Optimization of CFD simulations, with MRI applications

Matthew J. Zahr[†] and Per-Olof Persson TESLA Seminar Lund University, Lund, Sweden March 31, 2017

[†] Luis W. Alvarez Postdoctoral Fellow Department of Mathematics Lawrence Berkeley National Laboratory

PDE optimization is ubiquitous in science and engineering

Design: Find system that optimizes performance metric, satisfies constraints

Aerodynamic shape design of automobile

Optimal flapping motion of micro aerial vehicle

PDE optimization is ubiquitous in science and engineering

Control: Drive system to a desired state

Boundary flow control

PDE optimization is ubiquitous in science and engineering

Inverse problems: Infer the problem setup given solution observations

Left: Material inversion – find inclusions from acoustic, structural measurements Right: Source inversion – find source of airborne contaminant from downstream measurements

Full waveform inversion – estimate subsurface of Earth's crust from aco

Time-dependent PDE-constrained optimization

- Introduction of **fully discrete adjoint method** emanating from **high-order** discretization of governing equations
- Time-periodicity constraints
- Extension to high-order partitioned solver for **fluid-structure** interaction
- Solver acceleration via model reduction
- Applications: flapping flight, energy harvesting, MRI imaging


```
Volkswagen Passat
```


Vertical windmill

LES flow past airfoil

Goal: Find the solution of the unsteady PDE-constrained optimization problem

$$\begin{array}{ll} \underset{\boldsymbol{U},\ \boldsymbol{\mu}}{\text{minimize}} & \mathcal{J}(\boldsymbol{U},\boldsymbol{\mu}) \\ \text{subject to} & \boldsymbol{C}(\boldsymbol{U},\boldsymbol{\mu}) \leq 0 \\ & \frac{\partial \boldsymbol{U}}{\partial t} + \nabla \cdot \boldsymbol{F}(\boldsymbol{U},\nabla \boldsymbol{U}) = 0 \ \text{ in } \ v(\boldsymbol{\mu},t) \end{array}$$

where

• U(x, t) PDE solution • μ design/control parameters • $\mathcal{J}(U, \mu) = \int_{T_0}^{T_f} \int_{\Gamma} j(U, \mu, t) \, dS \, dt$ objective function • $C(U, \mu) = \int_{T_0}^{T_f} \int_{\Gamma} \mathbf{c}(U, \mu, t) \, dS \, dt$ constraints

Optimizer

Primal PDE

Dual PDE

Dual PDE

Dual PDE

• Continuous PDE-constrained optimization problem

$$\begin{split} \underset{\boldsymbol{U}, \ \boldsymbol{\mu}}{\text{minimize}} & \mathcal{J}(\boldsymbol{U}, \boldsymbol{\mu}) \\ \text{subject to} & \boldsymbol{C}(\boldsymbol{U}, \boldsymbol{\mu}) \leq 0 \\ & \frac{\partial \boldsymbol{U}}{\partial t} + \nabla \cdot \boldsymbol{F}(\boldsymbol{U}, \nabla \boldsymbol{U}) = 0 \quad \text{in} \quad \boldsymbol{v}(\boldsymbol{\mu}, t) \end{split}$$

• Fully discrete PDE-constrained optimization problem

$$\begin{array}{l} \underset{\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{N_{t}} \in \mathbb{R}^{N_{\boldsymbol{u}}}, \\ \boldsymbol{k}_{1,1}, \ldots, \boldsymbol{k}_{N_{t},s} \in \mathbb{R}^{N_{\boldsymbol{u}}}, \\ \boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}} \end{array} \qquad J(\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{N_{t}}, \boldsymbol{k}_{1,1}, \ldots, \boldsymbol{k}_{N_{t},s}, \boldsymbol{\mu}) \\ \text{subject to} \qquad \mathbf{C}(\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{N_{t}}, \boldsymbol{k}_{1,1}, \ldots, \boldsymbol{k}_{N_{t},s}, \boldsymbol{\mu}) \leq 0 \\ \boldsymbol{u}_{0} - \boldsymbol{g}(\boldsymbol{\mu}) = 0 \\ \boldsymbol{u}_{n} - \boldsymbol{u}_{n-1} - \sum_{i=1}^{s} b_{i} \boldsymbol{k}_{n,i} = 0 \\ \boldsymbol{M} \boldsymbol{k}_{n,i} - \Delta t_{n} \boldsymbol{r}(\boldsymbol{u}_{n,i}, \boldsymbol{\mu}, t_{n,i}) = 0 \end{array}$$

1

- Consider the *fully discrete* output functional $F(u_n, k_{n,i}, \mu)$
 - Represents either the **objective** function or a **constraint**
- The *total derivative* with respect to the parameters μ , required in the context of gradient-based optimization, takes the form

$$\frac{\mathrm{d}F}{\mathrm{d}\mu} = \frac{\partial F}{\partial \mu} + \sum_{n=0}^{N_t} \frac{\partial F}{\partial u_n} \frac{\partial u_n}{\partial \mu} + \sum_{n=1}^{N_t} \sum_{i=1}^s \frac{\partial F}{\partial k_{n,i}} \frac{\partial k_{n,i}}{\partial \mu}$$

• The sensitivities, $\frac{\partial u_n}{\partial \mu}$ and $\frac{\partial k_{n,i}}{\partial \mu}$, are expensive to compute, requiring the solution of n_{μ} linear evolution equations

• Adjoint method: alternative method for computing $\frac{dF}{d\mu}$ that require one linear evolution evoluation for each quantity of interest, F

