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Multiphysics Optimization Key Player in Next-Gen Problems

Current interest in computational physics reaches far beyond analysis of a single
configuration of a physical system into design (shape and topology1), control,
and uncertainty quantification

14  

Better simulation is critical to engine design and calibration optimization 

• Three levels of simulation with different purposes 

‒ Predictive combustion:  combustion optimization and methods development 

‒ Full engine simulation:  engine system optimization and model-based controls 

‒ Full vehicle simulation:  technology interactions, component optimization and supervisory controls 

• Each scale requires different level of fidelity 

‒ High fidelity combustion on vehicle scales computationally impossible (at the moment) 

• Exponential increase in parameter space translates to exponential increase in simulation 
space and computational requirements 

TAKEAWAY:  Need for faster simulation, faster optimization methods, and reduced 
models for on-board controls 

Engine System

EM Launcher Micro-Aerial Vehicle

1Emergence of additive manufacturing technologies has made topology optimization
increasingly relevant, particularly in DOE.
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Topology Optimization and Additive Manufacturing2

Emergence of AM has made TO an
increasingly relevant topic

AM+TO lead to highly efficient designs
that could not be realized previously

Challenges: smooth topologies require
very fine meshes and modeling of
complex manufacturing process

2MIT Technology Review, Top 10 Technological Breakthrough 2013
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PDE-Constrained Optimization I

Goal: Rapidly solve PDE-constrained optimization problem of the form

minimize
u∈Rnu , µ∈Rnµ

J (u, µ)

subject to r(u, µ) = 0

where

r : Rnu × Rnµ → Rnu is the discretized partial differential equation

J : Rnu × Rnµ → R is the objective function

u ∈ Rnu is the PDE state vector

µ ∈ Rnµ is the vector of parameters

red indicates a large-scale quantity, O(mesh)
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Nested Approach to PDE-Constrained Optimization

Virtually all expense emanates from primal/dual PDE solvers

Primal PDE Dual PDE

Optimizer
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Nested Approach to PDE-Constrained Optimization

Virtually all expense emanates from primal/dual PDE solvers

Primal PDE Dual PDE

Optimizer

µ
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Nested Approach to PDE-Constrained Optimization

Virtually all expense emanates from primal/dual PDE solvers

Primal PDE Dual PDE

Optimizer

J (u, µ) µ

u
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Nested Approach to PDE-Constrained Optimization

Virtually all expense emanates from primal/dual PDE solvers

Primal PDE Dual PDE

Optimizer

J (u, µ)

dJ
dµ (u, µ)
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Projection-Based Model Reduction to Reduce PDE Size

Model Order Reduction (MOR) assumption: state vector lies in
low-dimensional subspace

u ≈ Φuur
∂u

∂µ
≈ Φu

∂ur
∂µ

where

Φu =
[
φ1
u · · · φku

u

]
∈ Rnu×ku is the reduced basis

ur ∈ Rku are the reduced coordinates of u
nu � ku

Substitute assumption into High-Dimensional Model (HDM), r(u, µ) = 0,
and project onto test subspace Ψu ∈ Rnu×ku

Ψu
Tr(Φuur, µ) = 0
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Connection to Finite Element Method: Hierarchical Subspaces

S

S - infinite-dimensional trial space

Sh - (large) finite-dimensional trial space

Skh - (small) finite-dimensional trial space

Skh ⊂ Sh ⊂ S
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Few Global, Data-Driven Basis Functions v. Many Local Ones

Instead of using traditional local
shape functions (e.g., FEM), use
global shape functions

Instead of a-priori, analytical
shape functions, leverage data-rich
computing environment by using
data-driven modes
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Definition of Φu: Data-Driven Reduction

State-Sensitivity Proper Orthogonal Decomposition (POD)

Collect state and sensitivity snapshots by sampling HDM

X =
[
u(µ1) u(µ2) · · · u(µn)

]
Y =

[
∂u
∂µ (µ1) ∂u

∂µ (µ2) · · · ∂u
∂µ (µn)

]
Use Proper Orthogonal Decomposition to generate reduced basis for each
individually

ΦX = POD(X)

ΦY = POD(Y )

Concatenate to get reduced-order basis

Φu =
[
ΦX ΦY

]
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Definition of Ψu: Minimum-Residual ROM

