Adaptive model reduction to accelerate optimization problems governed by partial differential equations

Matthew J. Zahr

Advisor: Charbel Farhat Computational and Mathematical Engineering Stanford University

PhD Thesis Defense Stanford University, Stanford, CA August 03, 2016

PDE optimization is **ubiquitous** in science and engineering

Design: Find system that optimizes performance metric, satisfies constraints

Aerodynamic shape design of automobile

Optimal flapping motion of micro aerial vehicle

PDE optimization is **ubiquitous** in science and engineering

Control: Drive system to a desired state

Boundary flow control

Metamaterial cloaking – electromagnetic invisibility

PDE optimization – a key player in next-gen problems

Current interest in computational physics reaches far beyond analysis of a single configuration of a physical system into **design** (shape and topology) and control in an uncertain setting

EM Launcher

Engine System

Repeated queries to **high-fidelity simulations** required by optimization and uncertainty quantification may be **prohibitively time-consuming**

Deterministic PDE-constrained optimization formulation

 $\begin{array}{ll} \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & \mathcal{J}(\boldsymbol{u},\,\boldsymbol{\mu}) \\ \text{subject to} & \boldsymbol{r}(\boldsymbol{u};\,\boldsymbol{\mu}) = 0 \end{array}$

- $\boldsymbol{r}: \mathbb{R}^{n_{\boldsymbol{u}}} imes \mathbb{R}^{n_{\boldsymbol{\mu}}} o \mathbb{R}^{n_{\boldsymbol{u}}}$
- $\mathcal{J}: \mathbb{R}^{n_u} \times \mathbb{R}^{n_\mu} \to \mathbb{R}$
- $\boldsymbol{u} \in \mathbb{R}^{n_{\boldsymbol{u}}}$
- $\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}$

discretized PDE quantity of interest PDE state vector optimization parameters

Virtually all expense emanates from primal/dual PDE solves

Optimizer

Primal PDE

Dual PDE

Applications in computational mechanics: static

Maximum lift-to-drag airfoil configuration

Stochastic PDE-constrained optimization formulation

 $\begin{array}{ll} \underset{\mu \in \mathbb{R}^{n_{\mu}}}{\text{minimize}} & \mathbb{E}[\mathcal{J}(\boldsymbol{u}, \, \boldsymbol{\mu}, \, \cdot \,)]\\ & \text{subject to} & \boldsymbol{r}(\boldsymbol{u}; \, \boldsymbol{\mu}, \, \boldsymbol{\xi}) = 0 \quad \forall \boldsymbol{\xi} \in \boldsymbol{\Xi} \end{array}$ $\bullet \ \boldsymbol{r} : \mathbb{R}^{n_{\boldsymbol{u}}} \times \mathbb{R}^{n_{\boldsymbol{\mu}}} \times \mathbb{R}^{n_{\boldsymbol{\xi}}} \to \mathbb{R}^{n_{\boldsymbol{u}}} \qquad \text{discretized stochastic PDE} \\ \bullet \ \mathcal{J} : \mathbb{R}^{n_{\boldsymbol{u}}} \times \mathbb{R}^{n_{\boldsymbol{\mu}}} \times \mathbb{R}^{n_{\boldsymbol{\xi}}} \to \mathbb{R} \qquad \qquad \text{quantity of interest} \end{array}$

- $\mathcal{J}: \mathbb{R}^{n_u} \times \mathbb{R}^{n_\mu} \times \mathbb{R}^{n_{\boldsymbol{\xi}}} \to \mathbb{R}$ • $\boldsymbol{u} \in \mathbb{R}^{n_u}$
- $\mu \in \mathbb{R}^{n_{\mu}}$ (deterministic
- $\pmb{\xi} \in \mathbb{R}^{n_{\pmb{\xi}}}$

•
$$\mathbb{E}[\mathcal{F}] \equiv \int_{\Xi} \mathcal{F}(\boldsymbol{\xi}) \rho(\boldsymbol{\xi}) d\boldsymbol{\xi}$$

(deterministic) optimization parameters stochastic parameters

PDE state vector

Each function evaluation requires integration over stochastic space - expensive

Ensemble of primal/dual PDE solves increases cost by orders of magnitude

 $\mathbf{Optimizer}$

Replace expensive PDE with inexpensive approximation model

- Reduced-order models used for inexact PDE evaluations
- Partially converged solutions used for *inexact PDE evaluations*
- Anisotropic sparse grids used for *inexact integration* of risk measures

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad F(\boldsymbol{\mu}) \quad \longrightarrow \quad \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad m_k(\boldsymbol{\mu})$$

 $^{^1\}mathrm{Must}$ be computable and apply to general, nonlinear PDEs

Replace expensive PDE with inexpensive approximation model

- Reduced-order models used for inexact PDE evaluations
- Partially converged solutions used for inexact PDE evaluations
- Anisotropic sparse grids used for *inexact integration* of risk measures

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad F(\boldsymbol{\mu}) \quad \longrightarrow \quad \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad m_k(\boldsymbol{\mu})$$

Manage inexactness with trust region method

- Embedded in globally convergent **trust region** method
- Error indicators¹ to account for *all* sources of inexactness
- Refinement of approximation model using greedy algorithms

$$\begin{array}{ccc} \underset{\boldsymbol{\mu}\in\mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & F(\boldsymbol{\mu}) & \longrightarrow & \begin{array}{c} \underset{\boldsymbol{\mu}\in\mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & m_{k}(\boldsymbol{\mu}) \\ \\ \text{subject to} & ||\boldsymbol{\mu}-\boldsymbol{\mu}_{k}|| \leq \Delta_{k} \end{array}$$

 $^1\mathrm{Must}$ be computable and apply to general, nonlinear PDEs

Replace expensive PDE with inexpensive approximation model

- Reduced-order models used for inexact PDE evaluations
- Partially converged solutions used for inexact PDE evaluations
- Anisotropic sparse grids used for *inexact integration* of risk measures

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad F(\boldsymbol{\mu}) \quad \longrightarrow \quad \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad m_k(\boldsymbol{\mu})$$

Manage inexactness with trust region method

- Embedded in globally convergent **trust region** method
- Error indicators¹ to account for *all* sources of inexactness
- Refinement of approximation model using greedy algorithms

$$\begin{array}{ccc} \underset{\boldsymbol{\mu}\in\mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & F(\boldsymbol{\mu}) & \longrightarrow & & \underset{\boldsymbol{\mu}\in\mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & m_{k}(\boldsymbol{\mu}) \\ & \text{subject to} & ||\boldsymbol{\mu}-\boldsymbol{\mu}_{k}|| \leq \Delta_{k} \end{array}$$

 $^1\mathrm{Must}$ be computable and apply to general, nonlinear PDEs

Relationship between the objective function and model

• First-order consistency [Alexandrov et al., 1998]

$$m_k(\boldsymbol{\mu}_k) = F(\boldsymbol{\mu}_k) \qquad \nabla m_k(\boldsymbol{\mu}_k) = \nabla F(\boldsymbol{\mu}_k)$$

• The Carter condition [Carter, 1989, Carter, 1991]

$$||\nabla F(\boldsymbol{\mu}_k) - \nabla m_k(\boldsymbol{\mu}_k)|| \le \eta ||\nabla m_k(\boldsymbol{\mu}_k)|| \qquad \eta \in (0, 1)$$

• Asymptotic gradient bound [Heinkenschloss and Vicente, 2002]

$$||\nabla F(\boldsymbol{\mu}_k) - \nabla m_k(\boldsymbol{\mu}_k)|| \le \xi \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\} \qquad \xi > 0$$

Asymptotic gradient bound permits the use of an error indicator: φ_k

$$\begin{aligned} ||\nabla F(\boldsymbol{\mu}) - \nabla m_k(\boldsymbol{\mu})|| &\leq \xi \varphi_k(\boldsymbol{\mu}) \qquad \xi > 0\\ \varphi_k(\boldsymbol{\mu}_k) &\leq \kappa_{\varphi} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\} \end{aligned}$$

Trust region method with inexact gradients [Kouri et al., 2013]

1: Model update: Choose model m_k and error indicator φ_k

$$\varphi_k(\boldsymbol{\mu}_k) \leq \kappa_{\varphi} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\}$$

2: Step computation: Approximately solve the trust region subproblem

$$\hat{\boldsymbol{\mu}}_k = \operatorname*{arg\,min}_{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}} m_k(\boldsymbol{\mu}) \text{ subject to } ||\boldsymbol{\mu} - \boldsymbol{\mu}_k|| \leq \Delta_k$$

3: Step acceptance: Compute actual-to-predicted reduction

$$\rho_k = \frac{F(\boldsymbol{\mu}_k) - F(\hat{\boldsymbol{\mu}}_k)}{m_k(\boldsymbol{\mu}_k) - m_k(\hat{\boldsymbol{\mu}}_k)}$$

if $\rho_k \ge \eta_1$ then $\mu_{k+1} = \hat{\mu}_k$ else $\mu_{k+1} = \mu_k$ end if 4: Trust region update:

 $\text{if} \qquad \rho_k \leq \eta_1 \qquad \qquad \text{then} \qquad \Delta_{k+1} \in (0, \gamma \, || \hat{\boldsymbol{\mu}}_k - \boldsymbol{\mu}_k ||] \qquad \quad \text{end if} \\$

$$\begin{array}{lll} \text{if} & \rho_k \in (\eta_1, \eta_2) & \text{then} & \Delta_{k+1} \in [\gamma || \hat{\boldsymbol{\mu}}_k - \boldsymbol{\mu}_k ||, \Delta_k] & \text{end if} \\ \text{if} & \rho_k \geq \eta_2 & \text{then} & \Delta_{k+1} \in [\Delta_k, \Delta_{\max}] & \text{end if} \end{array}$$

Trust region method with inexact gradients [Kouri et al., 2013]

1: Model update: Choose model m_k and error indicator φ_k

$$\varphi_k(\boldsymbol{\mu}_k) \leq \kappa_{\varphi} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\}$$

2: Step computation: Approximately solve the trust region subproblem

$$\hat{\mu}_k = \operatorname*{arg\,min}_{\mu \in \mathbb{R}^{n_{\mu}}} m_k(\mu) \text{ subject to } ||\mu - \mu_k|| \leq \Delta_k$$

3: Step acceptance: Compute actual-to-predicted reduction

$$p_k = rac{F(oldsymbol{\mu}_k) - F(\hat{oldsymbol{\mu}}_k)}{m_k(oldsymbol{\mu}_k) - m_k(\hat{oldsymbol{\mu}}_k)}$$

if $\rho_k \ge \eta_1$ then $\mu_{k+1} = \hat{\mu}_k$ else $\mu_{k+1} = \mu_k$ end if 4: Trust region update:

 $ho_k \leq \eta_1 \hspace{1cm} ext{then} \hspace{1cm} \Delta_{k+1} \in (0,\gamma \, || \hat{oldsymbol{\mu}}_k - oldsymbol{\mu}_k ||] \hspace{1cm} ext{end if}$

$$\begin{array}{lll} \mathbf{if} & \rho_k \in (\eta_1, \eta_2) & \quad \mathbf{then} & \Delta_{k+1} \in \left[\gamma \left| \left| \hat{\boldsymbol{\mu}}_k - \boldsymbol{\mu}_k \right| \right|, \Delta_k \right] & \quad \mathbf{end} \ \mathbf{if} \\ \mathbf{if} & \rho_k \geq \eta_2 & \quad \mathbf{then} & \Delta_{k+1} \in \left[\Delta_k, \Delta_{\max}\right] & \quad \mathbf{end} \ \mathbf{if} \end{array}$$

if

Trust region method with inexact gradients and objective

1: Model update: Choose model m_k and error indicator φ_k

1

$$\vartheta_k(\boldsymbol{\mu}_k) \le \kappa_{\vartheta} \Delta_k \qquad \varphi_k(\boldsymbol{\mu}_k) \le \kappa_{\varphi} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\}$$

2: Step computation: Approximately solve the trust region subproblem

$$\hat{\mu}_k = rgmin_{oldsymbol{\mu}\in\mathbb{R}^{n_{oldsymbol{\mu}}}} m_k(oldsymbol{\mu}) \ ext{ subject to } \ artheta_k(oldsymbol{\mu}) \leq \Delta_k$$

3: Step acceptance: Compute approximation of actual-to-predicted reduction

$$p_k = rac{\psi_k(oldsymbol{\mu}_k) - \psi_k(\hat{oldsymbol{\mu}}_k)}{m_k(oldsymbol{\mu}_k) - m_k(\hat{oldsymbol{\mu}}_k)}$$

if $\rho_k \ge \eta_1$ then $\mu_{k+1} = \hat{\mu}_k$ else $\mu_{k+1} = \mu_k$ end if 4: Trust region update:

- $\text{if} \qquad \rho_k \leq \eta_1 \qquad \qquad \text{then} \qquad \Delta_{k+1} \in (0, \gamma \vartheta_k(\hat{\boldsymbol{\mu}}_k)] \qquad \quad \text{end if} \qquad \qquad$
- $\begin{array}{lll} \text{if} & \rho_k \in (\eta_1, \eta_2) & \quad \text{then} & \Delta_{k+1} \in [\gamma \vartheta_k(\hat{\boldsymbol{\mu}}_k), \Delta_k] & \quad \text{end if} \\ \text{if} & \rho_k \geq \eta_2 & \quad \text{then} & \Delta_{k+1} \in [\Delta_k, \Delta_{\max}] & \quad \text{end if} \end{array}$

Asymptotic accuracy requirements on approximation model [Zahr, 2016]

$$\begin{aligned} |F(\boldsymbol{\mu}_k) - F(\boldsymbol{\mu}) + m_k(\boldsymbol{\mu}) - m_k(\boldsymbol{\mu}_k)| &\leq \zeta \vartheta_k(\boldsymbol{\mu}) \qquad \zeta > 0\\ \vartheta_k(\boldsymbol{\mu}_k) &\leq \kappa_\vartheta \Delta_k \qquad \kappa_\vartheta \in (0, 1) \end{aligned}$$

Asymptotic accuracy requirements on inexact objective evaluations [Kouri et al., 2014]

$$\begin{aligned} |F(\boldsymbol{\mu}_k) - F(\boldsymbol{\mu}) + \psi_k(\boldsymbol{\mu}) - \psi_k(\boldsymbol{\mu}_k)| &\leq \sigma \theta_k(\boldsymbol{\mu}) \qquad \sigma > 0 \\ \theta_k(\hat{\boldsymbol{\mu}}_k)^{\omega} &\leq \eta \min\{m_k(\boldsymbol{\mu}_k) - m_k(\hat{\boldsymbol{\mu}}_k), r_k\} \\ \omega, \eta \in (0, 1), r_k \to 0 \end{aligned}$$

Trust region ingredients for global convergence

Approximation models

 $m_k(\boldsymbol{\mu}), \, \psi_k(\boldsymbol{\mu})$

Error indicators

$$|F(\boldsymbol{\mu}_k) - F(\boldsymbol{\mu}) + m_k(\boldsymbol{\mu}) - m_k(\boldsymbol{\mu}_k)| \le \zeta \vartheta_k(\boldsymbol{\mu}) \qquad \zeta > 0$$

$$||\nabla F(\boldsymbol{\mu}) - \nabla m_k(\boldsymbol{\mu})|| \le \xi \varphi_k(\boldsymbol{\mu}) \qquad \xi > 0$$

$$|F(\boldsymbol{\mu}_k) - F(\boldsymbol{\mu}) + \psi_k(\boldsymbol{\mu}) - \psi_k(\boldsymbol{\mu}_k)| \le \sigma \theta_k(\boldsymbol{\mu}) \qquad \sigma > 0$$

Adaptivity

$$\begin{split} \vartheta_k(\boldsymbol{\mu}_k) &\leq \kappa_{\vartheta} \Delta_k \\ \varphi_k(\boldsymbol{\mu}_k) &\leq \kappa_{\varphi} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\} \\ \theta_k(\hat{\boldsymbol{\mu}}_k)^{\omega} &\leq \eta \min\{m_k(\boldsymbol{\mu}_k) - m_k(\hat{\boldsymbol{\mu}}_k), r_k\} \end{split}$$

Global convergence

$$\liminf_{k\to\infty} ||\nabla F(\boldsymbol{\mu}_k)|| = 0$$

Replace expensive PDE with inexpensive approximation model

- Reduced-order models used for inexact PDE evaluations
- Partially converged solutions used for inexact PDE evaluations
- Anisotropic sparse grids used for *inexact integration* of risk measures

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad F(\boldsymbol{\mu}) \qquad \longrightarrow \qquad \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad m_k(\boldsymbol{\mu})$$

Manage inexactness with trust region method

- Embedded in globally convergent **trust region** method
- Error indicators to account for *all* sources of inexactness
- Refinement of approximation model using greedy algorithms

minir

$$\underset{\mu}{\text{ hize }} F(\boldsymbol{\mu}) \longrightarrow \begin{array}{c} \mininitize & m_k(\boldsymbol{\mu}) \\ \mu \in \mathbb{R}^{n_{\boldsymbol{\mu}}} & \text{ subject to } & ||\boldsymbol{\mu} - \boldsymbol{\mu}_k|| \leq \end{array}$$

 Δ_k

• Model reduction ansatz: state vector lies in low-dimensional subspace

$$oldsymbol{u}pprox oldsymbol{\Phi}oldsymbol{u}_r$$

- $\Phi = \begin{bmatrix} \phi^1 & \cdots & \phi^{k_u} \end{bmatrix} \in \mathbb{R}^{n_u \times k_u}$ is the reduced (trial) basis $(n_u \gg k_u)$ • $u_r \in \mathbb{R}^{k_u}$ are the reduced coordinates of u
- Substitute into $r(u, \mu) = 0$ and project onto columnspace of a test basis $\Psi \in \mathbb{R}^{n_u \times k_u}$ to obtain a square system

$$\boldsymbol{\Psi}^T \boldsymbol{r} (\boldsymbol{\Phi} \boldsymbol{u}_r, \, \boldsymbol{\mu}) = 0$$

Connection to finite element method: hierarchical subspaces

${\mathcal S}$

 $\bullet~\mathcal{S}$ - infinite-dimensional trial space

Connection to finite element method: hierarchical subspaces

\mathcal{S}

- $\bullet~\mathcal{S}$ infinite-dimensional trial space
- S_h (large) finite-dimensional trial space

Connection to finite element method: hierarchical subspaces

\mathcal{S}

- $\bullet~\mathcal{S}$ infinite-dimensional trial space
- S_h (large) finite-dimensional trial space
- \mathcal{S}_h^k (small) finite-dimensional trial space

Few global, data-driven basis functions v. many local ones

- Instead of using traditional *local* shape functions, use **global shape functions**
- Instead of a-priori, analytical shape functions, leverage data-rich computing environment by using data-driven modes

Definition of Ψ : minimum-residual reduced-order models

A ROM possesses the **minimum-residual property** if $\Psi^T r(\Phi u_r, \mu) = 0$ is equivalent to the optimality condition of

$$\min_{\boldsymbol{u}_r \in \mathbb{R}^{k_{\boldsymbol{u}}}} \quad ||\boldsymbol{r}(\boldsymbol{\Phi}\boldsymbol{u}_r,\,\boldsymbol{\mu})||_{\boldsymbol{\Theta}} \qquad \boldsymbol{\Theta} \succ 0$$

which requires

$$\Psi(oldsymbol{u},\,oldsymbol{\mu})=oldsymbol{\Theta}rac{\partialoldsymbol{r}}{\partialoldsymbol{u}}(oldsymbol{u},\,oldsymbol{\mu})oldsymbol{\Phi}$$

Definition of Ψ : minimum-residual reduced-order models

A ROM possesses the **minimum-residual property** if $\Psi^T r(\Phi u_r, \mu) = 0$ is equivalent to the optimality condition of

$$\min_{\boldsymbol{u}_r \in \mathbb{R}^{k_{\boldsymbol{u}}}} \quad ||\boldsymbol{r}(\boldsymbol{\Phi}\boldsymbol{u}_r,\,\boldsymbol{\mu})||_{\boldsymbol{\Theta}} \qquad \boldsymbol{\Theta} \succ 0$$

which requires

$$oldsymbol{\Psi}(oldsymbol{u},\,oldsymbol{\mu})=oldsymbol{\Theta}rac{\partialoldsymbol{r}}{\partialoldsymbol{u}}(oldsymbol{u},\,oldsymbol{\mu})oldsymbol{\Phi}$$

Implications of the minimum-residual property

• ("Optimality") For any
$$\boldsymbol{u}\in\operatorname{col}(\boldsymbol{\Phi}),$$

$$||oldsymbol{r}(oldsymbol{\Phi}oldsymbol{u}_r,\,oldsymbol{\mu})||_{oldsymbol{\Theta}} \leq ||oldsymbol{r}(oldsymbol{u},\,oldsymbol{\mu})||_{oldsymbol{\Theta}}$$

• (Monotonicity) For any $\operatorname{col}(\Phi') \subseteq \operatorname{col}(\Phi)$,

$$||oldsymbol{r}(oldsymbol{\Phi}oldsymbol{u}_r,\,oldsymbol{\mu})||_{oldsymbol{\Theta}} \leq ||oldsymbol{r}(oldsymbol{\Phi}'oldsymbol{u}_r',\,oldsymbol{\mu})||_{oldsymbol{\Theta}}$$

• (Interpolation) If $u(\mu) \in \operatorname{col}(\Phi)$, then

 $\boldsymbol{r}(\boldsymbol{\Phi}\boldsymbol{u}_r,\,\boldsymbol{\mu})=0 \qquad ext{and} \qquad \boldsymbol{u}(\boldsymbol{\mu})=\boldsymbol{\Phi}\boldsymbol{u}_r$

Definition of $\frac{\partial u_r}{\partial \mu}$: minimum-residual reduced sensitivities