Dissection of fully discrete adjoint equations

- Linear evolution equations solved backward in time
- **Primal** state/stage, $u_{n,i}$ required at each state/stage of dual problem
- Heavily dependent on **chosen ouput**

$$\boldsymbol{\lambda}_{N_{t}} = \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{u}_{N_{t}}}^{T}$$
$$\boldsymbol{\lambda}_{n-1} = \boldsymbol{\lambda}_{n} + \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{u}_{n-1}}^{T} + \sum_{i=1}^{s} \Delta t_{n} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \left(\boldsymbol{u}_{n,i}, \ \boldsymbol{\mu}, \ t_{n-1} + c_{i} \Delta t_{n}\right)^{T} \boldsymbol{\kappa}_{n,i}$$
$$\boldsymbol{M}^{T} \boldsymbol{\kappa}_{n,i} = \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{k}_{n,i}}^{T} + b_{i} \boldsymbol{\lambda}_{n} + \sum_{j=i}^{s} a_{ji} \Delta t_{n} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} \left(\boldsymbol{u}_{n,j}, \ \boldsymbol{\mu}, \ t_{n-1} + c_{j} \Delta t_{n}\right)^{T} \boldsymbol{\kappa}_{n,j}$$

• Gradient reconstruction via dual variables

$$\frac{\mathrm{d}F}{\mathrm{d}\mu} = \frac{\partial F}{\partial \mu} + \lambda_0^T \frac{\partial g}{\partial \mu}(\mu) + \sum_{n=1}^{N_t} \Delta t_n \sum_{i=1}^s \kappa_{n,i}^T \frac{\partial r}{\partial \mu}(u_{n,i}, \mu, t_{n,i})$$

$$\begin{array}{ll} \underset{\mu}{\text{minimize}} & -\int_{2T}^{3T} \int_{\Gamma} \boldsymbol{f} \cdot \boldsymbol{v} \, dS \, dt \\ \text{subject to} & \int_{2T}^{3T} \int_{\Gamma} \boldsymbol{f} \cdot \boldsymbol{e}_1 \, dS \, dt = q \\ & \boldsymbol{U}(\boldsymbol{x}, 0) = \boldsymbol{g}(\boldsymbol{x}) \\ & \frac{\partial \boldsymbol{U}}{\partial t} + \nabla \cdot \boldsymbol{F}(\boldsymbol{U}, \nabla \boldsymbol{U}) = 0 \end{array}$$

- Isentropic, compressible, Navier-Stokes
- Re = 1000, M = 0.2
- $y(t), \theta(t), c(t)$ parametrized via periodic cubic splines
- Black-box optimizer: SNOPT

Airfoil schematic, kinematic description

Optimal control - fixed shape

Fixed shape, optimal Rigid Body Motion (RBM), varied x-impulse

Energy = 9.4096x-impulse = -0.1766 Energy = 0.45695x-impulse = 0.000 Energy = 4.9475x-impulse = -2.500

Initial Guess

Optimal RBM $J_x = 0.0$ Optimal RBM

Optimal control, time-morphed geometry

Optimal Rigid Body Motion (RBM) and Time-Morphed Geometry (TMG), varied x-impulse

Energy = 9.4096	Energy = 0.45027	Energy = 4.6182
x-impulse = -0.1766	x-impulse = 0.000	x-impulse = -2.500

Initial Guess

Optimal RBM/TMG $J_x = 0.0$

Optimal RBM/TMG

Optimal control, time-morphed geometry

Optimal Rigid Body Motion (RBM) and Time-Morphed Geometry (TMG), x-impulse = -2.5

Energy = 9.4096	Energy = 4.9476	Energy = 4.6182
x-impulse = -0.1766	x-impulse = -2.500	x-impulse = -2.500

Initial Guess

Optimal RBM $J_x = -2.5$

Optimal RBM/TMG

Energetically optimal 3D flapping motions

Goal: Find energetically optimal flapping motion that achieves zero thrust

Energy = 1.4459e-01Thrust = -1.1192e-01 $\begin{aligned} \text{Energy} &= 3.1378\text{e-}01\\ \text{Thrust} &= 0.0000\text{e+}00 \end{aligned}$

[Zahr and Persson, 2017]

- To properly optimize a cyclic, or periodic problem, need to simulate a **representative** period
- Necessary to avoid transients that will impact quantity of interest and may cause simulation to crash
- Task: Find initial condition, u_0 , such that flow is periodic, i.e. $u_{N_t} = u_0$

Slight modification leads to fully discrete periodic PDE-constrained optimization

$$\begin{array}{ll} \underset{u_{0}, \dots, u_{N_{t}} \in \mathbb{R}^{N_{u}}, \\ k_{1,1}, \dots, k_{N_{t},s} \in \mathbb{R}^{N_{u}}, \\ \mu \in \mathbb{R}^{n_{\mu}} \end{array}}{ J(u_{0}, \dots, u_{N_{t}}, k_{1,1}, \dots, k_{N_{t},s}, \mu) } \\ \text{subject to} \qquad \mathbf{C}(u_{0}, \dots, u_{N_{t}}, k_{1,1}, \dots, k_{N_{t},s}, \mu) \leq 0 \\ u_{0} - u_{N_{t}} = 0 \\ u_{n} - u_{n-1} + \sum_{i=1}^{s} b_{i}k_{n,i} = 0 \\ Mk_{n,i} - \Delta t_{n}r(u_{n,i}, \mu, t_{n,i}) = 0 \end{array}$$

• Following identical procedure as for non-periodic case, the adjoint equations corresponding to the periodic conservation law are

$$\boldsymbol{\lambda}_{N_{t}} = \boldsymbol{\lambda}_{0} + \frac{\partial F}{\partial \boldsymbol{u}_{N_{t}}}^{T}$$
$$\boldsymbol{\lambda}_{n-1} = \boldsymbol{\lambda}_{n} + \frac{\partial F}{\partial \boldsymbol{u}_{n-1}}^{T} + \sum_{i=1}^{s} \Delta t_{n} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} (\boldsymbol{u}_{n,i}, \boldsymbol{\mu}, t_{n-1} + c_{i} \Delta t_{n})^{T} \boldsymbol{\kappa}_{n,i}$$
$$\boldsymbol{M}^{T} \boldsymbol{\kappa}_{n,i} = \frac{\partial F}{\partial \boldsymbol{u}_{N_{t}}}^{T} + b_{i} \boldsymbol{\lambda}_{n} + \sum_{j=i}^{s} a_{ji} \Delta t_{n} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{u}} (\boldsymbol{u}_{n,j}, \boldsymbol{\mu}, t_{n-1} + c_{j} \Delta t_{n})^{T} \boldsymbol{\kappa}_{n,j}$$