Least-Squares Petrov-Galerkin (LSPG)3 projection

Ψu =
∂r

∂u
Φu

Minimum-Residual Property

A ROM possesses the minimum-residual property if Ψur(Φuur, µ) = 0 is
equivalent to the optimality condition of (Θ � 0)

minimize
ur∈Rku

||r(Φuur, µ)||Θ

Implications

Recover exact solution when basis not truncated (consistent3)
Monotonic improvement of solution as basis size increases
Ensures sensitivity information in Φ cannot degrade state approximation4

LSPG possesses minimum-residual property

3[Bui-Thanh et al., 2008]
4[Fahl, 2001]
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Definition of ∂ur
∂µ : Minimum-Residual Reduced Sensitivities

Traditional sensitivity analysis

∂ur
∂µ

=−

 N∑
j=1

rjΦu
T ∂rj
∂u∂u

Φu +

(
∂r

∂u
Φu

)T
∂r

∂u
Φu

−1

 N∑
j=1

rjΦu
T ∂2rj
∂u∂µ

+

(
∂r

∂u
Φu

)T
∂r

∂µ


+ Guaranteed to give rise to exact derivatives of ROM quantities of interest

- Requires 2nd derivatives of r

- Φu
∂ur

∂µ not guaranteed to be good approximate to full sensitivity ∂u
∂µ
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Definition of ∂ur
∂µ : Minimum-Residual Reduced Sensitivities

Minimum-residual sensitivity analysis

∂̂ur
∂µ

= arg min
a
||Φua−

∂u

∂µ
||Θ = −

[(
∂r

∂u
Φu

)T
∂r

∂u
Φu

]−1(
∂r

∂u
Φu

)T
∂r

∂µ

+ Minimum-residual property - Φu
∂̂ur
∂µ

is Θ-optimal solution to
∂u

∂µ
in Φu

+ Does not require 2nd derivatives of r

-
∂̂ur
∂µ
6= ∂ur

∂µ
, i.e., it is not the true ROM sensitivity
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Offline-Online Approach to Optimization
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Numerical Demonstration: Offline-Online Breakdown

Parameter reduction (Φµ)

apriori spatial clustering
kµ = 200

Greedy Training

5000 candidate points (LHS)
50 snapshots
Error indicator: ||r(Φuur, Φµµr||

State reduction (Φu)

POD
ku = 25
Polynomialization acceleration

25

40

Stiffness maximization, volume constraint

Parametrization with kµ = 200
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Numerical Demonstration: Offline-Online Breakdown

Optimal Solution (ROM) Optimal Solution (HDM)

HDM Solution ROB Construction Greedy Algorithm ROM Optimization

2.84× 103 s 5.48× 104 s 1.67× 105 s 30 s

1.26% 24.36% 74.37% 0.01%

HDM Optimization: 1.97× 104 s
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ROM-Based Trust-Region Framework for Optimization
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Non-Quadratic Trust-Region Method with Adaptive Reduced-Order Models

1: Initialization: Build Φu from sparse training

2: Step computation: Approximately solve the reduced optimization problem
with non-quadratic trust-region for a candidate, µ̂k

minimize
ur∈Rku , µ∈Rnµ

J (Φuur, µ) subject to ΨT
ur(Φuur, µ) = 0

||r(Φuur, µ)|| ≤ ∆k

3: Step acceptance: Compute

ρk =
J (u(µk),µk)− J (u(µ̂k), µ̂k)

J (Φuur(µk),µk)− J (Φuur(µ̂k), µ̂k)

if ρk ≥ η0 then µk+1 = µ̂k else µk+1 = µk end if
4: Trust-region update:

if ρk ≤ η1 then ∆k+1 ∈ (0, γ||r(Φuur(µ̂k), µ̂k)||] end if

if ρk ∈ (η1, η2) then ∆k+1 ∈ [γ||r(Φuur(µ̂k), µ̂k)||,∆k] end if

if ρk ≥ η2 then ∆k+1 ∈ [∆k,∆max] end if

5: Model update: Enrich Φu with u(µ̂k) and
∂u

∂µ
(µ̂k)
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Non-Quadratic Trust-Region Method with Adaptive Reduced-Order Models

