Efficient PDE Optimization under Uncertainty using Adaptive Model Reduction and Sparse Grids

Matthew J. Zahr

Advisor: Charbel Farhat Computational and Mathematical Engineering Stanford University

Joint work with: Kevin Carlberg (Sandia CA), Drew Kouri (Sandia NM)

SIAM Annual Meeting MS 137: Model Reduction of Parametrized PDEs Boston, Massachusetts, USA July 15, 2016

Current interest in computational physics reaches far beyond analysis of a single configuration of a physical system into **design** (shape and topology) and **control** in an **uncertain** setting

EM Launcher

Micro-Aerial Vehicle

Engine System

PDE-constrained optimization under uncertainty

Goal: Efficiently solve stochastic PDE-constrained optimization problems

 $\begin{array}{ll} \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & \mathbb{E}[\mathcal{J}(\boldsymbol{u},\,\boldsymbol{\mu},\,\cdot\,)] \\ \text{subject to} & \boldsymbol{r}(\boldsymbol{u};\,\boldsymbol{\mu},\,\boldsymbol{\xi}) = 0 \quad \forall \boldsymbol{\xi} \in \boldsymbol{\Xi} \end{array}$

- $r: \mathbb{R}^{n_u} \times \mathbb{R}^{n_\mu} \times \mathbb{R}^{n_\xi} \to \mathbb{R}^{n_u}$ discretized stochastic PDE • $\mathcal{J}: \mathbb{R}^{n_u} \times \mathbb{R}^{n_\mu} \times \mathbb{R}^{n_\xi} \to \mathbb{R}$ quantity of interest • $u \in \mathbb{R}^{n_u}$ PDE state vector • $\mu \in \mathbb{R}^{n_\mu}$ (deterministic) optimization parameters • $\xi \in \mathbb{R}^{n_\xi}$ stochastic parameters
- $\mathbb{E}[\mathcal{F}] \equiv \int_{\Xi} \mathcal{F}(\boldsymbol{\xi}) \rho(\boldsymbol{\xi}) d\boldsymbol{\xi}$

Each function evaluation requires integration over stochastic space - expensive

Proposed approach: managed two-level inexactness

 $Two \ levels \ of \ inexactness \ to \ obtain \ an \ inexpensive, \ approximation \ model$

- Anisotropic sparse grids used for *inexact integration* of risk measures
- Reduced-order models used for *inexact evaluations* at collocation nodes

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad F(\boldsymbol{\mu}) \qquad \longrightarrow \qquad \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad m_k(\boldsymbol{\mu})$$

Proposed approach: managed two-level inexactness

Two levels of inexactness to obtain an inexpensive, approximation model

- Anisotropic sparse grids used for *inexact integration* of risk measures
- Reduced-order models used for *inexact evaluations* at collocation nodes

$$\underset{\boldsymbol{\mu}\in\mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} F(\boldsymbol{\mu}) \longrightarrow \underset{\boldsymbol{\mu}\in\mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} m_k(\boldsymbol{\mu})$$

Manage inexactness with trust-region method

- Embedded in globally convergent **trust-region** method
- Error indicators to account for *both* sources of inexactness
- **Refinement** of integral approximation and reduced-order model via *dimension-adaptive* sparse grids and a *greedy method* over collocation nodes

$$\underset{\boldsymbol{\mu}\in\mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} F(\boldsymbol{\mu}) \longrightarrow$$

$$\begin{array}{ll} \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & m_k(\boldsymbol{\mu}) \\ \text{subject to} & ||\boldsymbol{\mu} - \boldsymbol{\mu}_k|| \leq \Delta_k \end{array}$$

• First-order consistency [Alexandrov et al., 1998]

$$m_k(\boldsymbol{\mu}_k) = F(\boldsymbol{\mu}_k) \qquad \nabla m_k(\boldsymbol{\mu}_k) = \nabla F(\boldsymbol{\mu}_k)$$

• The Carter condition [Carter, 1989, Carter, 1991]

$$||\nabla F(\boldsymbol{\mu}_k) - \nabla m_k(\boldsymbol{\mu}_k)|| \le \eta ||\nabla m_k(\boldsymbol{\mu}_k)|| \qquad \eta \in (0, 1)$$

• Asymptotic gradient bound [Heinkenschloss and Vicente, 2002]

$$||\nabla F(\boldsymbol{\mu}_k) - \nabla m_k(\boldsymbol{\mu}_k)|| \le \xi \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\} \qquad \xi > 0$$

Asymptotic gradient bound permits the use of error indicator: φ_k

$$\begin{aligned} ||\nabla F(\boldsymbol{\mu}) - \nabla m_k(\boldsymbol{\mu})|| &\leq \xi \varphi_k(\boldsymbol{\mu}) \qquad \xi > 0\\ \varphi_k(\boldsymbol{\mu}_k) &\leq \kappa \min\{||\nabla m_k(\boldsymbol{\mu})||, \Delta_k\} \end{aligned}$$

Trust region method with inexact gradients [Kouri et al., 2013]

1: Model update: Choose model m_k and error indicator φ_k

$$\varphi_k(\boldsymbol{\mu}_k) \leq \kappa \min\{||\nabla m_k(\boldsymbol{\mu})||, \Delta_k\}$$