- Dual problem is also periodic
- Solve *linear, periodic* problem using Krylov shooting method

$$\begin{array}{ll} \underset{\boldsymbol{\mu}}{\text{minimize}} & -\int_{0}^{T}\int_{\boldsymbol{\Gamma}}\boldsymbol{f}\cdot\boldsymbol{v}\,dS\,dt\\ \text{subject to} & \int_{0}^{T}\int_{\boldsymbol{\Gamma}}\boldsymbol{f}\cdot\boldsymbol{e}_{1}\,dS\,dt = q\\ & \boldsymbol{U}(\boldsymbol{x},0) = \boldsymbol{U}(\boldsymbol{x},T)\\ & \frac{\partial\boldsymbol{U}}{\partial t} + \nabla\cdot\boldsymbol{F}(\boldsymbol{U},\nabla\boldsymbol{U}) = 0 \end{array}$$

- Isentropic, compressible, Navier-Stokes
- Re = 1000, M = 0.2
- $y(t), \theta(t), c(t)$ parametrized via periodic cubic splines
- Black-box optimizer: SNOPT

Airfoil schematic, kinematic description

Solution of time-periodic, energetically optimal flapping

Energy = 9.4096x-impulse = -0.1766 Energy = 0.45695x-impulse = 0.000

Data assimilation: inverse problem in medical imaging

Goal: Determine the boundary conditions that produces a high-resolution flow that matches low-resolution flow measurements (d^*)

$$\begin{array}{ll} \underset{\mu}{\text{minimize}} & \frac{1}{2} |\boldsymbol{d}(\boldsymbol{U}) - \boldsymbol{d}^*|^2 \\ \text{subject to} & \frac{\partial \boldsymbol{U}}{\partial t} + \nabla \cdot \boldsymbol{F}(\boldsymbol{U}, \nabla \boldsymbol{U}) = 0 & \text{ in } \Omega \\ & \boldsymbol{U} = \boldsymbol{\mu} & \text{ on } \Gamma \end{array}$$

True flow

Data

Reconstructed

flow

Fluid-structure interaction: cantilever system

- Standard FSI benchmark problem.
- Elastic cantilever behind a square bluff body in incompressible flow.

- Cantilever:
 $$\begin{split} \rho_s &= 100\,\mathrm{kg/m^3},\, \nu_s = 0.35,\\ E &= 2.5\times 10^5\,\mathrm{Pa}. \end{split}$$
- $$\label{eq:rescaled_formula} \begin{split} \bullet \ \mbox{Fluid \& Flow:} \\ \rho_f &= 1.18 \, \mbox{kg/m}^3, \\ \nu_f &= 1.54 \times 10^{-5} \, \mbox{m}^2/\mbox{s}, \\ v_f &= 0.513 \, \mbox{m/s}, \, \mbox{Re} = 333, \\ \mbox{Ma} &= 0.2. \end{split}$$

Vortex shedding frequency: $\sim 6.3 \,\mathrm{Hz}$

Cantilever first mode: 3.03 Hz

Fluid-structure interaction: flow around membrane, 3D

- Angle of attack 22.6°, Reynolds number 2000.
- Flexible structure prevents leading edge separation.

Fluid-structure interaction: flow around membrane, 3D

- Angle of attack 22.6°, Reynolds number 2000.
- Flexible structure prevents leading edge separation.

Coupled fluid-structure formulation

• Write discretized fluid and structure equations as ODEs

$$egin{aligned} M^f \dot{oldsymbol{u}}^f &= oldsymbol{r}^f(oldsymbol{u}^f;oldsymbol{x})\ M^s \dot{oldsymbol{u}}^s &= oldsymbol{r}^s(oldsymbol{u}^s;oldsymbol{t})\ &= oldsymbol{r}^{ss}(oldsymbol{u}^s) + oldsymbol{r}^{sf}\cdotoldsymbol{t} \end{aligned}$$

in the fluid \boldsymbol{u}^f and structure \boldsymbol{u}^s variables

- Apply couplings
 - Structure-to-fluid: deform fluid domain $\boldsymbol{x} = \boldsymbol{x}(\boldsymbol{u}^s)$
 - Fluid-to-structure: apply boundary traction $t = t(u^f)$
- Write coupled system as $M\dot{u} = r(u)$

$$oldsymbol{u} = egin{bmatrix} oldsymbol{u}^f \ oldsymbol{u}^s \end{bmatrix} \qquad oldsymbol{r}(oldsymbol{u}) = egin{bmatrix} oldsymbol{r}^f(oldsymbol{u}^f;oldsymbol{x}(oldsymbol{u}^s)) \ oldsymbol{r}^s(oldsymbol{u}^s;oldsymbol{t}(oldsymbol{u}^f)) \end{bmatrix} \qquad oldsymbol{M} = egin{bmatrix} oldsymbol{M}^f \ oldsymbol{M}^s \end{bmatrix}$$

High-order partitioned FSI solver: IMEX Runge-Kutta

• Define stage solutions

$$\begin{split} & \boldsymbol{u}_{n,i}^{s} = \boldsymbol{u}_{n-1}^{s} + \sum_{j=1}^{i} a_{ij} \boldsymbol{k}_{n,j}^{s} + \sum_{j=1}^{i-1} \hat{a}_{ij} \hat{\boldsymbol{k}}_{n,j}^{s} \\ & \boldsymbol{u}_{n,i}^{f} = \boldsymbol{u}_{n-1}^{f} + \sum_{j=1}^{i} a_{ij} \boldsymbol{k}_{n,j}^{f} \end{split}$$

• Define traction predictor as true traction at previous stage

$$\tilde{t}_{n,i} = t(u_{n,i-1})$$

• Solve for stage velocities (i = 1, ..., s)

$$\begin{split} \boldsymbol{M}^{s}\boldsymbol{k}_{n,i}^{s} &= \Delta t_{n}\boldsymbol{r}^{s}(\boldsymbol{u}_{n,i}^{s};\,\tilde{\boldsymbol{t}}_{n,i})\\ \boldsymbol{M}^{f}\boldsymbol{k}_{n,i}^{f} &= \Delta t_{n}\boldsymbol{r}^{f}(\boldsymbol{u}_{n,i}^{f};\,\boldsymbol{x}(\boldsymbol{u}_{n,i}^{s}))\\ \boldsymbol{M}^{s}\hat{\boldsymbol{k}}_{n,i}^{s} &= \Delta t_{n}\boldsymbol{r}^{sf}(\boldsymbol{t}(\boldsymbol{u}_{n,i}^{f})-\tilde{\boldsymbol{t}}_{n,i}) \end{split}$$