1: Initialization: Build Φu from sparse training
2: Step computation: Approximately solve the reduced optimization problem

with non-quadratic trust-region for a candidate, µ̂k

minimize
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if ρk ≥ η0 then µk+1 = µ̂k else µk+1 = µk end if
4: Trust-region update:

if ρk ≤ η1 then ∆k+1 ∈ (0, γ||r(Φuur(µ̂k), µ̂k)||] end if

if ρk ∈ (η1, η2) then ∆k+1 ∈ [γ||r(Φuur(µ̂k), µ̂k)||,∆k] end if

if ρk ≥ η2 then ∆k+1 ∈ [∆k,∆max] end if

5: Model update: Enrich Φu with u(µ̂k) and
∂u

∂µ
(µ̂k)
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Non-Quadratic Trust-Region Method with Adaptive Reduced-Order Models

1: Initialization: Build Φu from sparse training
2: Step computation: Approximately solve the reduced optimization problem

with non-quadratic trust-region for a candidate, µ̂k

minimize
ur∈Rku , µ∈Rnµ

J (Φuur, µ) subject to ΨT
ur(Φuur, µ) = 0

||r(Φuur, µ)|| ≤ ∆k

3: Step acceptance: Compute

ρk =
J (u(µk),µk)− J (u(µ̂k), µ̂k)

J (Φuur(µk),µk)− J (Φuur(µ̂k), µ̂k)

if ρk ≥ η0 then µk+1 = µ̂k else µk+1 = µk end if
4: Trust-region update:

if ρk ≤ η1 then ∆k+1 ∈ (0, γ||r(Φuur(µ̂k), µ̂k)||] end if

if ρk ∈ (η1, η2) then ∆k+1 ∈ [γ||r(Φuur(µ̂k), µ̂k)||,∆k] end if

if ρk ≥ η2 then ∆k+1 ∈ [∆k,∆max] end if

5: Model update: Enrich Φu with u(µ̂k) and
∂u

∂µ
(µ̂k)
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Residual-Based Trust-Region Interpretation

Let r̂(µ) = r(Φuur(µ),µ) and Ak =
∂r̂

∂µ
(µk)T

∂r̂

∂µ
(µk) = QkΛ

2
kQ

T
k .

Then, to first order5,

||r̂(µ)||2 = || ∂r̂
∂µ

(µk)(µ− µk)||2 = ||µ− µk||Ak
≤ ∆k

∆k

λ1
q1

∆k

λ2
q2

µk

Annotated schematic of trust-region: qi = Qkei and λi = eTi Λkei

5assuming r̂(µk) = 0, i.e., ROM exact at trust-region center
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Convergence to Critical Point of Unreduced Problem

Lim-Inf Convergence to Critical Point of Unreduced Optimization Problem

Let {µk} be a sequence of iterations produced by the Algorithm and suppose

J (u(µk),µk) = J (Φuur(µk),µk)

There exists ξ > 0 such that

||∇J (u(µk),µk)−∇J (Φuur(µk),µk)|| ≤ ξ||∇J (Φuur(µk),µk)||

There exists ζ > 0 such that for all µ ∈ {µ | ||r(Φuur(µ),µ)|| ≤ ∆k}

|J (u(µ),µ)− J (Φuur(µ),µ)| ≤ ζ||r(Φuur(µ),µ)||.

Then
lim inf
k→∞

||∇J (u(µk), µk)|| = 0
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Assumptions of Convergence Theory Hold

If µk is a training point, then

Minimum-residual formulation for the
primal reduced-order model implies

J (u(µk),µk) = J (Φuur(µk),µk)

Minimum-residual formulation for the
reduced-order model sensitivity implies

∇J (u(µk),µk) = ∇J (Φuur(µk),µk)

Standard residual-based error estimation
implies, for some ζ > 0, µ-space

|J (u(µ),µ)− J (Φuur(µ),µ)| ≤ ζ||r(Φuur(µ),µ)||
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Compressible, Inviscid Airfoil Inverse Design

Pressure discrepancy minimization (Euler equations)

NACA0012: Initial RAE2822: Target

Pressure field for airfoil configurations at M∞ = 0.5, α = 0.0◦
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ROM-Constrained Optimization Solver Recovers Target
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ROM Solver Requires 4× Fewer HDM Queries
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At the Cost of ROM Queries
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Next: Shape Optimization of Full Aircraft (CRM)

ROMs are fast, accurate, and require limited resources

HDM solution (Drag = 142.336kN) ROM solution (Drag = 142.304kN)

HDM: 70× 106 DOF, 2hr on 1024 Intel Xeon E5-2698 v3 cores (2.3GHz)

ROM: 170s on 2 Intel i7 cores (1.8GHz)

