^{(n)}$$

Fully-Discrete Adjoint Equations: Dissection

$$\boldsymbol{\lambda}^{(N_t)} = \frac{\partial F}{\partial \boldsymbol{u}^{(N_t)}}^T$$
$$\boldsymbol{\lambda}^{(n-1)} = \boldsymbol{\lambda}^{(n)} + \frac{\partial F}{\partial \boldsymbol{u}^{(n-1)}}^T + \sum_{i=1}^s \Delta t_n \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \left(\boldsymbol{u}_i^{(n)}, \ \boldsymbol{\mu}, \ t_{n-1} + c_i \Delta t_n\right)^T \boldsymbol{\kappa}_i^{(n)}$$
$$\mathbb{M}^T \boldsymbol{\kappa}_i^{(n)} = \sum_{j=i}^s a_{ji} \Delta t_n \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \left(\boldsymbol{u}_j^{(n)}, \ \boldsymbol{\mu}, \ t_{n-1} + c_j \Delta t_n\right)^T \boldsymbol{\kappa}_j^{(n)}$$

- Linear evolution equations solved backward in time
 - Requires solving linear systems of equations with $\frac{\partial \mathbf{r}^{T}}{\partial \mathbf{u}}$
 - Accurate solution of linear system required
- ullet Primal state, $oldsymbol{u}^{(n)},$ and stage, $oldsymbol{k}^{(n)}_i,$ required at each state/stage of dual solve
 - Parallel I/O

• $\boldsymbol{\lambda}^{(n)}$ and $\boldsymbol{\kappa}^{(n)}_i$ must be computed for each output functional F

< 60 b

ľ

Gradient Reconstruction via Dual Variables

• Equipped with the solution to the primal problem, $\boldsymbol{u}^{(n)}$ and $\boldsymbol{k}_i^{(n)}$, and dual problem, $\boldsymbol{\lambda}^{(n)}$ and $\boldsymbol{\kappa}_i^{(n)}$, the output gradient is reconstructed as

$$\frac{\mathrm{d}F}{\mathrm{d}\mu} = \frac{\partial F}{\partial \mu} - \boldsymbol{\lambda}^{(0)T} \frac{\partial \boldsymbol{u}_0}{\partial \mu} - \sum_{n=1}^{N_t} \Delta t_n \sum_{i=1}^s \boldsymbol{\kappa}_i^{(n)T} \frac{\partial \boldsymbol{r}}{\partial \mu} (\boldsymbol{u}_i^{(n)}, \ \boldsymbol{\mu}, \ t_i^{(n)})$$
• Independent of sensitivities, $\frac{\partial \boldsymbol{u}^{(n)}}{\partial \mu}$ and $\frac{\partial \boldsymbol{k}_i^{(n)}}{\partial \mu}$

Energetically-Optimal Trajectory Constrained, Energetically-Optimal Flapping Energetically-Optimal Shape

Isentropic, Compressible Navier-Stokes Equations

- Proposed globally high-order method holds for arbitrary conservation laws
- Applications in this work focused on compressible Navier-Stokes equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i}(\rho u_i) = 0$$
$$\frac{\partial}{\partial t}(\rho u_i) + \frac{\partial}{\partial x_i}(\rho u_i u_j + p) = +\frac{\partial \tau_{ij}}{\partial x_j} \quad \text{for } i = 1, 2, 3$$
$$\frac{\partial}{\partial t}(\rho E) + \frac{\partial}{\partial x_i}(u_j(\rho E + p)) = -\frac{\partial q_j}{\partial x_j} + \frac{\partial}{\partial x_j}(u_j\tau_{ij})$$

 \bullet Is entropic assumption (entropy constant) made to reduce dimension of PDE system from $n_{\rm sd+2}$ to $n_{\rm sd+1}$

Energetically-Optimal Trajectory Constrained, Energetically-Optimal Flapping Energetically-Optimal Shape

Problem Setup

 $\underset{h(t),\theta(t)}{\text{maximize}}$

subject to

$$J_0 \quad J_{\Gamma} \quad J \to 0 \text{ as at}$$

$$h(0) = h'(0) = h'(T) = 0, \quad h(T) = 1$$

$$\theta(0) = \theta'(0) = \theta(T) = \theta'(T) = 0$$

$$\frac{\partial U}{\partial t} + \nabla \cdot F(U, \nabla U) = 0$$

f e a de de

Airfoil schematic, kinematic description

- Non-zero freestream velocity
- $h(t), \theta(t)$ discretized via *clamped cubic splines*
- Knots of cubic splines as optimization parameters, μ
- Black-box optimizer: SNOPT