• Update state solution at new time

$$u_{n}^{f} = u_{n-1}^{f} + \sum_{j=1}^{s} b_{j} k_{n,j}^{f}, \qquad u_{n}^{s} = u_{n-1}^{s} + \sum_{j=1}^{s} b_{j} k_{n,j}^{s} + \sum_{j=1}^{s} \hat{b}_{j} \hat{k}_{n,j}^{s} + \sum_{j=1}^{s} \hat{b}_{j} \hat{k}_{$$

Adjoint equations for high-order partitioned IMEX FSI solver

• Define

$$m{r}^{f}_{n,i} = m{r}^{f}(m{u}^{f}_{n,i};m{x}(m{u}^{s}_{n,i})) ~~ m{r}^{s}_{n,i} = m{r}^{s}(m{u}^{s}_{n,i};m{ ilde{t}}_{n,i})$$

• Final condition for state Lagrange multipliers (F is quantity of interest)

$$\boldsymbol{\lambda}_{N_t}^f = \frac{\partial F}{\partial \boldsymbol{u}_{N_t}^f}^T, \quad \boldsymbol{\lambda}_{N_t}^s = \frac{\partial F}{\partial \boldsymbol{u}_{N_t}^s}^T$$

- Solve for stage Lagrange multipliers (j = s, ..., 1)
 - Explicit structure stage

$$\boldsymbol{M}^{sT}\hat{\boldsymbol{\kappa}}_{n,j}^{s} = \frac{\partial F}{\partial \hat{\boldsymbol{k}}_{n,j}^{s}}^{T} + \hat{b}_{j}\boldsymbol{\lambda}_{n}^{s} + \Delta t_{n}\sum_{i=j+1}^{s} \hat{a}_{ij}\frac{\partial \boldsymbol{r}_{n,i}^{f}}{\partial \boldsymbol{u}^{s}}^{T}\boldsymbol{\kappa}_{n,i}^{f} + \Delta t_{n}\sum_{i=j+1}^{s} \hat{a}_{ij}\frac{\partial \boldsymbol{r}_{n,i}^{s}}{\partial \boldsymbol{u}^{s}}^{T}\boldsymbol{\kappa}_{n,i}^{s}$$

• Implicit fluid stage

$$\boldsymbol{M}^{f^{T}}\boldsymbol{\kappa}_{n,j}^{f} = \frac{\partial F}{\partial \boldsymbol{k}_{n,j}^{f}}^{T} + b_{j}\boldsymbol{\lambda}_{n}^{f} + \Delta t_{n}\sum_{i=j}^{s}a_{ij}\frac{\partial \boldsymbol{r}_{n,i}^{f}}{\partial \boldsymbol{u}^{f}}^{T}\boldsymbol{\kappa}_{n,i}^{f} + \Delta t_{n}\sum_{i=j+1}^{s}a_{ij}\frac{\partial \boldsymbol{\tilde{t}}_{n,i}}{\partial \boldsymbol{u}^{f}}^{T}\boldsymbol{r}^{sf^{T}}\boldsymbol{\kappa}_{n,i}^{s} - \Delta t_{n}\sum_{i=j}^{s}a_{ij}\frac{\partial \boldsymbol{t}_{n,i}}{\partial \boldsymbol{u}^{f}}^{T}\boldsymbol{r}^{sf^{T}}\boldsymbol{\hat{\kappa}}_{n,i}^{s} + \Delta t_{n}\sum_{i=j+1}^{s}a_{ij}\frac{\partial \boldsymbol{\tilde{t}}_{n,i}}{\partial \boldsymbol{u}^{f}}^{T}\boldsymbol{r}^{sf^{T}}\boldsymbol{\hat{\kappa}}_{n,i}^{s}$$

• Implicit structure stage

$$\boldsymbol{M}^{sT}\boldsymbol{\kappa}_{n,j}^{s} = \frac{\partial F}{\partial \boldsymbol{k}_{n,j}^{s}}^{T} + b_{j}\boldsymbol{\lambda}_{n}^{s} + \Delta t_{n}\sum_{i=j}^{s} a_{ij}\frac{\partial \boldsymbol{r}_{n,i}^{f}}{\partial \boldsymbol{u}^{s}}^{T}\boldsymbol{\kappa}_{n,i}^{f} + \Delta t_{n}\sum_{i=j}^{s} a_{ij}\frac{\partial \boldsymbol{r}_{n,i}^{s}}{\partial \boldsymbol{u}^{s}}^{T}\boldsymbol{\kappa}_{n,i}^{s} + \Delta t_{n}\sum_{i=j}^{s} a_{ij}\frac{\partial \boldsymbol{r}_{n,i}^{s$$