Relative error in drag 0.022%

CPU-time speedup greater than 2.15× 104

Wall-time speedup greater than 42

Washabaugh, Zahr, Farhat (AIAA, 2016)
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PDE-Constrained Optimization II

Goal: Rapidly solve PDE-constrained optimization problem of the form

minimize
u∈Rnu , µ∈Rnµ

J (u, µ)

subject to r(u, µ) = 0

c(u, µ) ≥ 0

where

r : Rnu × Rnµ → Rnu is the discretized partial differential equation

J : Rnu × Rnµ → R is the objective function

c : Rnu × Rnµ → Rnc are the side constraints

u ∈ Rnu is the PDE state vector

µ ∈ Rnµ is the vector of parameters
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Problem Setup

25

40

16000 8-node brick elements, 77760 dofs

Total Lagrangian form, finite strain, StVK6

St. Venant-Kirchhoff material

Sparse Cholesky linear solver (CHOLMOD7)

Newton-Raphson nonlinear solver

Minimum compliance optimization problem

minimize
u∈Rnu , µ∈Rnµ

fext
Tu

subject to V (µ) ≤ 1

2
V0

r(u, µ) = 0

Gradient computations: Adjoint method

Optimizer: SNOPT [Gill et al., 2002]

6[Bonet and Wood, 1997, Belytschko et al., 2000]
7[Chen et al., 2008]
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Restrict Parameter Space to Low-Dimensional Subspace

Restrict parameter to a low-dimensional subspace

µ ≈ Φµµr

Φµ =
[
φ1
µ · · · φ

kµ
µ

]
∈ Rnµ×kµ is the reduced basis

µr ∈ Rkµ are the reduced coordinates of µ
nµ � kµ

Substitute restriction into reduced-order model to obtain

Φu
Tr(Φuur, Φµµr) = 0

Related work:
[Maute and Ramm, 1995, Lieberman et al., 2010, Constantine et al., 2014]
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Restrict Parameter Space to Low-Dimensional Subspace

µ-space Background mesh
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Restrict Parameter Space to Low-Dimensional Subspace

µ-space Macroelements
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Optimality Conditions to Adapt Reduced-Order Basis, Φµ

Selection of Φµ amounts to a
restriction of the parameter space

Adaptation of Φµ should attempt
to include the optimal solution in
the restricted parameter space,
i.e. µ∗ ∈ col(Φµ)

Adaptation based on first-order
optimality conditions of HDM
optimization problem
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Optimality Conditions to Adapt Reduced-Order Basis, Φµ

Selection of Φµ amounts to a
restriction of the parameter space

Adaptation of Φµ should attempt
to include the optimal solution in
the restricted parameter space,
i.e. µ∗ ∈ col(Φµ)

Adaptation based on first-order
optimality conditions of HDM
optimization problem
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Optimality Conditions to Adapt Reduced-Order Basis, Φµ

Lagrangian

L(µ, λ) = J (u(µ), µ)− λT c(u(µ), µ)

Karush-Kuhn Tucker (KKT) Conditions8

∇µL(µ, λ) = 0

λ ≥ 0

λici(u(µ), µ) = 0

c(u(µ),µ) ≥ 0

8[Nocedal and Wright, 2006]
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Lagrangian Gradient Refinement Indicator

From Lagrange multiplier estimates, only KKT condition not satisfied
automatically:

∇µL(µ, λ) = 0

Use |∇µL(µ, λ)| as indicator for refinement of discretization of µ-space

µ |∇µL(µ, λ)|
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Constraints may lead to infeasible sub-problems

Non-Quadratic Trust-Region MOR [Zahr and Farhat, 2014]

minimize
ur∈Rku , µr∈Rkµ

J (Φuur, Φµµr)

subject to c(Φuur, Φµµr) ≥ 0

Ψu
Tr(Φuur, Φµµr) = 0

||r(Φuur, Φµµr)|| ≤ ∆
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Constraints may lead to infeasible sub-problems

Non-Quadratic Trust-Region MOR [Zahr and Farhat, 2014]
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J (Φuur, Φµµr)

subject to c(Φuur, Φµµr) ≥ 0
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Constraints may lead to infeasible sub-problems

Non-Quadratic Trust-Region MOR [Zahr and Farhat, 2014]

minimize
ur∈Rku , µr∈Rkµ

J (Φuur, Φµµr)

subject to c(Φuur, Φµµr) ≥ 0

Ψu
Tr(Φuur, Φµµr) = 0

||r(Φuur, Φµµr)|| ≤ ∆
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Elastic constraints to circumvent infeasible subproblems