Traditional sensitivity analysis $(\boldsymbol{\Theta} = \boldsymbol{I})$

$$egin{aligned} rac{\partial oldsymbol{u}_r}{\partial oldsymbol{\mu}} = & -\left[\sum_{j=1}^{n_oldsymbol{u}}oldsymbol{r}_j rac{\partial^2 oldsymbol{r}_j}{\partial oldsymbol{u} \partial oldsymbol{u}} \Phi + \left(rac{\partial oldsymbol{r}}{\partial oldsymbol{u}} \Phi
ight)^T rac{\partial oldsymbol{r}}{\partial oldsymbol{u}} \Phi
ight]^{-1} \ & \left(\sum_{j=1}^{n_oldsymbol{u}}oldsymbol{r}_j \Phi^T rac{\partial^2 oldsymbol{r}_j}{\partial oldsymbol{u} \partial oldsymbol{\mu}} + \left(rac{\partial oldsymbol{r}}{\partial oldsymbol{u}} \Phi
ight)^T rac{\partial oldsymbol{r}}{\partial oldsymbol{\mu}} \\ & \left(\sum_{j=1}^{n_oldsymbol{u}}oldsymbol{r}_j \Phi^T rac{\partial^2 oldsymbol{r}_j}{\partial oldsymbol{u} \partial oldsymbol{\mu}} + \left(rac{\partial oldsymbol{r}}{\partial oldsymbol{u}} \Phi
ight)^T rac{\partial oldsymbol{r}}{\partial oldsymbol{\mu}} \end{aligned}$$

- $+\,$ Guaranteed to produce exact derivatives of ROM quantities of interest
- Requires 2nd derivatives of \boldsymbol{r}
- $\Phi \frac{\partial u_r}{\partial \mu}$ not guaranteed to be good approximate of $\frac{\partial u}{\partial \mu}$

Definition of $\frac{\partial u_r}{\partial \mu}$: minimum-residual reduced sensitivities

Minimum-residual sensitivity analysis

$$\frac{\widehat{\partial u_r}}{\partial \mu} = \arg\min_{\boldsymbol{a}} \left\| \left| \boldsymbol{\Phi}^{\partial} \boldsymbol{a} - \frac{\partial \boldsymbol{u}}{\partial \mu} \right| \right|_{\boldsymbol{\Theta}^{\partial}} = -\left[\left(\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \boldsymbol{\Phi}^{\partial} \right)^T \boldsymbol{\Theta}^{\partial} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \boldsymbol{\Phi}^{\partial} \right]^{-1} \left(\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \boldsymbol{\Phi}^{\partial} \right)^T \boldsymbol{\Theta}^{\partial} \frac{\partial \boldsymbol{r}}{\partial \mu}$$

- + Does not require 2nd derivatives of \boldsymbol{r}

$$-\frac{\partial u_r}{\partial \mu} \neq \frac{\partial u_r}{\partial \mu}$$
, i.e., it is not the exact sensitivity²

²These quantities agree if $\Phi^{\partial} = \Phi$ and either Ψ is constant or the primal ROM is exact [Zahr, 2016]
Hyperreduction to reduce complexity of nonlinear terms

Despite reduced dimensionality, $\mathcal{O}(n_u)$ operations are required to evaluate

$$oldsymbol{\Psi}^Toldsymbol{r}(oldsymbol{\Phi}oldsymbol{u}_r,oldsymbol{\mu}) = oldsymbol{\Psi}^Trac{\partialoldsymbol{r}}{\partialoldsymbol{u}}(oldsymbol{\Phi}oldsymbol{u}_r,oldsymbol{\mu})oldsymbol{\Phi}$$

Solution: only perform minimization over a subset of the spatial domain

$$\min_{oldsymbol{u}_r \in \mathbb{R}^{k_{oldsymbol{u}}}} \ \|oldsymbol{r}(oldsymbol{\Phi}oldsymbol{u}_r,oldsymbol{\mu})\|_{oldsymbol{\Theta}} \ \Longrightarrow \ \min_{oldsymbol{u}_r \in \mathbb{R}^{k_{oldsymbol{u}}}} \ \left|ildsymbol{P}^Toldsymbol{r}(oldsymbol{\Phi}oldsymbol{u}_r,oldsymbol{\mu})ildsymbol{\|}_{oldsymbol{\Theta}} \$$

and **hyperreduced** model³ is independent of n_u

Sample mesh for CRM (left) and Passat (right) [Washabaugh, 2016]

 $^{^3\}mathrm{Masked}$ minimum-residual property and weaker definitions of optimality, monotonicity, and interpolation hold

Trust region ingredients for global convergence

Approximation models

 $m_k(\boldsymbol{\mu}), \psi_k(\boldsymbol{\mu})$

Error indicators

$$|F(\boldsymbol{\mu}_k) - F(\boldsymbol{\mu}) + m_k(\boldsymbol{\mu}) - m_k(\boldsymbol{\mu}_k)| \le \zeta \vartheta_k(\boldsymbol{\mu}) \qquad \zeta > 0$$

$$||\nabla F(\boldsymbol{\mu}) - \nabla m_k(\boldsymbol{\mu})|| \le \xi \varphi_k(\boldsymbol{\mu}) \qquad \xi > 0$$

$$|F(\boldsymbol{\mu}_k) - F(\boldsymbol{\mu}) + \psi_k(\boldsymbol{\mu}) - \psi_k(\boldsymbol{\mu}_k)| \le \sigma \theta_k(\boldsymbol{\mu}) \qquad \sigma > 0$$

Adaptivity

$$\begin{split} \vartheta_k(\boldsymbol{\mu}_k) &\leq \kappa_{\vartheta} \Delta_k \\ \varphi_k(\boldsymbol{\mu}_k) &\leq \kappa_{\varphi} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\} \\ \theta_k(\hat{\boldsymbol{\mu}}_k)^{\omega} &\leq \eta \min\{m_k(\boldsymbol{\mu}_k) - m_k(\hat{\boldsymbol{\mu}}_k), r_k\} \end{split}$$

Global convergence

$$\liminf_{k\to\infty} ||\nabla F(\boldsymbol{\mu}_k)|| = 0$$

Trust region method: ROM approximation model

Approximation models based on reduced-order models

$$m_k(\boldsymbol{\mu}) = \mathcal{J}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu}) \qquad \psi_k(\boldsymbol{\mu}) = \mathcal{J}(\boldsymbol{u}(\boldsymbol{\mu}), \, \boldsymbol{\mu})$$

Error indicators from residual-based error bounds

$$\begin{aligned} \vartheta_k(\boldsymbol{\mu}) &= ||\boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}_k), \, \boldsymbol{\mu}_k)||_{\boldsymbol{\Theta}} + ||\boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})||_{\boldsymbol{\Theta}} \\ \varphi_k(\boldsymbol{\mu}) &= ||\boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})||_{\boldsymbol{\Theta}} + \left|\left|\boldsymbol{r}^{\boldsymbol{\lambda}}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\Psi}_k \boldsymbol{\lambda}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})\right|\right|_{\boldsymbol{\Theta}^{\boldsymbol{\lambda}}} \\ \theta_k(\boldsymbol{\mu}) &= 0 \end{aligned}$$

Adaptivity to refine basis at trust region center

$$\begin{split} \boldsymbol{\Phi}_{k} &= \begin{bmatrix} \boldsymbol{u}(\boldsymbol{\mu}_{k}) & \boldsymbol{\lambda}(\boldsymbol{\mu}_{k}) & \text{POD}(\boldsymbol{U}_{k}) & \text{POD}(\boldsymbol{V}_{k}) \end{bmatrix} \\ \boldsymbol{U}_{k} &= \begin{bmatrix} \boldsymbol{u}(\boldsymbol{\mu}_{0}) & \cdots & \boldsymbol{u}(\boldsymbol{\mu}_{k-1}) \end{bmatrix} & \boldsymbol{V}_{k} &= \begin{bmatrix} \boldsymbol{\lambda}(\boldsymbol{\mu}_{0}) & \cdots & \boldsymbol{\lambda}(\boldsymbol{\mu}_{k-1}) \end{bmatrix} \\ & \text{Interpolation property} \implies \vartheta_{k}(\boldsymbol{\mu}_{k}) &= \varphi_{k}(\boldsymbol{\mu}_{k}) = 0 \end{split}$$

Trust region method: ROM approximation model

Approximation models based on reduced-order models

$$m_k(\boldsymbol{\mu}) = \mathcal{J}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}),\, \boldsymbol{\mu}) \qquad \psi_k(\boldsymbol{\mu}) = \mathcal{J}(\boldsymbol{u}(\boldsymbol{\mu}),\, \boldsymbol{\mu})$$

Error indicators from residual-based error bounds

$$\begin{aligned} \vartheta_k(\boldsymbol{\mu}) &= ||\boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}_k), \, \boldsymbol{\mu}_k)||_{\boldsymbol{\Theta}} + ||\boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})||_{\boldsymbol{\Theta}} \\ \varphi_k(\boldsymbol{\mu}) &= ||\boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})||_{\boldsymbol{\Theta}} + \left|\left|\boldsymbol{r}^{\boldsymbol{\lambda}}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\Psi}_k \boldsymbol{\lambda}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})\right|\right|_{\boldsymbol{\Theta}^{\boldsymbol{\lambda}}} \\ \theta_k(\boldsymbol{\mu}) &= 0 \end{aligned}$$

Adaptivity to refine basis at trust region center

$$\begin{split} \boldsymbol{\Phi}_k &= \begin{bmatrix} \boldsymbol{u}(\boldsymbol{\mu}_k) & \boldsymbol{\lambda}(\boldsymbol{\mu}_k) & \texttt{POD}(\boldsymbol{U}_k) & \texttt{POD}(\boldsymbol{V}_k) \end{bmatrix} \\ \boldsymbol{U}_k &= \begin{bmatrix} \boldsymbol{u}(\boldsymbol{\mu}_0) & \cdots & \boldsymbol{u}(\boldsymbol{\mu}_{k-1}) \end{bmatrix} \quad \boldsymbol{V}_k &= \begin{bmatrix} \boldsymbol{\lambda}(\boldsymbol{\mu}_0) & \cdots & \boldsymbol{\lambda}(\boldsymbol{\mu}_{k-1}) \end{bmatrix} \end{split}$$

Interpolation property $\implies \vartheta_k(\boldsymbol{\mu}_k) = \varphi_k(\boldsymbol{\mu}_k) = 0$

$$\liminf_{k \to \infty} ||\nabla \mathcal{J}(\boldsymbol{u}(\boldsymbol{\mu}_k), \, \boldsymbol{\mu}_k)|| = 0$$

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

- Reduced-order models used for inexact PDE evaluations
- Partially converged solutions used for *inexact PDE evaluations*
- Anisotropic sparse grids used for *inexact integration* of risk measures

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad F(\boldsymbol{\mu}) \qquad \longrightarrow \qquad \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad m_k(\boldsymbol{\mu})$$

Manage inexactness with trust region method

- Embedded in globally convergent **trust region** method
- Error indicators to account for *all* sources of inexactness
- Refinement of approximation model using greedy algorithms