• Update state Lagrange multipliers at new time

$$\begin{split} \boldsymbol{\lambda}_{n-1}^{f} &= \boldsymbol{\lambda}_{n}^{f} + \frac{\partial F}{\partial \boldsymbol{u}_{n-1}^{f}}^{T} + \Delta t_{n} \sum_{i=1}^{s} \frac{\partial \boldsymbol{r}_{n,i}^{f}}{\partial \boldsymbol{u}^{f}} \boldsymbol{\kappa}_{n,i}^{f} + \Delta t_{n} \sum_{i=1}^{s} \frac{\partial \tilde{\boldsymbol{t}}_{n,i}}{\partial \boldsymbol{u}^{f}}^{T} \boldsymbol{r}_{n,i}^{sf}{}^{T} \boldsymbol{\kappa}_{n,i}^{s} \\ &+ \Delta t_{n} \sum_{i=1}^{s} \left[\frac{\partial \tilde{\boldsymbol{t}}_{n,i}}{\partial \boldsymbol{u}^{f}} - \frac{\partial \boldsymbol{t}_{n,i}}{\partial \boldsymbol{u}^{f}} \right]^{T} \boldsymbol{r}_{n,i}^{sf}{}^{T} \boldsymbol{\hat{\kappa}}_{n,i}^{s} \\ \boldsymbol{\lambda}_{n-1}^{s} &= \boldsymbol{\lambda}_{n}^{s} + \frac{\partial F}{\partial \boldsymbol{u}_{n-1}^{s}}^{T} + \Delta t_{n} \sum_{i=1}^{s} \frac{\partial \boldsymbol{r}_{n,i}^{f}}{\partial \boldsymbol{u}^{s}} \boldsymbol{\kappa}_{n,i}^{f} + \Delta t_{n} \sum_{i=1}^{s} \frac{\partial \boldsymbol{r}_{n,i}^{s}}{\partial \boldsymbol{u}^{s}} \boldsymbol{\kappa}_{n,i}^{f} \\ \end{split}$$

• Reconstruct total derivative of quantity of interest F as

$$\frac{\mathrm{d}F}{\mathrm{d}\mu} = \frac{\partial F}{\partial \mu} + \lambda_0^{f^T} \frac{\partial \bar{\boldsymbol{u}}^f}{\partial \mu} + \lambda_0^{s^T} \frac{\partial \bar{\boldsymbol{u}}^s}{\partial \mu} - \sum_{n=0}^{N_t} \Delta t_n \sum_{i=1}^s \kappa_{n,i}^{f^T} \frac{\partial r_{n,i}^f}{\partial \mu} - \sum_{n=0}^{N_t} \Delta t_n \sum_{i=1}^s \kappa_{n,i}^{s,T} \frac{\partial r_{n,i}^s}{\partial \mu} - \sum_{n=0}^{N_t} \Delta t_n \sum_{i=1}^s \hat{\kappa}_{n,i}^{s,T} \frac{\partial r_{n,i}^{sf}}{\partial \mu}$$

Optimal energy harvesting from foil-damper system

Goal: Maximize energy harvested from foil-damper system

$$\underset{\boldsymbol{\mu}}{\text{maximize}} \quad \frac{1}{T} \int_0^T (c\dot{h}^2(\boldsymbol{u}^s) - M_z(\boldsymbol{u}^f)\dot{\theta}(\boldsymbol{\mu}, t)) \, dt$$

- Fluid: Isentropic Navier-Stokes on deforming domain (ALE)
- Structure: Force balance in y-direction between foil and damper
- Motion driven by imposed $\theta(\mu, t) = \mu_1 \cos(2\pi f t); \mu_1 \in (-45^\circ, 45^\circ)$

$$\mu_1^* = 45^{\circ}$$
PDE optimization – a key player in next-gen problems

Current interest in **computational physics** reaches far beyond analysis of a single configuration of a physical system into **design** (shape and topology) and control in an uncertain setting

EM Launcher

Micro-Aerial Vehicle

Engine System

Repeated queries to **high-fidelity simulations** required by optimization and uncertainty quantification may be **prohibitively time-consuming**

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

• Reduced-order models used for inexact PDE evaluations

$$\underset{\boldsymbol{\mu}\in\mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} F(\boldsymbol{\mu}) \longrightarrow \underset{\boldsymbol{\mu}\in\mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} m_k(\boldsymbol{\mu})$$

¹Must be *computable* and apply to general, nonlinear PDEs

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

• Reduced-order models used for inexact PDE evaluations

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad F(\boldsymbol{\mu}) \qquad \longrightarrow \qquad \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad m_k(\boldsymbol{\mu})$$

Manage inexactness with trust region method

- Embedded in globally convergent **trust region** method
- Error indicators¹ to account for *all* sources of inexactness
- Refinement of approximation model using greedy algorithms

$$\begin{array}{ccc} \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & F(\boldsymbol{\mu}) & \longrightarrow & \begin{array}{ccc} \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & m_k(\boldsymbol{\mu}) \\ \text{subject to} & ||\boldsymbol{\mu} - \boldsymbol{\mu}_k|| \leq \Delta_k \end{array}$$

 $^{^{1}}$ Must be *computable* and apply to general, nonlinear PDEs

Schematic μ-space Breakdown of Computational Effort

Compressible, inviscid airfoil design

Pressure discrepancy minimization (Euler equations)

RAE2822: Target

Pressure field for airfoil configurations at $M_{\infty} = 0.5$, $\alpha = 0.0^{\circ}$

$$\begin{array}{ll} \underset{\mu \in \mathbb{R}^4}{\text{minimize}} & -L_z(\mu)/L_x(\mu) \\ \text{subject to} & L_z(\mu) = \bar{L}_z \end{array}$$

- Flow: M = 0.85 $\alpha = 2.32^{\circ}$ $Re = 5 \times 10^{6}$
- Equations: RANS with Spalart-Allmaras
- Solver: Vertex-centered finite volume method
- \bullet Mesh: 11.5M nodes, 68M tetra, 69M DOF

 $\boldsymbol{\mu} = \begin{bmatrix} \mathbf{L} & r_x & \phi & r_z \end{bmatrix}$

$$\begin{array}{ll} \underset{\mu \in \mathbb{R}^{4}}{\text{minimize}} & -L_{z}(\mu)/L_{x}(\mu) \\ \text{subject to} & L_{z}(\mu) = \bar{L}_{z} \end{array}$$

- Flow: M = 0.85 $\alpha = 2.32^{\circ}$ $Re = 5 \times 10^{6}$
- Equations: RANS with Spalart-Allmaras
- Solver: Vertex-centered finite volume method
- \bullet Mesh: 11.5M nodes, 68M tetra, 69M DOF

$$\boldsymbol{\mu} = \begin{bmatrix} L & \mathbf{r}_{\mathbf{x}} & \phi & r_z \end{bmatrix}$$

Localized sweep

$$\begin{array}{ll} \underset{\mu \in \mathbb{R}^{4}}{\text{minimize}} & -L_{z}(\mu)/L_{x}(\mu) \\ \text{subject to} & L_{z}(\mu) = \bar{L}_{z} \end{array}$$