Constrained Non-Quadratic Trust-Region MOR (CNQTR-MOR)

minimize
ur∈Rku , µr∈Rkµ , t∈Rnc

J (Φuur, Φµµr)− γtT1

subject to c(Φuur, Φµµr) ≥ t

Ψu
Tr(Φuur, Φµµr) = 0

||r(Φuur, Φµµr)|| ≤ ∆

t ≤ 0
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Elastic constraints to circumvent infeasible subproblems
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Elastic constraints to circumvent infeasible subproblems
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Compliance Minimization: 2D Cantilever

25

40

16000 8-node brick elements, 77760 dofs

Total Lagrangian form, finite strain, StVK9

St. Venant-Kirchhoff material

Sparse Cholesky linear solver (CHOLMOD10)

Newton-Raphson nonlinear solver

Minimum compliance optimization problem

minimize
u∈Rnu , µ∈Rnµ

fext
Tu

subject to V (µ) ≤ 1

2
V0

r(u, µ) = 0

Gradient computations: Adjoint method

Optimizer: SNOPT [Gill et al., 2002]

Maximum ROM size: ku ≤ 5

9[Bonet and Wood, 1997, Belytschko et al., 2000]
10[Chen et al., 2008]
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Order of Magnitude Speedup to Suboptimal Solution

HDM CNQTR-MOR + Φµ adaptivity

HDM Solution HDM Gradient HDM Optimization

7458s (450) 4018s (411) 8284s

HDM
Elapsed time = 19761s

HDM Solution HDM Gradient ROB Construction ROM Optimization

1049s (64) 88s (9) 727s (56) 39s (3676)

CNQTR-MOR + Φµ adaptivity
Elapsed time = 2197s, Speedup ≈ 9x
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Better Solution after 64 HDM Evaluations

HDM CNQTR-MOR + Φµ adaptivity

CNQTR-MOR + Φµ adaptivity: superior approximation to optimal
solution than HDM approach after fixed number of HDM solves (64)

Reasonable option to warm-start HDM topology optimization
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Macro-element Evolution

Iteration 0 (1000)
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Macro-element Evolution

Iteration 1 (977)
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CNQTR-MOR + Φµ adaptivity
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Approaching Many-Query, Extreme-Scale Computational Physics

Leveraging Inexactness For Acceleration of Many-Query Multiphysics Problems

Framework introduced for accelerating PDE-constrained
optimization problems with side constraints and
large-dimensional parameter space

Adaptive reduction of state and parameter spaces

Applied to aerodynamic design and topology optimization

Order of magnitude speedup speedup observed
Competitive warm-start method
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An Adaptive Reduction Framework for Optimization under Uncertainty

Highly volatile systems tend to be plagued
by uncertainties, which must be quantified
for meaningful problem formulation

Optimize moments of quantities of interest
of stochastic partial differential equation

minimize
u∈Rnu , µ∈Rnµ

∫
Ξ

J (u, µ; ξ) dξ

subject to r(u, µ; ξ) = 0 ξ ∈ Ξ

Combine adaptive model reduction
framework with dimension-adaptive sparse
grids to enable stochastic optimization

14  

Better simulation is critical to engine design and calibration optimization 

• Three levels of simulation with different purposes 

‒ Predictive combustion:  combustion optimization and methods development 

‒ Full engine simulation:  engine system optimization and model-based controls 

‒ Full vehicle simulation:  technology interactions, component optimization and supervisory controls 

• Each scale requires different level of fidelity 

‒ High fidelity combustion on vehicle scales computationally impossible (at the moment) 

• Exponential increase in parameter space translates to exponential increase in simulation 
space and computational requirements 

TAKEAWAY:  Need for faster simulation, faster optimization methods, and reduced 
models for on-board controls 

Engine System

EM Launcher

Collaborators: Drew Kouri (Sandia NM), Kevin Carlberg (Sandia CA)
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High-Order Methods for Optimization of Conservation Laws

Derived, implemented fully discrete adjoint method for globally high-order
discretization of conservation laws on deforming domains