Energetically-Optimal Trajectory Constrained, Energetically-Optimal Flapping Energetically-Optimal Shape

Optimization Setup

- Initial guess (---)
 - $h_0(t) = (1 \cos(\pi t/T))/2$
 - $\theta_0(t) = 0$
- Optimization 1 (-----)
 - $h_0(t) = (1 \cos(\pi t/T))/2$
 - $\theta(t)$ parametrized (clamped cubic splines)
- Optimization 2 (-----)
 - $h(t), \theta(t)$ parametrized (clamped cubic splines)

Energetically-Optimal Trajectory Constrained, Energetically-Optimal Flapping Energetically-Optimal Shape

Optimization Convergence

Zahr and Persson Unsteady CFD Optimization

Energetically-Optimal Trajectory

Output Functional Comparison

Energetically-Optimal Trajectory Constrained, Energetically-Optimal Flapping Energetically-Optimal Shape

Optimization Results: Vorticity Field History

Energetically-Optimal Trajectory Constrained, Energetically-Optimal Flapping Energetically-Optimal Shape

Summary

	$\int F_x dt$	$\int F_y dt$	$\int T_z dt$	$\int F_y \cdot \dot{h} dt$	$-\int T_z \cdot \dot{\theta} dt$	$\int \boldsymbol{f} \cdot \boldsymbol{v} dt$
()	-0.121	-2.41	0.0123	-1.47	0.00	-1.47
()	0.978	0.872	-0.107	0.585	-0.705	-0.120
()	3.34	2.54	2.59	1.56	-0.804	0.756

Energetically-Optimal Trajectory Constrained, Energetically-Optimal Flapping Energetically-Optimal Shape

Problem Setup

$$\begin{array}{ll} \underset{h(t),\theta(t)}{\text{maximize}} & \int_{0}^{T} \int_{\Gamma} \boldsymbol{f} \cdot \boldsymbol{v} \, dS \, dt \\ \text{subject to} & -\int_{0}^{T} \int_{\Gamma} F_{x} \, dS \, dt \geq c \\ & h^{(k)}(t) = h^{(k)}(t+T) \\ & \theta^{(k)}(t) = \theta^{(k)}(t+T) \\ & \frac{\partial \boldsymbol{U}}{\partial t} + \nabla \cdot \boldsymbol{F}(\boldsymbol{U}, \nabla \boldsymbol{U}) = 0 \end{array}$$

Airfoil schematic, kinematic description

- Non-zero freestream velocity
- $h(t), \theta(t)$ discretized via phase/amplitude of Fourier modes
- Knots of cubic splines as optimization

parameters, μ

Black-box optimizer: SNOPT

Energetically-Optimal Trajectory Constrained, Energetically-Optimal Flapping Energetically-Optimal Shape

Optimization Setup

- Initial guess (---)
 - $h(t) = -\cos(0.4\pi t/T)$
 - $\theta(t) = 0$
- Optimization 1 (-----)
 - c = 0.0
 - $h(t), \theta(t)$ parametrized (Fourier)
- Optimization 2 (-----)
 - c = 0.3
 - $h(t), \theta(t)$ parametrized (Fourier)

- Optimization 3 (-----)
 - c = 0.5
 - $h(t), \theta(t)$ parametrized (Fourier)
- Optimization 4 (-----)
 - c = 0.7
 - $h(t), \theta(t)$ parametrized (Fourier)

Energetically-Optimal Trajectory Constrained, Energetically-Optimal Flapping Energetically-Optimal Shape

Optimization Convergence

Energetically-Optimal Trajectory Constrained, Energetically-Optimal Flapping Energetically-Optimal Shape

Output Functional Comparison

Zahr and Persson Unsteady CFD Optimization

Energetically-Optimal Trajectory Constrained, Energetically-Optimal Flapping Energetically-Optimal Shape

Optimization Results: Vorticity Field History

Energetically-Optimal Trajectory Constrained, Energetically-Optimal Flapping Energetically-Optimal Shape

Summary

	$\int F_x dt$	$\int F_y dt$	$\int T_z dt$	$\int F_y \cdot \dot{h} dt$	$-\int T_z \cdot \dot{\theta} dt$	$\int \boldsymbol{f} \cdot \boldsymbol{v} dt$
Initial ()	-0.198	-0.0447	-0.0172	-9.51	0.0	-9.51
c = 0.0 ()	0.0	0.0142	0.0	-0.425	-0.0303	-0.455
c = 0.3 ()	-0.3	0.0245	0.00319	-0.894	-0.0459	-0.940
c = 0.5 ()	-0.5	0.0319	0.00501	-1.22	-0.0557	-1.27
c = 0.7 ()	-0.7	0.0510	0.00897	-1.55	-0.0650	-1.61