- Flow: M = 0.85 $\alpha = 2.32^{\circ}$ $Re = 5 \times 10^{6}$
- Equations: RANS with Spalart-Allmaras
- Solver: Vertex-centered finite volume method
- \bullet Mesh: 11.5M nodes, 68M tetra, 69M DOF

$$\boldsymbol{\mu} = \begin{bmatrix} L & r_x & \phi & r_z \end{bmatrix}$$

$$\begin{array}{ll} \underset{\mu \in \mathbb{R}^4}{\text{minimize}} & -L_z(\mu)/L_x(\mu) \\ \text{subject to} & L_z(\mu) = \bar{L}_z \end{array}$$

- Flow: M = 0.85 $\alpha = 2.32^{\circ}$ $Re = 5 \times 10^{6}$
- Equations: RANS with Spalart-Allmaras
- Solver: Vertex-centered finite volume method
- \bullet Mesh: 11.5M nodes, 68M tetra, 69M DOF

$$\boldsymbol{\mu} = \begin{bmatrix} L & r_x & \phi & \mathbf{r_z} \end{bmatrix}$$

Localized dihedral

Optimized shape: reduction in 2.2 drag counts

Baseline (left) and optimized (right) shape – colored by C_p

Optimized shape: reduction in 2.2 drag counts

Baseline (gray) and optimized shape (red) $- 2 \times$ magnification

Proposed method: 2x reduction in number of HDM queries

Proposed method: 1.6x reduction in overall cost

High-order methods for PDE-constrained optimization

- Developed **fully discrete adjoint method** for **high-order** numerical discretizations of PDEs and QoIs
- Used to compute **gradients** of QoI for use in gradient-based numerical optimization method
- Explicit enforcement of time-periodicity constraints
- Extension to **multiphysics** (fluid-structure interaction)
- Applications: optimal flapping flight and energy harvesting, data assimilation

- Framework introduced for accelerating **deterministic** and **stochastic** PDE-constrained optimization problems
 - $\bullet \ \ {\rm Adaptive} \ \ model \ reduction$
 - Partially converged primal and adjoint solutions
 - Dimension-adaptive *sparse grids*
- Inexactness managed with flexible trust region method
- Applied to variety of problems in computational mechanics and outperforms state-of-the-art methods
 - $1.6\times$ speedup on (deterministic) shape design of aircraft
 - $100\times$ speedup on (stochastic) optimal control of 1D flow

Outlook: Connection to flow reconstruction from MRI images

Goal: Use computational physics and optimization to reconstruction high-resolution blood flow from low-resolution, noisy MRI images

- Fully discrete adjoint method and PDE-constrained optimization
 - single physics: static vessels
 - multiphysics: objects where flow induces significant deformation or involves other types of physics, i.e., electromagnetics
- Huge computational cost of data assimilation in 4D, particularly multiphysics
 - high performance computing
 - globally convergent model reduction
- Extension: Bayesian inference and importance sampling
 - compute probability distribution over set of high-resolution flows instead of single flow [Morzfeld, Chorin]

True high-resolution flow

Low-resolution flow data

Reconstruction

References I

Gerstner, T. and Griebel, M. (2003).

Dimension-adaptive tensor-product quadrature.

Computing, 71(1):65-87.

Kouri, D. P., Heinkenschloss, M., Ridzal, D., and van Bloemen Waanders, B. G. (2013).

A trust-region algorithm with adaptive stochastic collocation for pde optimization under uncertainty.

SIAM Journal on Scientific Computing, 35(4):A1847–A1879.

Kouri, D. P., Heinkenschloss, M., Ridzal, D., and van Bloemen Waanders, B. G. (2014).

Inexact objective function evaluations in a trust-region algorithm for PDE-constrained optimization under uncertainty.

SIAM Journal on Scientific Computing, 36(6):A3011-A3029.

References II

Moré, J. J. (1983).

 $Recent \ developments \ in \ algorithms \ and \ software \ for \ trust \ region \ methods.$

Springer.

• Washabaugh, K. (2016).

Faster Fidelity For Better Design: A Scalable Model Order Reduction Framework For Steady Aerodynamic Design Applications.

PhD thesis, Stanford University.

Zahr, M. J., Avery, P., and Farhat, C. (2016a).

A multilevel projection-based model order reduction framework for nonlinear dynamic multiscale problems in structural and solid mechanics.

International Journal for Numerical Methods in Engineering.

References III

Zahr, M. J., Carlberg, K., and Kouri, D. P. (2016b).

Adaptive stochastic collocation for PDE-constrained optimization under uncertainty using sparse grids and model reduction.

 $SIAM \ Journal \ on \ Uncertainty \ Quantification.$

Zahr, M. J. and Persson, P.-O. (2016).

An adjoint method for a high-order discretization of deforming domain conservation laws for optimization of flow problems.

Journal of Computational Physics.

Zahr, M. J. and Persson, P.-O. (2017).

Energetically optimal flapping wing motions via adjoint-based optimization and high-order discretizations.

In Frontiers in PDE-Constrained Optimization. Springer.

Zahr, M. J., Persson, P.-O., and Wilkening, J. (2016c).

A fully discrete adjoint method for optimization of flow problems on deforming domains with time-periodicity constraints.

Computers & Fluids.