Incorporation of time-periodicity constraints

Energy = 9.4096e+00
Thrust = 1.7660e-01

Energy = 4.9476e+00
Thrust = 2.5000e+00

Energy = 4.6110e+00
Thrust = 2.5000e+00

Initial Optimal Control
Optimal

Shape/Control

Collaborators: Per-Olof Persson (UCB, LBNL), Jon Wilkening (UCB, LBNL)
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Faster Computational Physics: Adaptive Data-Driven Discretization

proposed domain decomposition procedure will provide “optimal” global modes – at least in representing the
previously available data – that will be used as the global shape functions in ⌦g3. Standard finite element or
discontinuous Galerkin shape functions will comprise the local basis functions and adaptive mesh refinement
will be used to ensure as lean a discretization as possible. The proposed mixture of local and global basis
functions, introduced at the continuous level, leads to a trial space that supports discontinuous solutions
along the interface @⌦g \@⌦l. Lagrange multipliers [12], penalty methods [13], and numerical fluxes [14] will
be considered to ensure a solution with appropriate continuity is computed. Figure 6 provides a motivating
example for this project using a simple heaving airfoil. The vorticity snapshot in Figure 6a shows local,
propagating vortices that will be di�cult to capture with a single global basis. A potential decomposition
of ⌦ into ⌦l (white mesh) and ⌦g = ⌦ \ ⌦l is shown in Figure 6b.

(a) Vorticity around heaving airfoil (b) Potential ⌦l, ⌦g decomposition (c) Idealized sparsity structure

Figure 6: Left : Vorticity around heaving NACA0012 airfoil. Middle: Possible feature-based decomposition of domain into ⌦l

– white triangulation – and ⌦g = ⌦ \ ⌦l. Right : Schematic of sparsity of linear of equations arising from mixed local-global
discretization; blue dot ( ) represents individual non-zero entry and red patches are dense rows/columns.

At this point, a number of critical research tasks emerge. The proposed method – and model reduction
methods in general – would benefit greatly from technology that enhances the utility of global modes –
thereby minimizing the reliance on local shape functions, which rapidly contribute to the dimensionality of
the problem. A severe drawback of global basis functions is they associate features with spatial locations.
This is a powerful result in that it enables a single vector to capture the most complex features, yet limited
in that global vectors cannot e↵ectively “move” features. That is, their ability to capture features in one
location says nothing about their ability to capture the same feature in a di↵erent location. Preliminary
attempts to propagate/transform features in basis functions, based on the concept of Lax pairs [15], have
been introduced. I will consider an approach that implicitly transforms the global basis vectors by applying
a transformation to the underlying mesh – e↵ectively modifying the association of features with fixed spatial
locations. For example, consider a global basis capable of representing a discontinuity at a given spatial
location. A transformation of the underlying spatial domain will modify the location (and possibly shape)
of discontinuity that can be captured.

Another di�culty associated with the proposed approach is the integration of quantities arising in the
variational equation against the global basis functions. In finite element methods, the impact of “variational
crimes” – associated with employing numerical quadrature in place of exact integration – are minimized by
using su�ciently small element sizes or high quadrature orders to ensure accurate integration. The generality
of ⌦g precludes these approaches. To mitigate issues related to variational crimes, I propose the use of an
integration mesh, i.e., a mesh of ⌦g that will be used only to integrate terms in the variational formulation.

3This is equivalent to using proper orthogonal decomposition and the method of snapshots [11] using the previously available
data in ⌦g .

8

Methods to transform features in global basis functions - minimize reliance
on local shape functions

Linear algebra for sparse operators with a few dense rows and columns

Elements of: high-order methods (Mathematics Group), adaptive mesh
refinement (Applied Numerical Algorithms Group and Center for
Computational Science and Engineering), numerical linear algebra
(Scalable Solvers Group)
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Fewer Queries: Second-Order Methods for Accelerated Convergence

Hessian information highly desired in optimization and UQ, but expensive due to
O(Nµ) required linear system solves

Sensitivity/Adjoint Method for Computing Hessian

d2J
dµjdµk

=
∂2J

∂µj∂µk
+

∂2J
∂µj∂u

∂u

∂µk
+

∂u

∂µj

T ∂2J
∂u∂µk

+
∂u

∂µj

T ∂2J
∂u∂u

∂u

∂µk

− ∂J
∂u

∂r

∂u

−1 [ ∂2r

∂µj∂µk
+

∂2r

∂µj∂u

∂u

∂µk
+

∂2r

∂µk∂u

∂u

∂µj
+

∂2r

∂u∂u
:
∂u

∂µj
⊗ ∂u

∂µk

]
where

∂u

∂µj
=

∂r

∂u

−1 ∂r

∂µj

Fast, multiple right-hand side linear solver by building data-driven subspace

for image of
∂r

∂u

−1

,
∂r

∂u

−T

MOR concepts in context of numerical linear algebra (Scalable Solvers
Group)
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Approaching Many-Query, Extreme-Scale Computational Physics