2: Step computation: Approximately solve the trust-region subproblem

$$\hat{\boldsymbol{\mu}}_k = \operatorname*{arg\,min}_{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}} m_k(\boldsymbol{\mu}) \quad \mathrm{subject \ to} \quad ||\boldsymbol{\mu} - \boldsymbol{\mu}_k|| \leq \Delta_k$$

3: Step acceptance: Compute actual-to-predicted reduction

$$\rho_k = \frac{F(\boldsymbol{\mu}_k) - F(\hat{\boldsymbol{\mu}}_k)}{m_k(\boldsymbol{\mu}_k) - m_k(\hat{\boldsymbol{\mu}}_k)}$$

if $\rho_k \ge \eta_1$ then $\mu_{k+1} = \hat{\mu}_k$ else $\mu_{k+1} = \mu_k$ end if 4: Trust-region update:

- $ho_k \leq \eta_1 \hspace{1cm} ext{then} \hspace{1cm} \Delta_{k+1} \in (0,\gamma \, || \hat{oldsymbol{\mu}} oldsymbol{\mu}_k ||] \hspace{1cm} ext{end if}$
- $\begin{array}{ll} \text{if} & \rho_k \in (\eta_1, \eta_2) & \quad \text{then} & \Delta_{k+1} \in [\gamma \, || \hat{\boldsymbol{\mu}} \boldsymbol{\mu}_k ||, \Delta_k] & \quad \text{end if} \\ \text{if} & \rho_k \geq \eta_2 & \quad \text{then} & \Delta_{k+1} \in [\Delta_k, \Delta_{\max}] & \quad \text{end if} \end{array}$

if

Trust region method with inexact gradients and objective

1: Model update: Choose model m_k and error indicator φ_k

$$\varphi_k(\boldsymbol{\mu}_k) \leq \kappa \min\{||\nabla m_k(\boldsymbol{\mu})||, \Delta_k\}$$

2: Step computation: Approximately solve the trust-region subproblem

$$\hat{\mu}_k = \operatorname*{arg\,min}_{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}} m_k(\boldsymbol{\mu}) \quad \mathrm{subject \ to} \quad ||\boldsymbol{\mu} - \boldsymbol{\mu}_k|| \leq \Delta_k$$

3: Step acceptance: Compute approximation of actual-to-predicted reduction

$$\rho_k = \frac{\psi_k(\boldsymbol{\mu}_k) - \psi_k(\hat{\boldsymbol{\mu}}_k)}{m_k(\boldsymbol{\mu}_k) - m_k(\hat{\boldsymbol{\mu}}_k)}$$

if $\rho_k \ge \eta_1$ then $\mu_{k+1} = \hat{\mu}_k$ else $\mu_{k+1} = \mu_k$ end if 4: Trust-region update:

- $ho_k \leq \eta_1 \hspace{1cm} ext{then} \hspace{1cm} \Delta_{k+1} \in (0,\gamma \, || \hat{oldsymbol{\mu}} oldsymbol{\mu}_k ||] \hspace{1cm} ext{end if}$
- $\begin{array}{ll} \text{if} & \rho_k \in (\eta_1, \eta_2) & \quad \text{then} & \Delta_{k+1} \in [\gamma \, || \hat{\boldsymbol{\mu}} \boldsymbol{\mu}_k ||, \Delta_k] & \quad \text{end if} \\ \text{if} & \rho_k \geq \eta_2 & \quad \text{then} & \Delta_{k+1} \in [\Delta_k, \Delta_{\max}] & \quad \text{end if} \end{array}$

if

• Asymptotic objective decrease bound [Kouri et al., 2014]

$$|F(\boldsymbol{\mu}_k) - F(\hat{\boldsymbol{\mu}}_k) + \psi_k(\hat{\boldsymbol{\mu}}_k) - \psi_k(\boldsymbol{\mu}_k)| \le \sigma \min\{m_k(\boldsymbol{\mu}_k) - m_k(\hat{\boldsymbol{\mu}}_k), r_k\}^{1/\omega}$$

where $\omega \in (0, 1), r_k \to 0, \sigma > 0$

Asymptotic objective decrease bound permits the use of error indicator: θ_k

$$\begin{aligned} |F(\boldsymbol{\mu}_k) - F(\boldsymbol{\mu}) + \psi_k(\boldsymbol{\mu}) - \psi_k(\boldsymbol{\mu}_k)| &\leq \sigma \theta_k(\boldsymbol{\mu}) \quad \sigma > 0 \\ \theta_k(\hat{\boldsymbol{\mu}}_k)^{\omega} &\leq \eta \min\{m_k(\boldsymbol{\mu}_k) - m_k(\hat{\boldsymbol{\mu}}_k), r_k\} \end{aligned}$$

Approximation models

 $m_k(\boldsymbol{\mu}), \psi_k(\boldsymbol{\mu})$

Error indicators

$$\begin{aligned} ||\nabla F(\boldsymbol{\mu}) - \nabla m_k(\boldsymbol{\mu})|| &\leq \xi \varphi_k(\boldsymbol{\mu}) \qquad \zeta > 0\\ |F(\boldsymbol{\mu}_k) - F(\boldsymbol{\mu}) + \psi_k(\boldsymbol{\mu}) - \psi_k(\boldsymbol{\mu}_k)| &\leq \sigma \theta_k(\boldsymbol{\mu}) \qquad \sigma > 0 \end{aligned}$$