PDE optimization is ubiquitous in science and engineering

Design: Find system that optimizes performance metric, satisfies constraints

Shape design of arterial bypass (left) and shape/topology design of patient-specific implant (right)

Highlights of globally high-order discretization

• Arbitrary Lagrangian-Eulerian Formulation: Map, $\mathcal{G}(\cdot, \boldsymbol{\mu}, t)$, from physical $v(\boldsymbol{\mu}, t)$ to reference V

$$\left. \frac{\partial \boldsymbol{U}_{\boldsymbol{X}}}{\partial t} \right|_{\boldsymbol{X}} + \nabla_{\boldsymbol{X}} \cdot \boldsymbol{F}_{\boldsymbol{X}}(\boldsymbol{U}_{\boldsymbol{X}}, \ \nabla_{\boldsymbol{X}} \boldsymbol{U}_{\boldsymbol{X}}) = 0$$

• Space Discretization: Discontinuous Galerkin

$$M \frac{\partial u}{\partial t} = r(u, \mu, t)$$

• Time Discretization: Diagonally Implicit RK

$$oldsymbol{u}_n = oldsymbol{u}_{n-1} + \sum_{i=1}^s b_i oldsymbol{k}_{n,i}$$
 $oldsymbol{M} oldsymbol{k}_{n,i} = \Delta t_n oldsymbol{r} \left(oldsymbol{u}_{n,i}, oldsymbol{\mu}, t_{n,i}
ight)$

• Quantity of Interest: Solver-consistent

$$F(\boldsymbol{u}_0,\ldots,\boldsymbol{u}_{N_t},\boldsymbol{k}_{1,1},\ldots,\boldsymbol{k}_{N_t,s})$$

Mapping-Based ALE

DG Discretization

Butcher Tableau for DIRK

Adjoint equation derivation: outline

• Define **auxiliary** PDE-constrained optimization problem

$$\begin{array}{l} \underset{\boldsymbol{u}_{0}, \ \ldots, \ \boldsymbol{u}_{N_{t}} \in \mathbb{R}^{N_{\boldsymbol{u}}}, \\ \boldsymbol{k}_{1,1}, \ \ldots, \ \boldsymbol{k}_{N_{t},s} \in \mathbb{R}^{N_{\boldsymbol{u}}} \end{array} \qquad F(\boldsymbol{u}_{0}, \ \ldots, \ \boldsymbol{u}_{N_{t}}, \ \boldsymbol{k}_{1,1}, \ \ldots, \ \boldsymbol{k}_{N_{t},s}, \ \boldsymbol{\mu}) \\ \text{subject to} \qquad \boldsymbol{R}_{0} = \boldsymbol{u}_{0} - \boldsymbol{g}(\boldsymbol{\mu}) = 0 \\ \boldsymbol{R}_{n} = \boldsymbol{u}_{n} - \boldsymbol{u}_{n-1} - \sum_{i=1}^{s} b_{i} \boldsymbol{k}_{n,i} = 0 \\ \boldsymbol{R}_{n,i} = \boldsymbol{M} \boldsymbol{k}_{n,i} - \Delta t_{n} \boldsymbol{r} \left(\boldsymbol{u}_{n,i}, \ \boldsymbol{\mu}, \ t_{n,i} \right) = 0 \end{array}$$

• Define Lagrangian

$$\mathcal{L}(\boldsymbol{u}_n, \boldsymbol{k}_{n,i}, \boldsymbol{\lambda}_n, \boldsymbol{\kappa}_{n,i}) = F - \boldsymbol{\lambda}_0^T \boldsymbol{R}_0 - \sum_{n=1}^{N_t} \boldsymbol{\lambda}_n^T \boldsymbol{R}_n - \sum_{n=1}^{N_t} \sum_{i=1}^{s} \boldsymbol{\kappa}_{n,i}^T \boldsymbol{R}_{n,i}$$

• The solution of the optimization problem is given by the Karush-Kuhn-Tucker (KKT) sytem

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{u}_n} = 0, \quad \frac{\partial \mathcal{L}}{\partial \boldsymbol{k}_{n,i}} = 0, \quad \frac{\partial \mathcal{L}}{\partial \boldsymbol{\lambda}_n} = 0, \quad \frac{\partial \mathcal{L}}{\partial \boldsymbol{\kappa}_{n,i}} = 0$$

Structure: semi-discretization, first-order form

$$oldsymbol{M}^srac{\partialoldsymbol{u}^s}{\partial t}=oldsymbol{r}^s(oldsymbol{u}^s;oldsymbol{t})=oldsymbol{r}^{ss}(oldsymbol{u}^s)+oldsymbol{r}^{sf}\cdotoldsymbol{t}$$

• Semidiscretization (CG-FEM) of **continuum** (hyperelasticity)

$$egin{aligned} rac{\partial oldsymbol{p}}{\partial t} -
abla \cdot oldsymbol{P}(oldsymbol{G}) &= oldsymbol{b} & ext{in } \Omega_0 \ oldsymbol{P}(oldsymbol{G}) \cdot oldsymbol{N} &= oldsymbol{t} & ext{on } \Gamma_N \ oldsymbol{x} &= oldsymbol{x}_D & ext{on } \Gamma_D \end{aligned}$$

• Force balance on **rigid body**

$$Mrac{\partial^2 oldsymbol{q}}{\partial t^2}+Crac{\partial oldsymbol{q}}{\partial t}+Koldsymbol{q}=oldsymbol{t}$$

Approximation model

 $m_k(\boldsymbol{\mu})$

Error indicator

$$||\nabla F(\boldsymbol{\mu}) - \nabla m_k(\boldsymbol{\mu})|| \le \xi \varphi_k(\boldsymbol{\mu}) \qquad \xi > 0$$

Adaptivity

$$\varphi_k(\boldsymbol{\mu}_k) \leq \kappa_{\varphi} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\}$$

Global convergence

 $\liminf_{k\to\infty} ||\nabla F(\boldsymbol{\mu}_k)|| = 0$

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

• Reduced-order models used for inexact PDE evaluations

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad F(\boldsymbol{\mu}) \qquad \longrightarrow \qquad \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad m_k(\boldsymbol{\mu})$$

Manage inexactness with trust region method

- Embedded in globally convergent **trust region** method
- Error indicators to account for *all* sources of inexactness
- Refinement of approximation model using greedy algorithms

$$\underset{\boldsymbol{\mu}\in\mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad F(\boldsymbol{\mu}) \qquad \longrightarrow$$

 $\begin{array}{ll} \underset{\mu \in \mathbb{R}^{n_{\mu}}}{\text{minimize}} & m_k(\mu) \\ \text{subject to} & ||\mu - \mu_k|| \le \Delta_k \end{array}$