Leveraging Inexactness For Acceleration of Many-Query Multiphysics Problems

Framework introduced for accelerating PDE-constrained
optimization problems with side constraints and
large-dimensional parameter space

Adaptive reduction of state and parameter spaces

Applied to aerodynamic design and topology optimization

Order of magnitude speedup speedup observed
Competitive warm-start method

Future work: combine advantages of MOR/AMR for
drastic computational savings with in-situ training;
second-order methods for rapidly converging many-query
algorithms; new (multiphysics) applications
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Standard Difficulty: Binary Solutions

Relaxed, Penalized Problem Setup

minimize
u∈Rnu , µ∈Rnµ

fext
Tu

subject to V (µ) ≤ 1

2
V0

r(u, µp) = 0

µ ∈ [0, 1]kµ

Effect of Penalization

Ke ← (µe)pKe

Ke : eth element stiffness matrix

(a) Without penalization

(b) With penalization
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Standard Difficulty: Binary Solutions

Implication for ROM

From parameter restriction, µp = (Φµµr)
p

Precomputation relies on separability of Φµ and µr

Separability maintained if (Φµµr)
p = Φµµ

p
r

Sufficient condition: columns of Φµ have non-overlapping non-zeros
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Efficient Evaluation of Nonlinear Terms

Due to the mixing of high-dimensional and low-dimensional terms in the
ROM expression, only limited speedups available

rr(ur, µr) = Φu
T r(Φuur, Φµµr) = 0

To enable pre-computation of all large-dimensional quantities into
low-dimensional ones, leverage Taylor series expansion

[rr(ur, µr)]i = D0
im(µr)m + D1

ijm(ur × µr)jm + D2
ijkm(ur × ur × µr)jkm

+ D3
ijklm(ur × ur × ur × µr)jklm = 0

where

D3
ijklm =

∂3rt
∂up∂uq∂us

(û, φmµ )(φiu × φju × φku × φlu)tpqs

Related work: [Rewienski, 2003, Barrault et al., 2004,
Barbič and James, 2007, Nguyen and Peraire, 2008,
Chaturantabut and Sorensen, 2010, Carlberg et al., 2011]
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Lagrange Multiplier Estimate

Lagrange Multiplier, Constraint Pairs

λ λr τ τr
c(u, µ) ≥ 0 c(Φuur, Φµµ) ≥ 0 Aµ ≥ b Arµr ≥ br

Goal: Given ur, µr, τr ≥ 0, λr ≥ 0, estimate τ̃ ≥ 0, λ̃ ≥ 0 to compute

∇µL(Φµµr, λ̃, τ̃ ) =
∂J
∂µ

(Φuur, Φµµr)−
∂c

∂µ
(Φuur, Φµµr)

T λ̃−AT τ̃

Lagrange Multiplier Estimates

λ̃ = λr

τ̃ = arg min
τ≥0

∣∣∣∣∣∣∣∣AT τ −
(
∂J
∂µ

(Φuur, Φµµr)−
∂c

∂µ
(Φuur, Φµµr)

T λ̃

)∣∣∣∣∣∣∣∣
Non-negative least squares: [Lawson and Hanson, 1974, Chapman et al., 2015]
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Standard Difficulty: Checkerboarding

Gradient Filtering, Nodal Projection

Minimum length scale, rmin

Gradient Filtering11

∂̂J
∂µk

=

∑
j∈Sk

Hkjµi
∂J
∂µi

µk
∑
j∈Sk

Hkj

Nodal Projection

µk =

∑
j∈Sk τ jHjk∑
j∈Sk Hjk

(a) Without projection/filtering

(b) With projection

11Hki = rmin − dist(k, i)
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Standard Difficulty: Checkerboarding

Implication for ROM

Nonlocality introduced through projection/filtering

µe influences volume fraction of all elements within rmin of element/node e

Clashes with requirement on Φµ of columns with non-overlapping non-zeros

Handled heuristically by performing parameter basis adaptation to eliminate
“checkerboard” regions of parameter space, uses concept of rmin

Next: Helmholtz filtering

Gradient of Lagrangian Updated Macroelements
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