Adaptivity

$$\varphi_k(\boldsymbol{\mu}_k) \le \kappa \min\{||\nabla m_k(\boldsymbol{\mu})||, \Delta_k\} \\ \theta_k(\hat{\boldsymbol{\mu}}_k)^{\omega} \le \eta \min\{m_k(\boldsymbol{\mu}_k) - m_k(\hat{\boldsymbol{\mu}}_k), r_k\}$$

Global convergence

$$\liminf_{k\to\infty} ||\nabla F(\boldsymbol{\mu}_k)|| = 0$$

Stochastic collocation using anisotropic sparse grid nodes to approximate integral with summation

$$\begin{array}{ll} \underset{\boldsymbol{u} \in \mathbb{R}^{n_{\boldsymbol{u}}}, \ \boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & \mathbb{E}[\mathcal{J}(\boldsymbol{u}, \ \boldsymbol{\mu}, \ \cdot)] \\ \text{subject to} & \boldsymbol{r}(\boldsymbol{u}, \ \boldsymbol{\mu}, \ \boldsymbol{\xi}) = 0 & \forall \boldsymbol{\xi} \in \boldsymbol{\Xi} \end{array}$$

$$\min_{\boldsymbol{e} \in \mathbb{R}^{n_{oldsymbol{u}}}, \hspace{0.1 in \boldsymbol{\mu} \in \mathbb{R}^{n_{oldsymbol{\mu}}}} \mathbb{E}_{\mathcal{I}}[\mathcal{J}(oldsymbol{u}, oldsymbol{\mu}, \cdot\,)]$$

 \downarrow

subject to $r(\boldsymbol{u}, \boldsymbol{\mu}, \boldsymbol{\xi}) = 0 \quad \forall \boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathcal{I}}$

[Kouri et al., 2013, Kouri et al., 2014]

 $\boldsymbol{u} \in \mathbb{R}^{n \boldsymbol{u}}$,

Second layer of inexactness: reduced-order models

Stochastic collocation of the reduced-order model over anisotropic sparse grid nodes used to approximate integral with cheap summation

$$\begin{array}{ll} \underset{\boldsymbol{u} \in \mathbb{R}^{n_{\boldsymbol{u}}}, \ \boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & \mathbb{E}_{\mathcal{I}}[\mathcal{J}(\boldsymbol{u}, \ \boldsymbol{\mu}, \cdot)] \\ \text{subject to} & \boldsymbol{r}(\boldsymbol{u}, \ \boldsymbol{\mu}, \ \boldsymbol{\xi}) = 0 & \forall \boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathcal{I}} \end{array}$$

 \Downarrow

 $\begin{array}{ll} \underset{\boldsymbol{y} \in \mathbb{R}^{k_{\boldsymbol{w}}}, \ \boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & \mathbb{E}_{\mathcal{I}}[\mathcal{J}(\boldsymbol{\Phi}\boldsymbol{y}, \boldsymbol{\mu}, \cdot)] \\ \text{subject to} & \boldsymbol{\Phi}^{T}\boldsymbol{r}(\boldsymbol{\Phi}\boldsymbol{y}, \boldsymbol{\mu}, \boldsymbol{\xi}) = 0 & \forall \boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathcal{I}} \end{array}$

First two ingredients for global convergence

Approximation models built on two levels of inexactness

$$m_k(\boldsymbol{\mu}) = \mathbb{E}_{\mathcal{I}_k} \left[\mathcal{J}(\boldsymbol{\Phi}_k \boldsymbol{y}(\boldsymbol{\mu}, \cdot), \, \boldsymbol{\mu}, \cdot) \right] \\ \psi_k(\boldsymbol{\mu}) = \mathbb{E}_{\mathcal{I}'_k} \left[\mathcal{J}(\boldsymbol{\Phi}'_k \boldsymbol{y}(\boldsymbol{\mu}, \cdot), \, \boldsymbol{\mu}, \cdot) \right]$$

<u>Error indicators</u> that account for both sources of error

 $\begin{aligned} \varphi_k(\boldsymbol{\mu}) &= \alpha_1 \mathcal{E}_1(\boldsymbol{\mu}; \mathcal{I}_k, \, \boldsymbol{\Phi}_k) + \alpha_2 \mathcal{E}_2(\boldsymbol{\mu}; \mathcal{I}_k, \, \boldsymbol{\Phi}_k) + \alpha_3 \mathcal{E}_4(\boldsymbol{\mu}; \mathcal{I}_k, \, \boldsymbol{\Phi}_k) \\ \theta_k(\boldsymbol{\mu}) &= \beta_1(\mathcal{E}_1(\boldsymbol{\mu}; \mathcal{I}'_k, \, \boldsymbol{\Phi}'_k) + \mathcal{E}_1(\boldsymbol{\mu}_k; \mathcal{I}'_k, \, \boldsymbol{\Phi}'_k)) + \beta_2(\mathcal{E}_3(\boldsymbol{\mu}; \mathcal{I}'_k, \, \boldsymbol{\Phi}'_k) + \mathcal{E}_3(\boldsymbol{\mu}_k; \mathcal{I}'_k, \, \boldsymbol{\Phi}'_k)) \end{aligned}$