Energetically-Optimal Trajectory Constrained, Energetically-Optimal Flapping Energetically-Optimal Shape

Shape Optimization

• Recall formula for reconstruction output gradient from primal/dual variables

$$\frac{\mathrm{d}F}{\mathrm{d}\boldsymbol{\mu}} = \frac{\partial F}{\partial \boldsymbol{\mu}} - \boldsymbol{\lambda}^{(0)T} \frac{\partial \boldsymbol{u}_0}{\partial \boldsymbol{\mu}} - \sum_{n=1}^{N_t} \Delta t_n \sum_{i=1}^s \boldsymbol{\kappa}_i^{(n)T} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mu}} (\boldsymbol{u}_i^{(n)}, \ \boldsymbol{\mu}, \ t_i^{(n)})$$

- Dependence on sensitivity of initial condition, $\frac{\partial u_0}{\partial \mu}$
 - Non-zero if $\boldsymbol{u}_0(\boldsymbol{\mu})$ is *steady-state* for a $\boldsymbol{\mu}$ -parametrized shape
 - $\frac{\partial u_0}{\partial \mu}$ computed via standard sensitivity analysis for steady-state problems OR
 - $\lambda^{(0)T} \frac{\partial u_0}{\partial \mu}$ computed directly via standard adjoint method for steady-state problems
- This complication is circumvented in this work by chosing a zero freestream

Energetically-Optimal Trajectory Constrained, Energetically-Optimal Flapping Energetically-Optimal Shape

Problem Setup

$$\begin{array}{ll} \underset{\boldsymbol{w}}{\operatorname{maximize}} & \int_{0}^{T} \int_{\boldsymbol{\Gamma}} \boldsymbol{f} \cdot \boldsymbol{v} \, dS \, dt \\ \text{subject to} & \frac{\partial \boldsymbol{U}}{\partial t} + \nabla \cdot \boldsymbol{F}(\boldsymbol{U}, \nabla \boldsymbol{U}) = 0 \end{array}$$

Airfoil schematic, kinematic description

• Radial basis function parametrization

$$oldsymbol{X}' = oldsymbol{X} + oldsymbol{v} + \sum oldsymbol{w}_i \Phi(||oldsymbol{X} - oldsymbol{c}_i||)$$

- Zero freestream velocity
- $h(t), \theta(t)$ prescribed
- Black-box optimizer: SNOPT

Energetically-Optimal Trajectory Constrained, Energetically-Optimal Flapping Energetically-Optimal Shape

Optimization Setup

- Initial guess (---)
 - $h_0(t), \theta_0(t)$ prescribed
 - **w** = **0**

- Optimization 1 (-----)
 - $h_0(t), \theta_0(t)$ prescribed
 - \boldsymbol{w} variable

Energetically-Optimal Shape

Output Functional Comparison

Zahr and Persson Unsteady CFD Optimization

Conclusion

Energetically-Optimal Trajectory Constrained, Energetically-Optimal Flapping Energetically-Optimal Shape

Optimization Results: Vorticity Field History

Initial Guess $({\mbox{---}})$

Energetically-Optimal Trajectory Constrained, Energetically-Optimal Flapping Energetically-Optimal Shape

Summary

	$\int F_x dt$	$\int F_y dt$	$\int T_z dt$	$\int F_y \cdot \dot{h} dt$	$-\int T_z \cdot \dot{\theta} dt$	$\int \boldsymbol{f} \cdot \boldsymbol{v} dt$
Initial ()	-0.634	-0.727	-0.138	-0.526	-0.484	-1.01
Optimal (——)	-0.461	-0.959	-0.183	-0.145	-0.465	-0.609

Conclusion

- A high-order DG-DIRK discretization of general conservation laws with a mapping-based ALE formulation for deforming domains
- A fully-discrete adjoint method for computing gradients of output functionals and constraints in optimization problems
- Framework demonstrated on the computation of energetically optimal motions of a 2D airfoil in a flow field with constraints
- **Poster**: Unsteady PDE-Constrained Optimization using High-Order DG-FEM

Future Work

- Application of the method to real-world **3D problems**
- Extension of the method to **multiphysics** problems, such as FSI
- Extension of the method to **chaotic** problems, such as LES flows, where care must be taken to ensure the sensitivities are well-defined
- Incorporation of **adaptive model reduction** technology to further reduce the cost of unsteady optimization