 $\min_{\mu \in \mathbb{R}}$

$$\begin{array}{ccc} \underset{\mu \in \mathbb{R}^{n_{\mu}}}{\text{minimize}} & F(\mu) & \longrightarrow & \underset{\mu \in \mathbb{R}^{n_{\mu}}}{\text{minimize}} & m_k(\mu) \\ & \text{subject to} & ||\mu - \mu_k|| \leq \Delta_k \end{array}$$

A $\tau\text{-partially converged primal solution }\boldsymbol{u}^{\tau}(\boldsymbol{\mu})$ is any \boldsymbol{u} satisfying

 $||\boldsymbol{r}(\boldsymbol{u},\,\boldsymbol{\mu})||_{\boldsymbol{\Theta}} \leq \tau$

A τ_1 - τ_2 -partially converged adjoint solution $\lambda^{\tau_1, \tau_2}(\mu)$ is any λ satisfying

 $\left|\left| \boldsymbol{r}^{\boldsymbol{\lambda}}(\boldsymbol{u}^{ au_{1}}(\boldsymbol{\mu}),\,\boldsymbol{\lambda},\,\boldsymbol{\mu}) \right|\right|_{\boldsymbol{\Theta}^{\boldsymbol{\lambda}}} \leq au_{2}$

Trust region method: ROM/PCS approximation model

Approximation models based on ROMs and partially converged solutions

$$m_k({oldsymbol \mu}) = \mathcal{J}({oldsymbol \Phi}_k {oldsymbol u}_r({oldsymbol \mu}),\,{oldsymbol \mu}) \qquad \psi_k({oldsymbol \mu}) = \mathcal{J}({oldsymbol u}^{ au_k}({oldsymbol \mu}),\,{oldsymbol \mu})$$

Error indicators from residual-based error bounds

$$\begin{split} \vartheta_k(\boldsymbol{\mu}) &= ||\boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}_k), \, \boldsymbol{\mu}_k)||_{\boldsymbol{\Theta}} + ||\boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})||_{\boldsymbol{\Theta}} \\ \varphi_k(\boldsymbol{\mu}) &= ||\boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})||_{\boldsymbol{\Theta}} + \left|\left|\boldsymbol{r}^{\boldsymbol{\lambda}}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\Psi}_k \boldsymbol{\lambda}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})\right|\right|_{\boldsymbol{\Theta}^{\boldsymbol{\lambda}}} \\ \theta_k(\boldsymbol{\mu}) &= ||\boldsymbol{r}(\boldsymbol{u}^{\tau_k}(\boldsymbol{\mu}_k), \, \boldsymbol{\mu}_k)||_{\boldsymbol{\Theta}} + ||\boldsymbol{r}(\boldsymbol{u}^{\tau_k}(\boldsymbol{\mu}), \, \boldsymbol{\mu})||_{\boldsymbol{\Theta}} \end{split}$$

Adaptivity to refine basis at trust region center

$$\begin{split} \mathbf{\Phi}_k &= \begin{bmatrix} \boldsymbol{u}^{\alpha_k}(\boldsymbol{\mu}_k) & \boldsymbol{\lambda}^{\alpha_k,\,\beta_k}(\boldsymbol{\mu}_k) & \text{POD}(\boldsymbol{U}_k) & \text{POD}(\boldsymbol{V}_k) \end{bmatrix} \\ \boldsymbol{U}_k &= \begin{bmatrix} \boldsymbol{u}^{\alpha_0}(\boldsymbol{\mu}_0) & \cdots & \boldsymbol{u}^{\alpha_{k-1}}(\boldsymbol{\mu}_{k-1}) \end{bmatrix} \quad \boldsymbol{V}_k &= \begin{bmatrix} \boldsymbol{\lambda}^{\alpha_0,\,\beta_0}(\boldsymbol{\mu}_0) & \cdots & \boldsymbol{\lambda}^{\alpha_{k-1},\,\beta_{k-1}}(\boldsymbol{\mu}_{k-1}) \end{bmatrix} \end{split}$$

and α_k , β_k , τ_k selected such that

$$\vartheta_k(\boldsymbol{\mu}_k) \leq \kappa_{\vartheta} \Delta_k \qquad \varphi_k(\boldsymbol{\mu}_k) \leq \kappa_{\varphi} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\} \\ \theta_k^{\omega}(\hat{\boldsymbol{\mu}}_k) \leq \eta \min\{m_k(\boldsymbol{\mu}_k) - m_k(\hat{\boldsymbol{\mu}}_k), r_k\}$$

Trust region method: ROM/PCS approximation model

Approximation models based on ROMs and partially converged solutions

$$m_k({oldsymbol \mu}) = \mathcal{J}({oldsymbol \Phi}_k {oldsymbol u}_r({oldsymbol \mu}),\,{oldsymbol \mu}) \qquad \psi_k({oldsymbol \mu}) = \mathcal{J}({oldsymbol u}^{ au_k}({oldsymbol \mu}),\,{oldsymbol \mu})$$

Error indicators from residual-based error bounds

$$\begin{split} \vartheta_k(\boldsymbol{\mu}) &= ||\boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}_k), \, \boldsymbol{\mu}_k)||_{\boldsymbol{\Theta}} + ||\boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})||_{\boldsymbol{\Theta}} \\ \varphi_k(\boldsymbol{\mu}) &= ||\boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})||_{\boldsymbol{\Theta}} + \left|\left|\boldsymbol{r}^{\boldsymbol{\lambda}}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\Psi}_k \boldsymbol{\lambda}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})\right|\right|_{\boldsymbol{\Theta}^{\boldsymbol{\lambda}}} \\ \theta_k(\boldsymbol{\mu}) &= ||\boldsymbol{r}(\boldsymbol{u}^{\tau_k}(\boldsymbol{\mu}_k), \, \boldsymbol{\mu}_k)||_{\boldsymbol{\Theta}} + ||\boldsymbol{r}(\boldsymbol{u}^{\tau_k}(\boldsymbol{\mu}), \, \boldsymbol{\mu})||_{\boldsymbol{\Theta}} \end{split}$$

Adaptivity to refine basis at trust region center

 $\Phi_{k} = \begin{bmatrix} \boldsymbol{u}^{\alpha_{k}}(\boldsymbol{\mu}_{k}) & \boldsymbol{\lambda}^{\alpha_{k},\beta_{k}}(\boldsymbol{\mu}_{k}) & \text{POD}(\boldsymbol{U}_{k}) & \text{POD}(\boldsymbol{V}_{k}) \end{bmatrix}$ $\boldsymbol{U}_{k} = \begin{bmatrix} \boldsymbol{u}^{\alpha_{0}}(\boldsymbol{\mu}_{0}) & \cdots & \boldsymbol{u}^{\alpha_{k-1}}(\boldsymbol{\mu}_{k-1}) \end{bmatrix} \quad \boldsymbol{V}_{k} = \begin{bmatrix} \boldsymbol{\lambda}^{\alpha_{0},\beta_{0}}(\boldsymbol{\mu}_{0}) & \cdots & \boldsymbol{\lambda}^{\alpha_{k-1},\beta_{k-1}}(\boldsymbol{\mu}_{k-1}) \end{bmatrix}$

and $\alpha_k, \beta_k, \tau_k$ selected such that

$$\begin{aligned} \vartheta_k(\boldsymbol{\mu}_k) &\leq \kappa_{\vartheta} \Delta_k \qquad \varphi_k(\boldsymbol{\mu}_k) \leq \kappa_{\varphi} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\} \\ \theta_k^{\omega}(\hat{\boldsymbol{\mu}}_k) &\leq \eta \min\{m_k(\boldsymbol{\mu}_k) - m_k(\hat{\boldsymbol{\mu}}_k), r_k\} \end{aligned}$$

 $\liminf_{k\to\infty} ||\nabla \mathcal{J}(\boldsymbol{u}(\boldsymbol{\mu}_k),\,\boldsymbol{\mu}_k)|| = 0$

Compressible, inviscid airfoil design

Pressure discrepancy minimization (Euler equations)

NACA0012: Initial

RAE2822: Target

Pressure field for airfoil configurations at $M_{\infty} = 0.5$, $\alpha = 0.0^{\circ}$

Proposed method: $4 \times$ fewer HDM queries

$$\begin{array}{ll} \underset{\boldsymbol{\mu} \in \mathbb{R}^4}{\text{minimize}} & -L_z(\boldsymbol{\mu})/L_x(\boldsymbol{\mu}) \\ \text{subject to} & L_z(\boldsymbol{\mu}) - \bar{L} \end{array}$$

- Flow: M = 0.85 $\alpha = 2.32^{\circ}$ $Re = 5 \times 10^{6}$
- Equations: RANS with Spalart-Allmaras
- Solver: Vertex-centered finite volume method
- Mesh: 11.5M nodes, 68M tetra, 69M DOF

$$\boldsymbol{\mu} = \begin{bmatrix} \mathbf{L} & r_x & \phi & r_z \end{bmatrix}$$

Wingspan

$$\begin{array}{ll} \underset{\boldsymbol{\mu} \in \mathbb{R}^4}{\text{minimize}} & -L_z(\boldsymbol{\mu})/L_x(\boldsymbol{\mu}) \\ \text{subject to} & L_z(\boldsymbol{\mu}) = \bar{L}_z \end{array}$$

- Flow: M = 0.85 $\alpha = 2.32^{\circ}$ $Re = 5 \times 10^{6}$
- Equations: RANS with Spalart-Allmaras
- Solver: Vertex-centered finite volume method
- \bullet Mesh: 11.5M nodes, 68M tetra, 69M DOF

$$\boldsymbol{\mu} = \begin{bmatrix} L & \mathbf{r}_{\mathbf{x}} & \phi & r_z \end{bmatrix}$$

Localized sweep

$$\begin{array}{ll} \underset{\boldsymbol{\mu} \in \mathbb{R}^4}{\text{minimize}} & -L_z(\boldsymbol{\mu})/L_x(\boldsymbol{\mu}) \\ \text{subject to} & L_z(\boldsymbol{\mu}) = \bar{L}_z \end{array}$$

- Flow: M = 0.85 $\alpha = 2.32^{\circ}$ $Re = 5 \times 10^{6}$
- Equations: RANS with Spalart-Allmaras
- Solver: Vertex-centered finite volume method
- \bullet Mesh: 11.5M nodes, 68M tetra, 69M DOF

$$\boldsymbol{\mu} = \begin{bmatrix} L & r_x & \boldsymbol{\phi} & r_z \end{bmatrix}$$

Twist

$$\begin{array}{ll} \underset{\boldsymbol{\mu} \in \mathbb{R}^4}{\text{minimize}} & -L_z(\boldsymbol{\mu})/L_x(\boldsymbol{\mu}) \\ \text{subject to} & L_z(\boldsymbol{\mu}) = \bar{L}_z \end{array}$$

- Flow: M = 0.85 $\alpha = 2.32^{\circ}$ $Re = 5 \times 10^{6}$
- Equations: RANS with Spalart-Allmaras
- Solver: Vertex-centered finite volume method
- \bullet Mesh: 11.5M nodes, 68M tetra, 69M DOF

$$\boldsymbol{\mu} = \begin{bmatrix} L & r_x & \phi & \mathbf{r_z} \end{bmatrix}$$