Reduced-order model errors

$$egin{split} \mathcal{E}_1(oldsymbol{\mu}; \mathcal{I}, oldsymbol{\Phi}) &= \mathbb{E}_{\mathcal{I} \cup \mathcal{N}(\mathcal{I})} \left[|| oldsymbol{r}(oldsymbol{\Phi} y(oldsymbol{\mu}, \cdot), oldsymbol{\mu}, \cdot)||
ight] \ \mathcal{E}_2(oldsymbol{\mu}; \mathcal{I}, oldsymbol{\Phi}) &= \mathbb{E}_{\mathcal{I} \cup \mathcal{N}(\mathcal{I})} \left[\left| \left| oldsymbol{r}^{oldsymbol{\lambda}}(oldsymbol{\Phi} y(oldsymbol{\mu}, \cdot), oldsymbol{\Psi} \lambda_r(oldsymbol{\mu}, \cdot), oldsymbol{\mu}, \cdot)
ight|
ight] \end{split}$$

Sparse grid truncation errors

$$\begin{split} \mathcal{E}_3(\boldsymbol{\mu}; \mathcal{I}, \, \boldsymbol{\Phi}) &= \mathbb{E}_{\mathcal{N}(\mathcal{I})} \left[|\mathcal{J}(\boldsymbol{\Phi} \boldsymbol{y}(\boldsymbol{\mu}, \cdot), \, \boldsymbol{\mu}, \, \cdot)| \right] \\ \mathcal{E}_4(\boldsymbol{\mu}; \, \mathcal{I}, \, \boldsymbol{\Phi}) &= \mathbb{E}_{\mathcal{N}(\mathcal{I})} \left[|| \nabla \mathcal{J}(\boldsymbol{\Phi} \boldsymbol{y}(\boldsymbol{\mu}, \, \cdot), \, \boldsymbol{\mu}, \, \cdot)|| \right] \end{split}$$

Derivation of gradient error indicator

For brevity, let

$$\begin{split} \mathcal{J}(\boldsymbol{\xi}) &\leftarrow \mathcal{J}(\boldsymbol{u}(\boldsymbol{\mu}, \boldsymbol{\xi}), \, \boldsymbol{\mu}, \, \boldsymbol{\xi}) \\ \nabla \mathcal{J}(\boldsymbol{\xi}) &\leftarrow \nabla \mathcal{J}(\boldsymbol{u}(\boldsymbol{\mu}, \, \boldsymbol{\xi}), \, \boldsymbol{\mu}, \, \boldsymbol{\xi}) \\ \mathcal{J}_r(\boldsymbol{\xi}) &= \mathcal{J}(\boldsymbol{\Phi}\boldsymbol{y}(\boldsymbol{\mu}, \, \boldsymbol{\xi}), \, \boldsymbol{\mu}, \, \boldsymbol{\xi}) \\ \nabla \mathcal{J}_r(\boldsymbol{\xi}) &= \nabla \mathcal{J}(\boldsymbol{\Phi}\boldsymbol{y}(\boldsymbol{\mu}, \, \boldsymbol{\xi}), \, \boldsymbol{\mu}, \, \boldsymbol{\xi}) \\ \boldsymbol{r}_r(\boldsymbol{\xi}) &= \boldsymbol{r}(\boldsymbol{\Phi}\boldsymbol{y}(\boldsymbol{\mu}, \, \boldsymbol{\xi}), \, \boldsymbol{\mu}, \, \boldsymbol{\xi}) \\ \boldsymbol{r}_r^{\lambda}(\boldsymbol{\xi}) &= \boldsymbol{r}^{\lambda}(\boldsymbol{\Phi}\boldsymbol{y}(\boldsymbol{\mu}, \, \boldsymbol{\xi}), \, \boldsymbol{\Psi}\boldsymbol{\lambda}_r(\boldsymbol{\mu}, \, \boldsymbol{\xi}), \, \boldsymbol{\mu}, \, \boldsymbol{\xi}) \end{split}$$

Separate total error into contributions from ROM inexactness and SG truncation

 $||\mathbb{E}[\nabla \mathcal{J}] - \mathbb{E}_{\mathcal{I}}[\nabla \mathcal{J}_r]|| \leq \mathbb{E}\left[||\nabla \mathcal{J} - \nabla \mathcal{J}_r||\right] + ||\mathbb{E}\left[\nabla \mathcal{J}_r\right] - \mathbb{E}_{\mathcal{I}}\left[\nabla \mathcal{J}_r\right]||$

