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Multiphysics Optimization Key Player in Next-Gen Problems

Current interest in computational physics reaches far beyond analysis of a single
configuration of a physical system into design (shape and topology1), control,
and uncertainty quantification

14  

Better simulation is critical to engine design and calibration optimization 

• Three levels of simulation with different purposes 

‒ Predictive combustion:  combustion optimization and methods development 

‒ Full engine simulation:  engine system optimization and model-based controls 

‒ Full vehicle simulation:  technology interactions, component optimization and supervisory controls 

• Each scale requires different level of fidelity 

‒ High fidelity combustion on vehicle scales computationally impossible (at the moment) 

• Exponential increase in parameter space translates to exponential increase in simulation 
space and computational requirements 

TAKEAWAY:  Need for faster simulation, faster optimization methods, and reduced 
models for on-board controls 

Engine System

EM Launcher Micro-Aerial Vehicle

1Emergence of additive manufacturing technologies has made topology optimization
increasingly relevant.
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PDE-Constrained Optimization I

Goal: Rapidly solve PDE-constrained optimization problem of the form

minimize
u∈Rnu , µ∈Rnµ

J (u, µ)

subject to r(u, µ) = 0

where

r : Rnu × Rnµ → Rnu is the discretized partial differential equation

J : Rnu × Rnµ → R is the objective function

u ∈ Rnu is the PDE state vector

µ ∈ Rnµ is the vector of parameters

red indicates a large-scale quantity
blue indicates a small quantity
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Projection-Based Model Reduction

Model Order Reduction (MOR) assumption: state vector lies in
low-dimensional subspace

u ≈ Φuur

where

Φu =
[
φ1

u · · · φku
u

]
∈ Rnu×ku is the reduced basis

ur ∈ Rku are the reduced coordinates of u
nu � ku

Substitute assumption into High-Dimensional Model (HDM), r(u, µ) = 0,
and apply Galerkin (or Petrov-Galerkin) projection

Φu
T r(Φuur, µ) = 0

Method of Snapshots and Proper Orthogonal Decomposition used to
construct reduced-order basis, Φu
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Model Order Reduction
Nonlinear Trust-Region Solver

Nonlinear Trust-Region Framework with Adaptive ROMs

HDM

HDM

ROB
ΦuCompress

ROM

OptimizerHDM

[Arian et al., 2000], [Fahl, 2001], [Afanasiev and Hinze, 2001],
[Kunisch and Volkwein, 2008], [Hinze and Matthes, 2013],
[Yue and Meerbergen, 2013], [Zahr and Farhat, 2014]
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Nonlinear Trust-Region Framework with Adaptive ROMs

Nonlinear Trust-Region Framework with Adaptive Model Reduction

Collect snapshots from HDM at sparse sampling of the parameter space

Build ROB Φu from sparse training

Solve optimization problem

minimize
ur∈Rku , µ∈Rnµ

J (Φuur, µ)

subject to ΦT
ur(Φuur, µ) = 0

||r(Φuur, µ)|| ≤ ∆

Use solution of above problem to enrich training, adapt ∆ using standard
trust-region methods, and repeat until convergence
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PDE-Constrained Optimization II

Goal: Rapidly solve PDE-constrained optimization problem of the form

minimize
u∈Rnu , µ∈Rnµ

J (u, µ)

subject to r(u, µ) = 0

c(u, µ) ≥ 0

where

r : Rnu × Rnµ → Rnu is the discretized partial differential equation

J : Rnu × Rnµ → R is the objective function

c : Rnu × Rnµ → Rnc are the side constraints

u ∈ Rnu is the PDE state vector

µ ∈ Rnµ is the vector of parameters

Zahr PDE-Constrained Optimization with Adaptive ROMs



Introduction
Optimization via Adaptive Model Reduction

Large-Scale, Constrained Optimization
Conclusion

Reduction of High-Dimensional Parameter Space
Elastic Nonlinear Constraints
Topology Optimization: 2D Cantilever

Problem Setup

25

40

16000 8-node brick elements, 77760 dofs

Total Lagrangian form, finite strain, StVK 2

St. Venant-Kirchhoff material

Sparse Cholesky linear solver (CHOLMOD3)

Newton-Raphson nonlinear solver

Minimum compliance optimization problem

minimize
u∈Rnu , µ∈Rnµ

fext
Tu

subject to V (µ) ≤ 1

2
V0

r(u, µ) = 0

Gradient computations: Adjoint method

Optimizer: SNOPT [Gill et al., 2002]

2[Bonet and Wood, 1997, Belytschko et al., 2000]
3[Chen et al., 2008]
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Restrict Parameter Space to Low-Dimensional Subspace