Localized dihedral

Optimized shape: reduction in 2.2 drag counts

Baseline (left) and optimized (right) shape – colored by C_p

Optimized shape: reduction in 2.2 drag counts

Baseline (gray) and optimized shape (red) $- 2 \times$ magnification

Proposed method: 2x reduction in number of HDM queries

Proposed method: 1.6x reduction in overall cost

Sample mesh has 0.6% the nodes of the full mesh

The sample mesh at an intermediate iteration with **72k nodes** (vs. the full mesh with **11.5M nodes**)

Stochastic PDE-constrained optimization formulation

$$\begin{array}{ll} \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & \mathbb{E}[\mathcal{J}(\boldsymbol{u},\,\boldsymbol{\mu},\,\cdot\,)]\\ \text{subject to} & \boldsymbol{r}(\boldsymbol{u};\,\boldsymbol{\mu},\,\boldsymbol{\xi}) = 0 \quad \forall \boldsymbol{\xi} \in \boldsymbol{\Xi} \end{array}$$

•
$$\boldsymbol{r}: \mathbb{R}^{n_{\boldsymbol{u}}} imes \mathbb{R}^{n_{\boldsymbol{\mu}}} imes \mathbb{R}^{n_{\boldsymbol{\xi}}}
ightarrow \mathbb{R}^{n_{\boldsymbol{u}}}$$

- $\mathcal{J}: \mathbb{R}^{n_u} \times \mathbb{R}^{n_\mu} \times \mathbb{R}^{n_\xi} \to \mathbb{R}$
- $\boldsymbol{u} \in \mathbb{R}^{n_{\boldsymbol{u}}}$
- $\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}$
- $\boldsymbol{\xi} \in \mathbb{R}^{n_{\boldsymbol{\xi}}}$
- $\mathbb{E}[\mathcal{F}] \equiv \int_{\Xi} \mathcal{F}(\boldsymbol{\xi}) \rho(\boldsymbol{\xi}) d\boldsymbol{\xi}$

discretized stochastic PDE quantity of interest PDE state vector (deterministic) optimization parameters stochastic parameters

 $\begin{array}{ll} \underset{\boldsymbol{u} \in \mathbb{R}^{n_{\boldsymbol{u}}}, \ \boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & \mathbb{E}[\mathcal{J}(\boldsymbol{u}, \ \boldsymbol{\mu}, \ \cdot)] \\ \text{subject to} & \boldsymbol{r}(\boldsymbol{u}, \ \boldsymbol{\mu}, \ \boldsymbol{\xi}) = 0 \quad \forall \boldsymbol{\xi} \in \boldsymbol{\Xi} \end{array}$

 \Downarrow

$$\begin{array}{ll} \underset{\boldsymbol{u} \in \mathbb{R}^{n_{\boldsymbol{u}}}, \ \boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & \mathbb{E}_{\mathcal{I}}[\mathcal{J}(\boldsymbol{u}, \ \boldsymbol{\mu}, \cdot)] \\ \text{subject to} & \boldsymbol{r}(\boldsymbol{u}, \ \boldsymbol{\mu}, \ \boldsymbol{\xi}) = 0 & \forall \boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathcal{I}} \end{array}$$

[Kouri et al., 2013, Kouri et al., 2014]

Second source of inexactness: reduced-order models

Stochastic collocation of the reduced-order model over anisotropic sparse grid nodes used to approximate integral with cheap summation

 $\begin{array}{l} \underset{\boldsymbol{u}_r \in \mathbb{R}^{k_{\boldsymbol{u}}}, \ \boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} \quad \mathbb{E}_{\mathcal{I}}[\mathcal{J}(\boldsymbol{\Phi}\boldsymbol{u}_r, \ \boldsymbol{\mu}, \ \cdot)] \\ \text{subject to} \quad \boldsymbol{\Psi}^T \boldsymbol{r}(\boldsymbol{\Phi}\boldsymbol{u}_r, \ \boldsymbol{\mu}, \ \boldsymbol{\xi}) = 0 \quad \forall \boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathcal{I}} \end{array}$

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

- Reduced-order models used for *inexact PDE evaluations*
- Partially converged solutions used for *inexact PDE evaluations*
- Anisotropic sparse grids used for *inexact integration* of risk measures

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad F(\boldsymbol{\mu}) \quad \longrightarrow \quad \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad m_k(\boldsymbol{\mu})$$

Manage inexactness with trust region method

- Embedded in globally convergent **trust region** method
- Error indicators to account for *all* sources of inexactness
- Refinement of approximation model using greedy algorithms

 $\min_{\mu \in \mathbb{R}}$

$$\begin{array}{ccc} \underset{n}{\operatorname{mize}} & F(\boldsymbol{\mu}) & \longrightarrow & \begin{array}{c} \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} & m_k(\boldsymbol{\mu}) \\ & \underset{\boldsymbol{\nu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{subject to}} & ||\boldsymbol{\mu} - \boldsymbol{\mu}_k|| \leq \end{array}$$

 Δ_k

Source of inexactness: anisotropic sparse grids

Source of inexactness: anisotropic sparse grids

Trust region method: ROM/SG approximation model

Approximation models built on two sources of inexactness

$$m_k(\boldsymbol{\mu}) = \mathbb{E}_{\mathcal{I}_k} \left[\mathcal{J}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}, \cdot), \, \boldsymbol{\mu}, \cdot) \right] \\ \psi_k(\boldsymbol{\mu}) = \mathbb{E}_{\mathcal{I}'_k} \left[\mathcal{J}(\boldsymbol{\Phi}'_k \boldsymbol{u}_r(\boldsymbol{\mu}, \cdot), \, \boldsymbol{\mu}, \cdot) \right]$$

Error indicators that account for both sources of error

$$\begin{split} \vartheta_k(\boldsymbol{\mu}) &= ||\boldsymbol{\mu} - \boldsymbol{\mu}_k||\\ \varphi_k(\boldsymbol{\mu}) &= \alpha_1 \boldsymbol{\mathcal{E}}_1(\boldsymbol{\mu}; \, \mathcal{I}_k, \, \boldsymbol{\Phi}_k) + \alpha_2 \boldsymbol{\mathcal{E}}_2(\boldsymbol{\mu}; \, \mathcal{I}_k, \, \boldsymbol{\Phi}_k) + \alpha_3 \boldsymbol{\mathcal{E}}_4(\boldsymbol{\mu}; \, \mathcal{I}_k, \, \boldsymbol{\Phi}_k)\\ \theta_k(\boldsymbol{\mu}) &= \beta_1(\boldsymbol{\mathcal{E}}_1(\boldsymbol{\mu}; \, \mathcal{I}'_k, \, \boldsymbol{\Phi}'_k) + \boldsymbol{\mathcal{E}}_1(\boldsymbol{\mu}_k; \, \mathcal{I}'_k, \, \boldsymbol{\Phi}'_k)) + \beta_2(\boldsymbol{\mathcal{E}}_3(\boldsymbol{\mu}; \, \mathcal{I}'_k, \, \boldsymbol{\Phi}'_k) + \boldsymbol{\mathcal{E}}_3(\boldsymbol{\mu}_k; \, \mathcal{I}'_k, \, \boldsymbol{\Phi}'_k)) \end{split}$$

Reduced-order model errors

$$\begin{split} & \boldsymbol{\mathcal{E}}_{1}(\boldsymbol{\mu}; \mathcal{I}, \, \boldsymbol{\Phi}) = \mathbb{E}_{\mathcal{I} \cup \mathcal{N}(\mathcal{I})} \left[|| \boldsymbol{r}(\boldsymbol{\Phi} \boldsymbol{u}_{r}(\boldsymbol{\mu}, \cdot), \, \boldsymbol{\mu}, \, \cdot)|| \right] \\ & \boldsymbol{\mathcal{E}}_{2}(\boldsymbol{\mu}; \, \mathcal{I}, \, \boldsymbol{\Phi}) = \mathbb{E}_{\mathcal{I} \cup \mathcal{N}(\mathcal{I})} \left[\left| \left| \boldsymbol{r}^{\boldsymbol{\lambda}}(\boldsymbol{\Phi} \boldsymbol{u}_{r}(\boldsymbol{\mu}, \, \cdot), \, \boldsymbol{\Psi} \boldsymbol{\lambda}_{r}(\boldsymbol{\mu}, \, \cdot), \, \boldsymbol{\mu}, \, \cdot \, \right) \right| \right] \end{split}$$

Sparse grid truncation errors

$$egin{aligned} \mathcal{E}_3(oldsymbol{\mu};\mathcal{I},oldsymbol{\Phi}) &= \mathbb{E}_{\mathcal{N}(\mathcal{I})} \left[|\mathcal{J}(oldsymbol{\Phi}oldsymbol{u}_r(oldsymbol{\mu},\,\cdot),\,oldsymbol{\mu},\,\cdot)|
ight] \ \mathcal{E}_4(oldsymbol{\mu};\mathcal{I},oldsymbol{\Phi}) &= \mathbb{E}_{\mathcal{N}(\mathcal{I})} \left[||
abla \mathcal{J}(oldsymbol{\Phi}oldsymbol{u}_r(oldsymbol{\mu},\,\cdot),\,oldsymbol{\mu},\,\cdot)||
ight] \end{aligned}$$

Final requirement for convergence: Adaptivity

With the approximation model, $m_k(\boldsymbol{\mu})$, and gradient error indicator, $\varphi_k(\boldsymbol{\mu})$

$$m_k(\boldsymbol{\mu}) = \mathbb{E}_{\mathcal{I}_k} \left[\mathcal{J}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}, \cdot), \boldsymbol{\mu}, \cdot) \right] \varphi_k(\boldsymbol{\mu}) = \alpha_1 \frac{\boldsymbol{\mathcal{E}}_1}{\boldsymbol{\mathcal{E}}_1}(\boldsymbol{\mu}; \mathcal{I}_k, \boldsymbol{\Phi}_k) + \alpha_2 \frac{\boldsymbol{\mathcal{E}}_2}{\boldsymbol{\mathcal{E}}_2}(\boldsymbol{\mu}; \mathcal{I}_k, \boldsymbol{\Phi}_k) + \alpha_3 \frac{\boldsymbol{\mathcal{E}}_4}{\boldsymbol{\mathcal{E}}_4}(\boldsymbol{\mu}; \mathcal{I}_k, \boldsymbol{\Phi}_k) \right]$$

the sparse grid \mathcal{I}_k and reduced-order basis Φ_k must be constructed such that the gradient condition holds

$$\varphi_k(\boldsymbol{\mu}_k) \le \kappa_{\varphi} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\}$$