Derivation of gradient error indicator

For brevity, let

$$\begin{split} \mathcal{J}(\boldsymbol{\xi}) &\leftarrow \mathcal{J}(\boldsymbol{u}(\boldsymbol{\mu}, \boldsymbol{\xi}), \, \boldsymbol{\mu}, \, \boldsymbol{\xi}) \\ \nabla \mathcal{J}(\boldsymbol{\xi}) &\leftarrow \nabla \mathcal{J}(\boldsymbol{u}(\boldsymbol{\mu}, \, \boldsymbol{\xi}), \, \boldsymbol{\mu}, \, \boldsymbol{\xi}) \\ \mathcal{J}_r(\boldsymbol{\xi}) &= \mathcal{J}(\boldsymbol{\Phi}\boldsymbol{y}(\boldsymbol{\mu}, \, \boldsymbol{\xi}), \, \boldsymbol{\mu}, \, \boldsymbol{\xi}) \\ \nabla \mathcal{J}_r(\boldsymbol{\xi}) &= \nabla \mathcal{J}(\boldsymbol{\Phi}\boldsymbol{y}(\boldsymbol{\mu}, \, \boldsymbol{\xi}), \, \boldsymbol{\mu}, \, \boldsymbol{\xi}) \\ \boldsymbol{r}_r(\boldsymbol{\xi}) &= \boldsymbol{r}(\boldsymbol{\Phi}\boldsymbol{y}(\boldsymbol{\mu}, \, \boldsymbol{\xi}), \, \boldsymbol{\mu}, \, \boldsymbol{\xi}) \\ \boldsymbol{r}_r(\boldsymbol{\xi}) &= \boldsymbol{r}^{\boldsymbol{\lambda}}(\boldsymbol{\Phi}\boldsymbol{y}(\boldsymbol{\mu}, \, \boldsymbol{\xi}), \, \boldsymbol{\mu}, \, \boldsymbol{\xi}) \end{split}$$

Separate total error into contributions from ROM inexactness and SG truncation

)

$$\begin{split} ||\mathbb{E}[\nabla \mathcal{J}] - \mathbb{E}_{\mathcal{I}}[\nabla \mathcal{J}_{r}]|| &\leq \mathbb{E}\left[||\nabla \mathcal{J} - \nabla \mathcal{J}_{r}||\right] + ||\mathbb{E}\left[\nabla \mathcal{J}_{r}\right] - \mathbb{E}_{\mathcal{I}}\left[\nabla \mathcal{J}_{r}\right]|| \\ &\leq \zeta' \mathbb{E}\left[\alpha_{1}\left||\boldsymbol{r}|\right| + \alpha_{2}\left||\boldsymbol{r}^{\boldsymbol{\lambda}}\right||\right] + \mathbb{E}_{\mathcal{I}^{c}}\left[||\nabla \mathcal{J}_{r}||\right] \end{split}$$

Derivation of gradient error indicator

For brevity, let

$$\begin{split} \mathcal{J}(\boldsymbol{\xi}) &\leftarrow \mathcal{J}(\boldsymbol{u}(\boldsymbol{\mu}, \boldsymbol{\xi}), \, \boldsymbol{\mu}, \, \boldsymbol{\xi}) \\ \nabla \mathcal{J}(\boldsymbol{\xi}) &\leftarrow \nabla \mathcal{J}(\boldsymbol{u}(\boldsymbol{\mu}, \, \boldsymbol{\xi}), \, \boldsymbol{\mu}, \, \boldsymbol{\xi}) \\ \mathcal{J}_r(\boldsymbol{\xi}) &= \mathcal{J}(\boldsymbol{\Phi}\boldsymbol{y}(\boldsymbol{\mu}, \, \boldsymbol{\xi}), \, \boldsymbol{\mu}, \, \boldsymbol{\xi}) \\ \nabla \mathcal{J}_r(\boldsymbol{\xi}) &= \nabla \mathcal{J}(\boldsymbol{\Phi}\boldsymbol{y}(\boldsymbol{\mu}, \, \boldsymbol{\xi}), \, \boldsymbol{\mu}, \, \boldsymbol{\xi}) \\ \boldsymbol{r}_r(\boldsymbol{\xi}) &= \boldsymbol{r}(\boldsymbol{\Phi}\boldsymbol{y}(\boldsymbol{\mu}, \, \boldsymbol{\xi}), \, \boldsymbol{\mu}, \, \boldsymbol{\xi}) \\ \boldsymbol{r}_r(\boldsymbol{\xi}) &= \boldsymbol{r}^{\boldsymbol{\lambda}}(\boldsymbol{\Phi}\boldsymbol{y}(\boldsymbol{\mu}, \, \boldsymbol{\xi}), \, \boldsymbol{\mu}, \, \boldsymbol{\xi}) \end{split}$$

Separate total error into contributions from ROM inexactness and SG truncation

)

$$\begin{split} ||\mathbb{E}[\nabla \mathcal{J}] - \mathbb{E}_{\mathcal{I}}[\nabla \mathcal{J}_{r}]|| &\leq \mathbb{E}\left[||\nabla \mathcal{J} - \nabla \mathcal{J}_{r}||\right] + ||\mathbb{E}\left[\nabla \mathcal{J}_{r}\right] - \mathbb{E}_{\mathcal{I}}\left[\nabla \mathcal{J}_{r}\right]|| \\ &\leq \zeta' \mathbb{E}\left[\alpha_{1} \left||\boldsymbol{r}|\right| + \alpha_{2} \left||\boldsymbol{r}^{\boldsymbol{\lambda}}\right||\right] + \mathbb{E}_{\mathcal{I}^{c}}\left[||\nabla \mathcal{J}_{r}||\right] \\ &\lesssim \zeta \left(\mathbb{E}_{\mathcal{I} \cup \mathcal{N}(\mathcal{I})}\left[\alpha_{1} \left||\boldsymbol{r}|\right| + \alpha_{2} \left||\boldsymbol{r}^{\boldsymbol{\lambda}}\right||\right] + \alpha_{3} \mathbb{E}_{\mathcal{N}(\mathcal{I})}\left[||\nabla \mathcal{J}_{r}||\right]\right) \end{split}$$