Restrict parameter to a low-dimensional subspace

µ ≈ Φµµr

Φµ =
[
φ1

µ · · · φ
kµ
µ

]
∈ Rnµ×kµ is the reduced basis

µr ∈ Rkµ are the reduced coordinates of µ
nµ � kµ

Substitute restriction into reduced-order model to obtain

Φu
T r(Φuur, Φµµr) = 0

Related work:
[Maute and Ramm, 1995, Lieberman et al., 2010, Constantine et al., 2014]
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Restrict Parameter Space to Low-Dimensional Subspace

Parameter space Background mesh
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Restrict Parameter Space to Low-Dimensional Subspace

Parameter space Macroelements
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Optimality Conditions to Adapt Reduced-Order Basis, Φµ

Selection of Φµ amounts to a
restriction of the parameter space

Adaptation of Φµ should attempt
to include the optimal solution in
the restricted parameter space,
i.e. µ∗ ∈ col(Φµ)

Adaptation based on first-order
optimality conditions of HDM
optimization problem
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Optimality Conditions to Adapt Reduced-Order Basis, Φµ

Selection of Φµ amounts to a
restriction of the parameter space

Adaptation of Φµ should attempt
to include the optimal solution in
the restricted parameter space,
i.e. µ∗ ∈ col(Φµ)

Adaptation based on first-order
optimality conditions of HDM
optimization problem
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Optimality Conditions to Adapt Reduced-Order Basis, Φµ

Lagrangian

L(µ, λ) = J (u(µ), µ)− λT c(u(µ), µ)

Karush-Kuhn Tucker (KKT) Conditions4

∇µL(µ, λ) = 0

λ ≥ 0

λici(u(µ), µ) = 0

c(u(µ),µ) ≥ 0

4[Nocedal and Wright, 2006]
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Lagrangian Gradient Refinement Indicator

From Lagrange multiplier estimates, only KKT condition not satisfied
automatically:

∇µL(µ, λ) = 0

Use |∇µL(µ, λ)| as indicator for refinement of discretization of µ-space

µ |∇µL(µ, λ)|
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Constraints may lead to infeasible sub-problems

Nonlinear Trust-Region MOR [Zahr and Farhat, 2014]

minimize
ur∈Rku , µr∈Rkµ

J (Φuur, Φµµr)

subject to c(Φuur, Φµµr) ≥ 0

r(Φuur, Φµµr) = 0

||r(Φuur, Φµµr)|| ≤ ∆
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Constraints may lead to infeasible sub-problems

Nonlinear Trust-Region MOR [Zahr and Farhat, 2014]

minimize
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Elastic constraints to circumvent infeasible subproblems

Constrained Nonlinear Trust-Region MOR

minimize
ur∈Rku , µr∈Rkµ , t∈Rnc

J (Φuur, Φµµr)− γtT1

subject to c(Φuur, Φµµr) ≥ t

r(Φuur, Φµµr) = 0

||r(Φuur, Φµµr)|| ≤ ∆

t ≤ 0
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Elastic constraints to circumvent infeasible subproblems
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Compliance Minimization: 2D Cantilever

25

40

16000 8-node brick elements, 77760 dofs

Total Lagrangian form, finite strain, StVK5

St. Venant-Kirchhoff material

Sparse Cholesky linear solver (CHOLMOD6)

Newton-Raphson nonlinear solver

Minimum compliance optimization problem

minimize
u∈Rnu , µ∈Rnµ

fext
Tu

subject to V (µ) ≤ 1

2
V0

r(u, µ) = 0

Gradient computations: Adjoint method

Optimizer: SNOPT [Gill et al., 2002]

Maximum ROM size: ku ≤ 5

5[Bonet and Wood, 1997, Belytschko et al., 2000]
6[Chen et al., 2008]
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Order of Magnitude Speedup to Suboptimal Solution

HDM CNLTR-MOR + Φµ adaptivity

HDM Solution HDM Gradient HDM Optimization

7458s (450) 4018s (411) 8284s

HDM
Elapsed time = 19761s

HDM Solution HDM Gradient ROB Construction ROM Optimization

1049s (64) 88s (9) 727s (56) 39s (3676)

CNLTR-MOR + Φµ adaptivity
Elapsed time = 2197s, Speedup ≈ 9x
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Better Solution after 64 HDM Evaluations

HDM CNLTR-MOR + Φµ adaptivity

CNLTR-MOR + Φµ adaptivity: superior approximation to optimal solution
than HDM approach after fixed number of HDM solves (64)

Reasonable option to warm-start HDM topology optimization
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Macro-element Evolution

Iteration 0 (1000)
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Macro-element Evolution

Iteration 1 (977)
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CNLTR-MOR + Φµ adaptivity
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Summary

Framework introduced for accelerating PDE-constrained optimization
problem with side constraints and large-dimensional parameter space

Speedup attained via adaptive reduction of state space and parameter space

Concepts borrowed from theory of constrained optimization: Lagrangian,
KKT system

Applied to nonlinear topology optimization

Order of magnitude speedup speedup observed on 2D and 3D problems
Competitive method to warm-start standard topology optimization method
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