Define dimension-adaptive greedy method to target each source of error such that the stronger conditions hold

$$\begin{split} & \boldsymbol{\mathcal{E}}_{1}(\boldsymbol{\mu}_{k}; \boldsymbol{\mathcal{I}}, \boldsymbol{\Phi}) \leq \frac{\kappa_{\varphi}}{3\alpha_{1}} \min\{||\nabla m_{k}(\boldsymbol{\mu}_{k})||, \Delta_{k}\} \\ & \boldsymbol{\mathcal{E}}_{2}(\boldsymbol{\mu}_{k}; \boldsymbol{\mathcal{I}}, \boldsymbol{\Phi}) \leq \frac{\kappa_{\varphi}}{3\alpha_{2}} \min\{||\nabla m_{k}(\boldsymbol{\mu}_{k})||, \Delta_{k}\} \\ & \boldsymbol{\mathcal{E}}_{4}(\boldsymbol{\mu}_{k}; \boldsymbol{\mathcal{I}}, \boldsymbol{\Phi}) \leq \frac{\kappa_{\varphi}}{3\alpha_{3}} \min\{||\nabla m_{k}(\boldsymbol{\mu}_{k})||, \Delta_{k}\} \end{split}$$

Adaptivity: Dimension-adaptive greedy method

while
$$\mathcal{E}_4(\Phi, \mathcal{I}, \mu_k) > \frac{\kappa_{\varphi}}{3\alpha_3} \min\{||\nabla m_k(\mu_k)||, \Delta_k\}$$
 do

<u>Refine index set</u>: Dimension-adaptive sparse grids

$$\mathcal{I}_k \leftarrow \mathcal{I}_k \cup \{\mathbf{j}^*\} \qquad ext{where} \qquad \mathbf{j}^* = rg\max_{\mathbf{j} \in \mathcal{N}(\mathcal{I}_k)} \mathbb{E}_{\mathbf{j}}\left[||
abla \mathcal{J}(\mathbf{\Phi} oldsymbol{u}_r(oldsymbol{\mu},\,\cdot\,),\,oldsymbol{\mu},\,\cdot\,)||
ight]$$

Adaptivity: Dimension-adaptive greedy method

while
$$\mathcal{E}_4(\Phi, \mathcal{I}, \mu_k) > \frac{\kappa_{\varphi}}{3\alpha_3} \min\{||\nabla m_k(\mu_k)||, \Delta_k\}$$
 do

<u>Refine index set</u>: Dimension-adaptive sparse grids

$$\mathcal{I}_k \leftarrow \mathcal{I}_k \cup \{\mathbf{j}^*\} \quad ext{ where } \quad \mathbf{j}^* = rg\max_{\mathbf{j} \in \mathcal{N}(\mathcal{I}_k)} \mathbb{E}_{\mathbf{j}} \left[||
abla \mathcal{J}(\mathbf{\Phi} oldsymbol{u}_r(oldsymbol{\mu}, \cdot), oldsymbol{\mu}, \cdot)||
ight]$$

<u>Refine reduced-order basis</u>: Greedy sampling while $\mathcal{E}_1(\Phi, \mathcal{I}, \mu_k) > \frac{\kappa_{\varphi}}{3\alpha_1} \min\{||\nabla m_k(\mu_k)||, \Delta_k\}$ do

$$egin{aligned} & oldsymbol{\Phi}_k \leftarrow iggl[oldsymbol{\Phi}_k & oldsymbol{u}(oldsymbol{\mu}_k,oldsymbol{\xi}^*) & \lambda(oldsymbol{\mu}_k,oldsymbol{\xi}^*) iggr] \ & oldsymbol{\xi}^* = rgmax_{oldsymbol{\xi}\in oldsymbol{\Xi}_{\mathbf{j}^*}}
ho(oldsymbol{\xi}) \left||oldsymbol{r}(oldsymbol{\Phi}_koldsymbol{u}_r(oldsymbol{\mu}_k,oldsymbol{\xi}),oldsymbol{\mu}_k,oldsymbol{\xi})
ight| \end{aligned}$$

end while

Adaptivity: Dimension-adaptive greedy method

while
$$\mathcal{E}_4(\Phi, \mathcal{I}, \mu_k) > \frac{\kappa_{\varphi}}{3\alpha_3} \min\{||\nabla m_k(\mu_k)||, \Delta_k\}$$
 do

<u>Refine index set</u>: Dimension-adaptive sparse grids

$$\mathcal{I}_k \leftarrow \mathcal{I}_k \cup \{\mathbf{j}^*\} \qquad ext{where} \qquad \mathbf{j}^* = rg\max_{\mathbf{j} \in \mathcal{N}(\mathcal{I}_k)} \mathbb{E}_{\mathbf{j}} \left[||
abla \mathcal{J}(\mathbf{\Phi} oldsymbol{u}_r(oldsymbol{\mu},\,\cdot\,),\,oldsymbol{\mu},\,\cdot\,)||
ight]$$

<u>Refine reduced-order basis</u>: Greedy sampling while $\mathcal{E}_1(\Phi, \mathcal{I}, \mu_k) > \frac{\kappa_{\varphi}}{3\alpha_1} \min\{||\nabla m_k(\mu_k)||, \Delta_k\}$ do

$$egin{aligned} \Phi_k &\leftarrow iggl[\Phi_k \quad oldsymbol{u}(oldsymbol{\mu}_k,oldsymbol{\xi}^*) \quad oldsymbol{\lambda}(oldsymbol{\mu}_k,oldsymbol{\xi}^*) iggr] \ oldsymbol{\xi}^* &= rgmax_{oldsymbol{\xi}\inoldsymbol{\Xi}_{\mathbf{j}^*}}
ho(oldsymbol{\xi}) \,||oldsymbol{r}(\Phi_koldsymbol{u}_r(oldsymbol{\mu}_k,oldsymbol{\xi}),oldsymbol{\mu}_k,oldsymbol{\xi})| \ oldsymbol{k}(oldsymbol{x},oldsymbol{\xi}),oldsymbol{\mu}_k,oldsymbol{\xi})| \ oldsymbol{k}(oldsymbol{x},oldsymbol{\xi}),oldsymbol{\mu}_k,oldsymbol{\xi})| \ oldsymbol{k}(oldsymbol{x},oldsymbol{\xi}),oldsymbol{\mu}_k,oldsymbol{\xi})| \ oldsymbol{k}(oldsymbol{x},oldsymbol{k},oldsymbol{\xi}),oldsymbol{\mu}_k,oldsymbol{\xi})| \ oldsymbol{k}(oldsymbol{x},oldsymbol{k},oldsymbol{k}),oldsymbol{k}(oldsymbol{k},oldsymbol{k},oldsymbol{k})| \ oldsymbol{k}(oldsymbol{k},oldsymbol{k},oldsymbol{k})| \ oldsymbol{k}(oldsymbol{k},oldsymbol{k},oldsymbol{k})| \ oldsymbol{k}(oldsymbol{k},oldsymbol{k},oldsymbol{k})| \ oldsymbol{k}(oldsymbol{k},oldsymbol{k},oldsymbol{k})| \ oldsymbol{k}(oldsymbol{k},oldsymbol{k},oldsymbol{k})| \ oldsymbol{k}(oldsymbol{k},oldsymbol{k},oldsymbol{k},oldsymbol{k})| \ oldsymbol{k}(oldsymbol{k},oldsymbol$$

end while

while
$$\mathcal{E}_{2}(\Phi, \mathcal{I}, \mu_{k}) > \frac{\kappa_{\varphi}}{3\alpha_{2}} \min\{||\nabla m_{k}(\mu_{k})||, \Delta_{k}\} \operatorname{do}$$

$$egin{aligned} egin{aligned} \Phi_k &\leftarrow iggl[\Phi_k & oldsymbol{u}(oldsymbol{\mu}_k,oldsymbol{\xi}^*) & oldsymbol{\lambda}(oldsymbol{\mu}_k,oldsymbol{\xi}^*) iggr] \\ oldsymbol{\xi}^* &= rgmax_{oldsymbol{\xi}\in oldsymbol{\Xi}_{\mathbf{j}^*}}
ho(oldsymbol{\xi}) \left| \left| oldsymbol{r}^{oldsymbol{\lambda}}(\Phi_koldsymbol{u}_r(oldsymbol{\mu}_k,oldsymbol{\xi}), oldsymbol{\Psi}_koldsymbol{\lambda}_r(oldsymbol{\mu}_k,oldsymbol{\xi}), oldsymbol{\mu}_k,oldsymbol{\xi})
ight| \Big| oldsymbol{r}^{oldsymbol{\lambda}}(\Phi_koldsymbol{u}_r(oldsymbol{\mu}_k,oldsymbol{\mu}_k,oldsymbol{\xi}), oldsymbol{\mu}_koldsymbol{\lambda}_r(oldsymbol{\mu}_k,oldsymbol{\xi}), oldsymbol{\mu}_koldsymbol{\lambda}_r(oldsymbol{\mu}_k,oldsymbol{\xi})
ight| \Big| oldsymbol{r}^{oldsymbol{r}}(\Phi_koldsymbol{u}_r(oldsymbol{\mu}_k,oldsymbol{\mu}_k,oldsymbol{\xi}), oldsymbol{\Psi}_koldsymbol{\lambda}_r(oldsymbol{\mu}_k,oldsymbol{\xi})
ight| \Big| oldsymbol{r}^{oldsymbol{\lambda}}(\Phi_koldsymbol{r}, oldsymbol{\mu}_k,oldsymbol{\mu}_k,oldsymbol{\mu}_k,oldsy$$

end while

end while

Anisotropic sparse grid quadrature: neighbors

Optimal control of steady Burgers' equation

• Optimization problem:

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} \quad \int_{\boldsymbol{\Xi}} \rho(\boldsymbol{\xi}) \left[\int_{0}^{1} \frac{1}{2} (u(\boldsymbol{\mu}, \boldsymbol{\xi}, \, x) - \bar{u}(x))^2 \, dx + \frac{\alpha}{2} \int_{0}^{1} z(\boldsymbol{\mu}, \, x)^2 \, dx \right] d\boldsymbol{\xi}$$

where $u(\boldsymbol{\mu}, \boldsymbol{\xi}, x)$ solves

$$\begin{aligned} -\nu(\boldsymbol{\xi})\partial_{xx}u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,x) + u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,x)\partial_{x}u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,x) &= z(\boldsymbol{\mu},\,x) \quad x \in (0,\,1), \quad \boldsymbol{\xi} \in \boldsymbol{\Xi} \\ u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,0) &= d_0(\boldsymbol{\xi}) \quad u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,1) = d_1(\boldsymbol{\xi}) \end{aligned}$$

• Target state:
$$\bar{u}(x) \equiv 1$$

• Stochastic Space: $\boldsymbol{\Xi} = [-1, 1]^3, \, \rho(\boldsymbol{\xi}) d\boldsymbol{\xi} = 2^{-3} d\boldsymbol{\xi}$

$$\nu(\boldsymbol{\xi}) = 10^{\boldsymbol{\xi}_1 - 2} \qquad d_0(\boldsymbol{\xi}) = 1 + \frac{\boldsymbol{\xi}_2}{1000} \qquad d_1(\boldsymbol{\xi}) = \frac{\boldsymbol{\xi}_3}{1000}$$