Final requirement for convergence: Adaptivity

With the approximation model, $m_k(\mu)$, and gradient error indicator, $\varphi_k(\mu)$, defined

$$m_k(\boldsymbol{\mu}) = \mathbb{E}_{\mathcal{I}_k} \left[\mathcal{J}(\boldsymbol{\Phi}_k \boldsymbol{y}(\boldsymbol{\mu}, \cdot), \boldsymbol{\mu}, \cdot) \right] \\ \varphi_k(\boldsymbol{\mu}) = \alpha_1 \mathcal{E}_1(\boldsymbol{\mu}_k; \mathcal{I}_k, \boldsymbol{\Phi}_k) + \alpha_2 \mathcal{E}_2(\boldsymbol{\mu}_k; \mathcal{I}_k, \boldsymbol{\Phi}_k) + \alpha_3 \mathcal{E}_4(\boldsymbol{\mu}_k; \mathcal{I}_k, \boldsymbol{\Phi}_k) \right]$$

The final requirement for convergence is to construct the sparse grid \mathcal{I}_k and reduced-order basis Φ_k such that the gradient condition hold

$$\varphi_k(\boldsymbol{\mu}_k) \leq \kappa \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\}$$

Define dimension-adaptive greedy method to target each source of error such that the stronger conditions hold

$$\begin{split} & \boldsymbol{\mathcal{E}}_{1}(\boldsymbol{\mu}_{k}; \mathcal{I}, \, \boldsymbol{\Phi}) \leq \frac{\kappa}{3\alpha_{1}} \min\{||\nabla m_{k}(\boldsymbol{\mu}_{k})||, \, \Delta_{k}\} \\ & \boldsymbol{\mathcal{E}}_{2}(\boldsymbol{\mu}_{k}; \, \mathcal{I}, \, \boldsymbol{\Phi}) \leq \frac{\kappa}{3\alpha_{2}} \min\{||\nabla m_{k}(\boldsymbol{\mu}_{k})||, \, \Delta_{k}\} \\ & \boldsymbol{\mathcal{E}}_{4}(\boldsymbol{\mu}_{k}; \, \mathcal{I}, \, \boldsymbol{\Phi}) \leq \frac{\kappa}{3\alpha_{3}} \min\{||\nabla m_{k}(\boldsymbol{\mu}_{k})||, \, \Delta_{k}\} \end{split}$$

Adaptivity: Dimension-adaptive greedy method

while
$$\mathcal{E}_4(\Phi, \mathcal{I}, \mu_k) > \frac{\kappa}{3\alpha_3} \min\{||\nabla m_k(\mu_k)||, \Delta_k\}$$
 do

<u>Refine index set</u>: Dimension-adaptive sparse grids

$$egin{aligned} \mathcal{I}_k \leftarrow \mathcal{I}_k \cup \{\mathbf{j}^*\} & ext{ where } & \mathbf{j}^* = rgmax_{\mathbf{j} \in \mathcal{N}(\mathcal{I}_k)} \mathbb{E}_{\mathbf{j}}[||
abla \mathcal{J}(\mathbf{\Phi} m{y}(m{\mu},\,\cdot\,),\,m{\mu},\,\cdot\,)||] \end{aligned}$$

Adaptivity: Dimension-adaptive greedy method

while
$$\mathcal{E}_4(\Phi, \mathcal{I}, \boldsymbol{\mu}_k) > \frac{\kappa}{3\alpha_3} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\}$$
 do

<u>Refine index set</u>: Dimension-adaptive sparse grids

$$\mathcal{I}_k \leftarrow \mathcal{I}_k \cup \{\mathbf{j}^*\}$$
 where $\mathbf{j}^* = \operatorname*{arg\,max}_{\mathbf{j} \in \mathcal{N}(\mathcal{I}_k)} \mathbb{E}_{\mathbf{j}} [|| \nabla \mathcal{J}(\mathbf{\Phi} \mathbf{y}(\boldsymbol{\mu}, \cdot), \, \boldsymbol{\mu}, \, \cdot \,) ||]$

<u>Refine reduced-order basis</u>: Greedy sampling while $\mathcal{E}_1(\Phi, \mathcal{I}, \mu_k) > \frac{\kappa}{3\alpha_1} \min\{||\nabla m_k(\mu_k)||, \Delta_k\}$ do