• Parametrization: $z(\mu, x)$ – cubic splines with 51 knots, $n_{\mu} = 53$

Optimal control and statistics

Optimal control and corresponding mean state (---) \pm one (---) and two (----) standard deviations

$F(\boldsymbol{\mu}_k)$	$m_k(oldsymbol{\mu}_k)$	$F(\hat{\boldsymbol{\mu}}_k)$	$m_k(\hat{oldsymbol{\mu}}_k)$	$ \nabla F(\boldsymbol{\mu}_k) $	$ ho_k$	Success?
6.6506e-02	7.2694e-02	5.3655e-02	5.9922e-02	2.2959e-02	1.0257e + 00	1.0000e+00
5.3655e-02	5.9593e-02	5.0783e-02	5.7152e-02	2.3424e-03	9.7512e-01	1.0000e+00
5.0783e-02	5.0670e-02	5.0412e-02	5.0292e-02	1.9724e-03	9.8351e-01	1.0000e+00
5.0412e-02	5.0292e-02	5.0405e-02	5.0284 e-02	9.2654e-05	8.7479e-01	1.0000e+00
5.0405e-02	5.0404e-02	5.0403e-02	5.0401e-02	8.3139e-05	9.9946e-01	1.0000e+00
5.0403e-02	5.0401e-02	-	-	2.2846e-06	-	-

Convergence history of trust region method built on two-level approximation
Significant reduction in cost, even if (largest) ROM only $10 \times$ faster than HDM

 $Cost = nHdmPrim + 0.5 \times nHdmAdj + \tau^{-1} \times (nRomPrim + 0.5 \times nRomAdj)$

b-level isotropic SG (----), dimension-adaptive SG [Kouri et al., 2014] (----), and proposed ROM/SG for $\tau = 1$ (----), $\tau = 10$ (----), $\tau = 100$ (----), $\tau = \infty$ (----)

- Framework introduced for accelerating **deterministic** and **stochastic** PDE-constrained optimization problems
 - $\bullet\,$ Adaptive model reduction
 - Partially converged primal and adjoint solutions
 - $\bullet\,$ Dimension-adaptive sparse grids
- Inexactness managed with flexible trust region method
- Applied to variety of problems in computational mechanics and outperforms state-of-the-art methods
 - $1.6\times$ speedup on (deterministic) shape design of aircraft
 - $100\times$ speedup on (stochastic) optimal control of 1D flow

Extension to problems with many parameters

- Topology optimization⁴ and inverse problems
- Nested reduction of state and parameter
- Multifidelity trust region method to globalize **state** reduction
- Linesearch/subspace method to globalize **parameter** reduction

⁴Increasingly relevant due to emergence of Additive Manufacturing – *MIT Technology Review*, Top 10 Technological Breakthrough 2013

u*

Extension to multiscale problems

- Existing multiscale methods are extremely expensive
 - Single simulation: 203 hours (≈ 8.5 days), 41760 cores [Knap et. al., 2016]
 - Not amenable to optimization (many-query)
- Hyperreduced models at each scale [Zahr et al., 2016a] embedded in trust region optimization framework to *design microstructure* to achieve *macroscale objectives*

Hyperreduced model for macroscale (left) and microstructure (right)

Acknowledgments

- Funding: DOE CSGF, Boeing
- Advisor: Charbel Farhat
- Practicum mentor: Per-Olof Persson
- Committee: Michael Saunder, Walter Murray, Louis Durlofsky
- **FRG**: Kyle Washabaugh, Alex Main, Todd Chapman, Raunak Borker, Kevin Carlberg, Philip Avery, Grace Fontanilla, Tatiana Wilson
- Family: Theresa Yates, Mom and Dad, Grandma and Grandpa, Bob and Emily, Uncle Jack, Aunt Nini and Allie, Yates Family

- Framework introduced for accelerating **deterministic** and **stochastic** PDE-constrained optimization problems
 - $\bullet\,$ Adaptive model reduction
 - Partially converged primal and adjoint solutions
 - $\bullet\,$ Dimension-adaptive sparse grids
- Inexactness managed with flexible trust region method
- Applied to variety of problems in computational mechanics and outperforms state-of-the-art methods
 - $1.6\times$ speedup on (deterministic) shape design of aircraft
 - $100\times$ speedup on (stochastic) optimal control of 1D flow

References I

Alexandrov, N. M., Dennis Jr, J. E., Lewis, R. M., and Torczon, V. (1998).

A trust-region framework for managing the use of approximation models in optimization. Structural Optimization, 15(1):16–23.

Carter, R. G. (1989).

Numerical optimization in hilbert space using inexact function and gradient evaluations.

Carter, R. G. (1991).

On the global convergence of trust region algorithms using inexact gradient information. SIAM Journal on Numerical Analysis, 28(1):251–265.

Gerstner, T. and Griebel, M. (2003).

Dimension-adaptive tensor-product quadrature. Computing, 71(1):65-87.

Heinkenschloss, M. and Vicente, L. N. (2002). Analysis of inexact trust-region sqp algorithms. *SIAM Journal on Optimization*, 12(2):283–302.

Kouri, D. P., Heinkenschloss, M., Ridzal, D., and van Bloemen Waanders, B. G. (2013). A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty.

SIAM Journal on Scientific Computing, 35(4):A1847–A1879.

References II

Kouri, D. P., Heinkenschloss, M., Ridzal, D., and van Bloemen Waanders, B. G. (2014). Inexact objective function evaluations in a trust-region algorithm for PDE-constrained optimization under uncertainty.

SIAM Journal on Scientific Computing, 36(6):A3011-A3029.

Moré, J. J. (1983).

Recent developments in algorithms and software for trust region methods. Springer.

Washabaugh, K. (2016).

Faster Fidelity For Better Design: A Scalable Model Order Reduction Framework For Steady Aerodynamic Design Applications.

PhD thesis, Stanford University.

Zahr, M. J. (2016).

Adaptive model reduction to accelerate optimization problems governed by partial differential equations.

PhD thesis, Stanford University.

Zahr, M. J., Avery, P., and Farhat, C. (2016a).

A multilevel projection-based model reduction framework for efficient multiscale modeling.

International Journal for Numerical Methods in Engineering.

Zahr, M. J. and Persson, P.-O. (In review, 2016).

An adjoint method for a high-order discretization of deforming domain conservation laws for optimization of flow problems.

Journal of Computational Physics.

Zahr, M. J., Persson, P.-O., and Wilkening, J. (In review, 2016b).

A fully discrete adjoint method for optimization of flow problems on deforming domains with time-periodicity constraints.

Computers and Fluids.

PDE optimization is **ubiquitous** in science and engineering

Design: Find system that optimizes performance metric, satisfies constraints

Shape design of arterial bypass (left) and shape/topology design of patient-specific implant (right)

PDE optimization is **ubiquitous** in science and engineering

Inverse problems: Infer the problem setup given solution observations

Left: Material inversion – find inclusions from acoustic, structural measurements Right: Source inversion – find source of airborne contaminant from downstream measurements

Full waveform inversion – estimate subsurface of Earth's crust from acoustic measurements

Applications in computational mechanics: dynamic

Energy = 9.4096e + 00	Energy = 4.9476e + 00	Energy = 4.6110e + 00
Thrust = 1.7660e-01	Thrust = 2.5000e + 00	Thrust = 2.5000e + 00

Let $\{\mu_k\}$ be a sequence of iterates produced by the algorithm and suppose there exists $\epsilon > 0$ such that $||\nabla m_k(\mu_k)|| > 0$

Lemma 1: $\Delta_k \to 0$

• Fraction of Cauchy decrease

•
$$|F(\boldsymbol{\mu}_k) - F(\hat{\boldsymbol{\mu}}_k) + \psi_k(\hat{\boldsymbol{\mu}}_k) - \psi_k(\boldsymbol{\mu}_k)| \le \sigma \left[\eta \min\{m_k(\boldsymbol{\mu}_k) - m_k(\hat{\boldsymbol{\mu}}_k), r_k\}\right]^{1/\omega}$$

Lemma 2: $\rho_k \rightarrow 1$

- Fraction of Cauchy decrease
- $|F(\boldsymbol{\mu}_k) F(\hat{\boldsymbol{\mu}}_k) + m_k(\hat{\boldsymbol{\mu}}_k) m_k(\boldsymbol{\mu}_k)| \le \zeta \Delta_k$

Theorem 1: $\liminf ||\nabla F(\boldsymbol{\mu}_k)|| = 0$

- Contradiction from Lemma 1 and 2 \implies $\liminf ||\nabla m_k(\boldsymbol{\mu}_k)|| = 0$
- $||\nabla F(\boldsymbol{\mu}_k) \nabla m_k(\boldsymbol{\mu}_k)|| \le \xi \min\{||\nabla m_k(\boldsymbol{\mu})||, \Delta_k\}$

 $^{^5\}mathrm{Closely}$ parallels convergence theory in [Moré, 1983, Kouri et al., 2014]

An interpretation of error-aware trust regions

Let $\boldsymbol{\vartheta}_k(\boldsymbol{\mu})$ be a vector-valued error indicator such that $\vartheta_k(\boldsymbol{\mu}) = ||\boldsymbol{\vartheta}_k(\boldsymbol{\mu})||_2$ and

$$\boldsymbol{A}_{k} = \frac{\partial \boldsymbol{\vartheta}_{k}}{\partial \boldsymbol{\mu}} (\boldsymbol{\mu}_{k})^{T} \frac{\partial \boldsymbol{\vartheta}_{k}}{\partial \boldsymbol{\mu}} (\boldsymbol{\mu}_{k}) = \boldsymbol{Q}_{k} \boldsymbol{\Lambda}_{k}^{2} \boldsymbol{Q}_{k}^{T}$$

Then, to first $order^6$,

$$\vartheta_k(\boldsymbol{\mu}) = \left|\left|\boldsymbol{\vartheta}_k(\boldsymbol{\mu})\right|\right|_2 = \left|\left|\frac{\partial \boldsymbol{\vartheta}_k}{\partial \boldsymbol{\mu}}(\boldsymbol{\mu}_k)(\boldsymbol{\mu} - \boldsymbol{\mu}_k)\right|\right|_2 = \left|\left|\boldsymbol{\mu} - \boldsymbol{\mu}_k\right|\right|_{\boldsymbol{A}_k} \le \Delta_k$$

Annotated schematic of trust region: $\boldsymbol{q}_i = \boldsymbol{Q}_k \boldsymbol{e}_i$ and $\lambda_i = \boldsymbol{e}_i^T \boldsymbol{\Lambda}_k \boldsymbol{e}_i$

⁶assuming $\boldsymbol{\vartheta}_k(\boldsymbol{\mu}_k) = 0$, i.e., model exact at trust region center