$$egin{aligned} & oldsymbol{\Phi}_k \leftarrow iggl[oldsymbol{\Phi}_k & oldsymbol{u}(oldsymbol{\mu}_k,oldsymbol{\xi}^*) & oldsymbol{\lambda}(oldsymbol{\mu}_k,oldsymbol{\xi}^*) iggr] \ & oldsymbol{\xi}^* = rgmax_{oldsymbol{\xi}\in oldsymbol{\Xi}_{j^*}} &
ho(oldsymbol{\xi}) \left||oldsymbol{r}(oldsymbol{\Phi}_koldsymbol{y}(oldsymbol{\mu}_k,oldsymbol{\xi}),oldsymbol{\mu}_k,oldsymbol{\xi})
ight|| \ & oldsymbol{k}(oldsymbol{\xi},oldsymbol{\xi}) \left||oldsymbol{r}(oldsymbol{\Phi}_koldsymbol{y}(oldsymbol{\mu}_k,oldsymbol{\xi}),oldsymbol{\mu}_k,oldsymbol{\xi})
ight|| \ & oldsymbol{k}(oldsymbol{x},oldsymbol{\xi}) \left||oldsymbol{r}(oldsymbol{\Phi}_koldsymbol{y}(oldsymbol{\mu}_k,oldsymbol{\xi}),oldsymbol{\mu}_k,oldsymbol{\xi})
ight|| \ & oldsymbol{k}(oldsymbol{x},oldsymbol{x}) \left||oldsymbol{r}(oldsymbol{\Phi}_koldsymbol{y}(oldsymbol{\mu}_k,oldsymbol{\xi}),oldsymbol{\mu}_k,oldsymbol{\xi})
ight|| \ & oldsymbol{k}(oldsymbol{x},oldsymbol{x}) \left||oldsymbol{r}(oldsymbol{\Phi}_koldsymbol{x},oldsymbol{r}) \left||oldsymbol{r}(oldsymbol{\Phi}_k,oldsymbol{x},oldsymbol{k}),oldsymbol{\mu}_k,oldsymbol{\xi})
ight|| \ & oldsymbol{r}(oldsymbol{x},oldsymbol{r}) \left||oldsymbol{r}(oldsymbol{r},oldsymbol{r}) \left||oldsymbol{r}(oldsymbol{r},oldsymbol{r}),oldsymbol{r},oldsymbol{r}) \left|| oldsymbol{r}(oldsymbol{r},oldsymbol{r}),oldsymbol{r},oldsymbol{r}) \left|| oldsymbol{r}(oldsymbol{r},oldsymbol{r}) \left|| oldsymbol{r}(oldsymbol{r},oldsymbol{r}),oldsymbol{r},oldsymbol{r}) \left|| oldsymbol{r}(oldsymbol{r},oldsymbol{r}),oldsymbol{r},oldsymbol{r}) \left|| oldsymbol{r}(oldsymbol{r},oldsymbol{r}) \left|| oldsymbol{r}(oldsymbol{r},oldsymbol{r}),oldsymbol{r},oldsymbol{r}) \left|| oldsymbol{r}(oldsymbol{r},oldsymbol{r}),oldsymbol{r}) \left|| oldsymbol{r}(oldsymbol{r},oldsymbol{r}),oldsymbol{r}) \left|| oldsymbol{r}(oldsymbol{r},oldsymbol{r}),oldsymbol{r},oldsymbol{r}) \left|| oldsymbol{r},oldsymbol{r},oldsymbol{r}) \left|| oldsymbol{r},oldsymbol{r},oldsymbol{r},oldsymbol{r},oldsymbol{r}) \left|| oldsymbol{r},oldsymbol{r},oldsymbol{r},oldsymbol{r}),oldsymbol{r},oldsymbol{r}) \left|$$

end while

Adaptivity: Dimension-adaptive greedy method

while
$$\mathcal{E}_4(\Phi, \mathcal{I}, \mu_k) > \frac{\kappa}{3\alpha_3} \min\{||\nabla m_k(\mu_k)||, \Delta_k\}$$
 do

<u>Refine index set</u>: Dimension-adaptive sparse grids

$$\mathcal{I}_k \leftarrow \mathcal{I}_k \cup \{\mathbf{j}^*\}$$
 where $\mathbf{j}^* = \operatorname*{arg\,max}_{\mathbf{j} \in \mathcal{N}(\mathcal{I}_k)} \mathbb{E}_{\mathbf{j}} [|| \nabla \mathcal{J}(\mathbf{\Phi} \boldsymbol{y}(\boldsymbol{\mu}, \cdot), \, \boldsymbol{\mu}, \, \cdot \,) ||]$

<u>Refine reduced-order basis</u>: Greedy sampling while $\mathcal{E}_1(\Phi, \mathcal{I}, \mu_k) > \frac{\kappa}{3\alpha_1} \min\{||\nabla m_k(\mu_k)||, \Delta_k\}$ do

$$egin{aligned} & oldsymbol{\Phi}_k \leftarrow iggl[oldsymbol{\Phi}_k \ oldsymbol{u}(oldsymbol{\mu}_k,oldsymbol{\xi}^*) & oldsymbol{\lambda}(oldsymbol{\mu}_k,oldsymbol{\xi}^*) iggr] \ & oldsymbol{\xi}^* = rgmax_{oldsymbol{\xi}\in\Xi_{\mathbf{j}^*}}
ho(oldsymbol{\xi}) \left||oldsymbol{r}(oldsymbol{\Phi}_koldsymbol{y}(oldsymbol{\mu}_k,oldsymbol{\xi}),oldsymbol{\mu}_k,oldsymbol{\xi})
ight| \end{aligned}$$

end while

while
$$\mathcal{E}_2(\Phi, \mathcal{I}, \mu_k) > \frac{\kappa}{3\alpha_2} \min\{||\nabla m_k(\mu_k)||, \Delta_k\}$$
 do

$$\begin{split} \Phi_k &\leftarrow \begin{bmatrix} \Phi_k & \boldsymbol{u}(\boldsymbol{\mu}_k, \boldsymbol{\xi}^*) & \boldsymbol{\lambda}(\boldsymbol{\mu}_k, \boldsymbol{\xi}^*) \end{bmatrix} \\ \boldsymbol{\xi}^* &= \operatorname*{arg\,max}_{\boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathbf{j}^*}} \rho(\boldsymbol{\xi}) \left| \left| \boldsymbol{r}^{\boldsymbol{\lambda}}(\boldsymbol{\Phi}_k \boldsymbol{y}(\boldsymbol{\mu}_k, \boldsymbol{\xi}), \boldsymbol{\Psi}_k \boldsymbol{\lambda}_r(\boldsymbol{\mu}_k, \boldsymbol{\xi}), \boldsymbol{\mu}_k, \boldsymbol{\xi}) \right| \right| \end{split}$$

end while

end while

Optimal control of steady Burgers' equation

• Optimization problem:

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} \quad \int_{\boldsymbol{\Xi}} \rho(\boldsymbol{\xi}) \left[\int_{0}^{1} \frac{1}{2} (u(\boldsymbol{\mu}, \boldsymbol{\xi}, x) - \bar{u}(x))^{2} \, dx + \frac{\alpha}{2} \int_{0}^{1} z(\boldsymbol{\mu}, x)^{2} \, dx \right] d\boldsymbol{\xi}$$

where $u(\boldsymbol{\mu}, \boldsymbol{\xi}, x)$ solves

$$\begin{aligned} -\nu(\boldsymbol{\xi})\partial_{xx}u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,x) + u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,x)\partial_{x}u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,x) &= z(\boldsymbol{\mu},\,x) \quad x \in (0,\,1), \quad \boldsymbol{\xi} \in \boldsymbol{\Xi} \\ u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,0) &= d_0(\boldsymbol{\xi}) \quad u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,1) &= d_1(\boldsymbol{\xi}) \end{aligned}$$

• Desired state:
$$\bar{u}(x) \equiv 1$$

• Stochastic Space: $\boldsymbol{\Xi} = [-1, 1]^3, \, \rho(\boldsymbol{\xi}) d\boldsymbol{\xi} = 2^{-3} d\boldsymbol{\xi}$

$$\nu(\boldsymbol{\xi}) = 10^{\boldsymbol{\xi}_1 - 2} \qquad d_0(\boldsymbol{\xi}) = 1 + \frac{\boldsymbol{\xi}_2}{1000} \qquad d_1(\boldsymbol{\xi}) = \frac{\boldsymbol{\xi}_3}{1000}$$

• Parametrization: $z(\mu, x)$ – cubic splines with 51 knots, $n_{\mu} = 53$

Optimal control and statistics

Optimal control and corresponding mean state (---) \pm one (---) and two (----) standard deviations

$\mathcal{J}(oldsymbol{\mu}_k)$	$m_k(oldsymbol{\mu}_k)$	$\mathcal{J}(\hat{oldsymbol{\mu}}_k)$	$m_k(\hat{oldsymbol{\mu}}_k)$	$ abla \mathcal{J}(oldsymbol{\mu}_k) $	$ ho_k$	Success?
6.6506e-02	7.2694e-02	5.3655e-02	5.9922e-02	2.2959e-02	1.0257e + 00	1.0000e+00
5.3655e-02	5.9593e-02	5.0783e-02	5.7152e-02	2.3424e-03	9.7512e-01	1.0000e+00
5.0783e-02	5.0670e-02	5.0412e-02	5.0292e-02	1.9724e-03	9.8351e-01	1.0000e+00
5.0412e-02	5.0292e-02	5.0405 e-02	5.0284 e-02	9.2654e-05	8.7479e-01	1.0000e+00
5.0405e-02	5.0404e-02	5.0403 e-02	5.0401e-02	8.3139e-05	9.9946e-01	1.0000e+00
5.0403 e-02	5.0401e-02	-	-	2.2846e-06	-	-

Convergence history of trust-region method built on two-level approximation

Significant reduction in number of queries to HDM in comparison to state-of-the-art [Kouri et al., 2014]

Adaptive SG (- -) Adaptive SG/ROM (- -)

Significant reduction in cost, even if (largest) ROM only $10 \times$ faster than HDM

 $Cost = nHdmPrim + 0.5 \times nHdmAdj + \tau^{-1} \times (nRomPrim + 0.5 \times nRomAdj)$

-level isotropic SG (--), dimension-adaptive SG method of [Kouri et al., 2014] (- -), and proposed ROM/SG for $\tau = 1$ (- -), $\tau = 10$ (- -), $\tau = 100$ (- -)

Leveraging and managing two-levels of inexactness for efficient stochastic PDE-constrained optimization

Summary

- Two-level approximation of moments of quantities of interest of SPDE
 - Anisotropic sparse grids inexact integration
 - $\bullet\ Reduced\mbox{-}order\ models$ inexact evaluations
- Two-level inexactness managed through trust-region method
- Significant decrease in number of HDM queries vs. state-of-the-art

Future work

- Incorporate nonlinear constraints
- Local reduced-order models for improved efficiency

References I

SIAM Journal on Optimization, 12(2):283–302.

Kouri, D. P., Heinkenschloss, M., Ridzal, D., and van Bloemen Waanders, B. G. (2013). A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty.

SIAM Journal on Scientific Computing, 35(4):A1847–A1879.

Kouri, D. P., Heinkenschloss, M., Ridzal, D., and van Bloemen Waanders, B. G. (2014). Inexact objective function evaluations in a trust-region algorithm for PDE-constrained optimization under uncertainty.

SIAM Journal on Scientific Computing, 36(6):A3011-A3029.