Optimization of the Rosenbrock function

minimize
$$F(\boldsymbol{\mu}) \equiv 100(\mu_2 - \mu_1^2)^2 + (1 - \mu_1)^2.$$

using the approximation models and error indicators

$$\begin{split} m_{k}(\boldsymbol{\mu}) &\equiv G_{k}(\boldsymbol{\mu}; \ \epsilon_{k}, \ \delta_{k}) \\ \psi_{k}(\boldsymbol{\mu}) &\equiv F(\boldsymbol{\mu}) \\ \vartheta_{k}(\boldsymbol{\mu}) &\equiv |F(\boldsymbol{\mu}) - G_{k}(\boldsymbol{\mu}; \ \epsilon_{k}, \ \delta_{k})| + |F(\boldsymbol{\mu}_{k}) - G_{k}(\boldsymbol{\mu}_{k}; \ \epsilon_{k}, \ \delta_{k})| \\ \varphi_{k}(\boldsymbol{\mu}) &\equiv ||\nabla F(\boldsymbol{\mu}) - \nabla G_{k}(\boldsymbol{\mu}; \ \epsilon_{k}, \ \delta_{k})|| \\ \theta_{k}(\boldsymbol{\mu}) &\equiv 0 \end{split}$$

where $G_k(\mu; \epsilon_k, \delta_k)$ is the inexact quadratic approximation of F at μ_k

$$G_k(\boldsymbol{\mu}; \epsilon, \delta) \equiv F(\boldsymbol{\mu}_k) + \epsilon + (\nabla F(\boldsymbol{\mu}_k) + \delta \mathbf{1})^T (\boldsymbol{\mu} - \boldsymbol{\mu}_k) + \frac{1}{2} (\boldsymbol{\mu} - \boldsymbol{\mu}_k)^T \nabla^2 F(\boldsymbol{\mu}_k) (\boldsymbol{\mu} - \boldsymbol{\mu}_k)$$

Breakdown of Computational Effort

Breakdown of Computational Effort

Breakdown of Computational Effort

Breakdown of Computational Effort

No convergence

Scales exponentially with N_{μ}
Numerical demonstration: offline-online breakdown

- *Greedy* Training
 - 5000 candidate points (LHS)
 - $\bullet~50$ snapshots
 - Error indicator: $||\boldsymbol{r}(\boldsymbol{\Phi}\boldsymbol{u}_r,\,\boldsymbol{\mu})||$
- State reduction (Φ)
 - POD
 - $k_u = 25$
 - Polynomialization acceleration

Stiffness maximization, volume constraint

Parametrization with $n_{\mu} = 200$

Numerical demonstration: offline-online breakdown

Optimal Solution $(1.97 \times 10^4 \text{ s})$

ROM Solution

HDM Solution	ROB Construction	Greedy Algorithm	ROM Optimization
$2.84 \times 10^{3} { m s}$	$5.48 \times 10^4 \text{ s}$	$1.67 \times 10^5 { m s}$	30 s
1.26%	24.36%	74.37%	0.01%

Source of inexactness: anisotropic sparse grids

1D Quadrature Rules: Define the difference operator

$$\Delta_k^j \equiv \mathbb{E}_k^j - \mathbb{E}_k^{j-1}$$

where $\mathbb{E}_k^0 \equiv 0$ and \mathbb{E}_k^j as the level-*j* 1d quadrature rule for dimension *k* Anisotropic Sparse Grid: Define the index set $\mathcal{I} \subset \mathbb{N}^{n_{\xi}}$ and

$$\mathbb{E}_{\mathcal{I}} \equiv \sum_{\mathbf{i} \in \mathcal{I}} \Delta_1^{i_1} \otimes \cdots \otimes \Delta_{n_{\boldsymbol{\xi}}}^{i_{n_{\boldsymbol{\xi}}}}$$

Neighbors: Let $\mathcal{I}^c = \mathbb{N}^{n_{\boldsymbol{\xi}}} \setminus \mathcal{I}$

$$\mathcal{N}(\mathcal{I}) = \{ \boldsymbol{i} \in \mathcal{I}^c \mid \boldsymbol{i} - \boldsymbol{e}_j \in \mathcal{I}, \, j = 1, \, \dots, \, n_{\boldsymbol{\xi}} \}$$

Truncation Error: [Gerstner and Griebel, 2003, Kouri et al., 2013]

$$\mathbb{E} - \mathbb{E}_{\mathcal{I}} = \sum_{\mathbf{i} \in \mathcal{I}^c} \Delta_1^{i_1} \otimes \cdots \otimes \Delta_{n_{\boldsymbol{\xi}}}^{i_{n_{\boldsymbol{\xi}}}} \approx \sum_{\mathbf{i} \in \mathcal{N}(\mathcal{I})} \Delta_1^{i_1} \otimes \cdots \otimes \Delta_{n_{\boldsymbol{\xi}}}^{i_{n_{\boldsymbol{\xi}}}} = \mathbb{E}_{\mathcal{N}(\mathcal{I})}$$

Tensor product quadrature

Isotropic sparse grid quadrature

Anisotropic sparse grid quadrature

Anisotropic sparse grid quadrature: neighbors

Derivation of gradient error indicator

For brevity, let

$$egin{aligned} \mathcal{J}(m{\xi}) &\leftarrow \mathcal{J}(m{u}(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \ &
abla \mathcal{J}(m{\xi}) &\leftarrow
abla \mathcal{J}(m{u}(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \ & \mathcal{J}_r(m{\xi}) &= \mathcal{J}(m{\Phi}m{u}_r(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \ &
abla \mathcal{J}_r(m{\xi}) &=
abla \mathcal{J}(m{\Phi}m{u}_r(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \ & m{r}_r(m{\xi}) &= m{r}(m{\Phi}m{u}_r(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \ & m{r}_r(m{\xi}) &= m{r}^{m{\lambda}}(m{\Phi}m{u}_r(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \ & m{r}_r^{m{\lambda}}(m{\xi}) &= m{r}^{m{\lambda}}(m{\Phi}m{u}_r(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \end{aligned}$$

Separate total error into contributions from ROM inexactness and SG truncation

 $||\mathbb{E}[\nabla \mathcal{J}] - \mathbb{E}_{\mathcal{I}}[\nabla \mathcal{J}_r]|| \leq \mathbb{E}\left[||\nabla \mathcal{J} - \nabla \mathcal{J}_r||\right] + ||\mathbb{E}\left[\nabla \mathcal{J}_r\right] - \mathbb{E}_{\mathcal{I}}\left[\nabla \mathcal{J}_r\right]||$

Derivation of gradient error indicator

For brevity, let

$$egin{aligned} \mathcal{J}(m{\xi}) &\leftarrow \mathcal{J}(m{u}(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \ &
abla \mathcal{J}(m{\xi}) &\leftarrow
abla \mathcal{J}(m{u}(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \ & \mathcal{J}_r(m{\xi}) &= \mathcal{J}(m{\Phi}m{u}_r(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \ &
abla \mathcal{J}_r(m{\xi}) &=
abla \mathcal{J}(m{\Phi}m{u}_r(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \ & m{r}_r(m{\xi}) &= m{r}(m{\Phi}m{u}_r(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \ & m{r}_r(m{\xi}) &= m{r}^{m{\lambda}}(m{\Phi}m{u}_r(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \ & m{r}_r^{m{\lambda}}(m{\xi}) &= m{r}^{m{\lambda}}(m{\Phi}m{u}_r(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \end{aligned}$$

Separate total error into contributions from ROM inexactness and SG truncation

 $||\mathbb{E}[\nabla \mathcal{J}] - \mathbb{E}_{\mathcal{I}}[\nabla \mathcal{J}_r]|| \le \mathbb{E}\left[||\nabla \mathcal{J} - \nabla \mathcal{J}_r||\right] + ||\mathbb{E}\left[\nabla \mathcal{J}_r\right] - \mathbb{E}_{\mathcal{I}}\left[\nabla \mathcal{J}_r\right]||$

 $\leq \zeta' \mathbb{E} \left[\alpha_1 ||\boldsymbol{r}|| + \alpha_2 \left| \left| \boldsymbol{r}^{\boldsymbol{\lambda}} \right| \right| \right] + \mathbb{E}_{\mathcal{I}^c} \left[||\nabla \mathcal{J}_r|| \right]$

Derivation of gradient error indicator

For brevity, let

$$egin{aligned} \mathcal{J}(m{\xi}) &\leftarrow \mathcal{J}(m{u}(m{\mu},m{\xi}),m{\mu},m{\xi}) \ &
abla \mathcal{J}(m{\xi}) &\leftarrow
abla \mathcal{J}(m{u}(m{\mu},m{\xi}),m{\mu},m{\xi}) \ & \mathcal{J}_r(m{\xi}) &= \mathcal{J}(m{\Phi}m{u}_r(m{\mu},m{\xi}),m{\mu},m{\xi}) \ &
abla \mathcal{J}_r(m{\xi}) &=
abla \mathcal{J}(m{\Phi}m{u}_r(m{\mu},m{\xi}),m{\mu},m{\xi}) \ & r_r(m{\xi}) &= r(m{\Phi}m{u}_r(m{\mu},m{\xi}),m{\mu},m{\xi}) \ & r_r(m{\xi}) &= r^{m{\lambda}}(m{\Phi}m{u}_r(m{\mu},m{\xi}),m{\mu},m{\xi}) \end{aligned}$$

Separate total error into contributions from ROM inexactness and SG truncation

$$||\mathbb{E}[\nabla \mathcal{J}] - \mathbb{E}_{\mathcal{I}}[\nabla \mathcal{J}_r]|| \le \mathbb{E}\left[||\nabla \mathcal{J} - \nabla \mathcal{J}_r||\right] + ||\mathbb{E}\left[\nabla \mathcal{J}_r\right] - \mathbb{E}_{\mathcal{I}}\left[\nabla \mathcal{J}_r\right]||$$

 $\leq \zeta' \mathbb{E} \left[lpha_1 || \boldsymbol{r} || + lpha_2 \left| \left| \boldsymbol{r}^{\boldsymbol{\lambda}} \right| \right|
ight] + \mathbb{E}_{\mathcal{I}^c} \left[|| \nabla \mathcal{J}_r ||
ight]$

 $\lesssim \zeta \left(\mathbb{E}_{\mathcal{I} \cup \mathcal{N}(\mathcal{I})} \left[\alpha_1 || \boldsymbol{r} || + \alpha_2 \left| \left| \boldsymbol{r}^{\boldsymbol{\lambda}} \right| \right| \right] + \alpha_3 \mathbb{E}_{\mathcal{N}(\mathcal{I})} \left[|| \nabla \mathcal{J}_r || \right] \right)$

Adaptivity: Dimension-adaptive greedy method

Significant reduction in number of queries to HDM in comparison to state-of-the-art [Kouri et al., 2014]

At a price ... a large number of ROM evaluations

Extension to time-dependent problems

- **Applications**: inverse problems, optimal flapping flight and swimming⁷ and design of helicopter blades, wind turbines, and turbomachinery
- Monolithic **space-time** formulation of reduced-order model
 - Increased speed due to natural **parallelism** in *space and time*
 - Treat as **steady state** problem in $n_{sd} + 1$ dimensions
- Error indicators and adaptivity algorithms in space-time setting to solve with multifidelity trust region method

Un-optimized flapping motion (left), optimal control (center), and optimal control and time-morphed geometry (right)

⁷insight into bio-locomotion, design of micro-aerial vehicles