• Model reduction ansatz: state vector lies in low-dimensional subspace

$$oldsymbol{u}pprox oldsymbol{\Phi}oldsymbol{u}_r$$

•
$$\Phi = \begin{bmatrix} \phi^1 & \cdots & \phi^{k_u} \end{bmatrix} \in \mathbb{R}^{n_u \times k_u}$$
 is the reduced (trial) basis $(n_u \gg k_u)$
• $u_r \in \mathbb{R}^{k_u}$ are the reduced coordinates of u

• Substitute into $r(u, \mu) = 0$ and project onto column space of a test basis $\Psi \in \mathbb{R}^{n_u \times k_u}$ to obtain a square system

$$\boldsymbol{\Psi}^T \boldsymbol{r} (\boldsymbol{\Phi} \boldsymbol{u}_r, \, \boldsymbol{\mu}) = 0$$

- Instead of using traditional *local* shape functions, use **global shape functions**
- Instead of a-priori, analytical shape functions, leverage data-rich computing environment by using data-driven modes

Trust region method: ROM approximation model

Approximation models based on reduced-order models

$$m_k(\boldsymbol{\mu}) = \mathcal{J}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})$$

 $\underline{\mathbf{Error\ indicators}}$ from residual-based error bounds

$$arphi_k(oldsymbol{\mu}) = ||oldsymbol{r}(\Phi_koldsymbol{u}_r(oldsymbol{\mu}),oldsymbol{\mu})||_{oldsymbol{\Theta}} + \left|\left|oldsymbol{r}^{oldsymbol{\lambda}}(\Phi_koldsymbol{u}_r(oldsymbol{\mu}),oldsymbol{\Psi}_koldsymbol{\lambda}_r(oldsymbol{\mu}),oldsymbol{\mu})
ight|
ight|_{oldsymbol{\Theta}^{oldsymbol{\lambda}}}$$

Adaptivity to refine basis at trust region center

$$\begin{split} \Phi_k &= \begin{bmatrix} u(\mu_k) & \lambda(\mu_k) & \texttt{POD}(U_k) & \texttt{POD}(V_k) \end{bmatrix} \\ U_k &= \begin{bmatrix} u(\mu_0) & \cdots & u(\mu_{k-1}) \end{bmatrix} & V_k &= \begin{bmatrix} \lambda(\mu_0) & \cdots & \lambda(\mu_{k-1}) \end{bmatrix} \\ & \text{Interpolation property} \implies \varphi_k(\mu_k) = 0 \end{split}$$

Trust region method: ROM approximation model

Approximation models based on reduced-order models

$$m_k(\boldsymbol{\mu}) = \mathcal{J}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})$$

 $\underline{\mathbf{Error\ indicators}}$ from residual-based error bounds

$$arphi_k(oldsymbol{\mu}) = ||oldsymbol{r}(\Phi_koldsymbol{u}_r(oldsymbol{\mu}),oldsymbol{\mu})||_{oldsymbol{\Theta}} + \left|\left|oldsymbol{r}^{oldsymbol{\lambda}}(\Phi_koldsymbol{u}_r(oldsymbol{\mu}),oldsymbol{\Psi}_koldsymbol{\lambda}_r(oldsymbol{\mu}),oldsymbol{\mu})
ight|
ight|_{oldsymbol{\Theta}^{oldsymbol{\lambda}}}$$

Adaptivity to refine basis at trust region center

$$\begin{split} \boldsymbol{\Phi}_{k} &= \begin{bmatrix} \boldsymbol{u}(\boldsymbol{\mu}_{k}) & \boldsymbol{\lambda}(\boldsymbol{\mu}_{k}) & \texttt{POD}(\boldsymbol{U}_{k}) & \texttt{POD}(\boldsymbol{V}_{k}) \end{bmatrix} \\ \boldsymbol{U}_{k} &= \begin{bmatrix} \boldsymbol{u}(\boldsymbol{\mu}_{0}) & \cdots & \boldsymbol{u}(\boldsymbol{\mu}_{k-1}) \end{bmatrix} \qquad \boldsymbol{V}_{k} &= \begin{bmatrix} \boldsymbol{\lambda}(\boldsymbol{\mu}_{0}) & \cdots & \boldsymbol{\lambda}(\boldsymbol{\mu}_{k-1}) \end{bmatrix} \end{split}$$

Interpolation property $\implies \varphi_k(\boldsymbol{\mu}_k) = 0$

$$\liminf_{k \to \infty} ||\nabla \mathcal{J}(\boldsymbol{u}(\boldsymbol{\mu}_k), \boldsymbol{\mu}_k)|| = 0$$

Overview of global convergence theory²

Let $\{\boldsymbol{\mu}_k\}$ be a sequence of iterates produced by the algorithm and suppose there exists $\epsilon > 0$ such that $||\nabla m_k(\boldsymbol{\mu}_k)|| > 0$

Lemma 1: $\Delta_k \to 0$

- Fraction of Cauchy decrease
- $|F(\boldsymbol{\mu}_k) F(\hat{\boldsymbol{\mu}}_k) + \psi_k(\hat{\boldsymbol{\mu}}_k) \psi_k(\boldsymbol{\mu}_k)| \le \sigma \left[\eta \min\{m_k(\boldsymbol{\mu}_k) m_k(\hat{\boldsymbol{\mu}}_k), r_k\}\right]^{1/\omega}$

Lemma 2: $\rho_k \rightarrow 1$

- Fraction of Cauchy decrease
- $|F(\boldsymbol{\mu}_k) F(\hat{\boldsymbol{\mu}}_k) + m_k(\hat{\boldsymbol{\mu}}_k) m_k(\boldsymbol{\mu}_k)| \le \zeta \Delta_k$

Theorem 1: $\liminf ||\nabla F(\boldsymbol{\mu}_k)|| = 0$

• Contradiction from Lemma 1 and 2 \implies $\liminf ||\nabla m_k(\boldsymbol{\mu}_k)|| = 0$

 $||\nabla F(\boldsymbol{\mu}_k) - \nabla m_k(\boldsymbol{\mu}_k)|| \le \xi \min\{||\nabla m_k(\boldsymbol{\mu})||, \Delta_k\}$

osely parallels convergence theory in [Moré, 1983, Kouri et al., 2014]

Hyperreduction to reduce complexity of nonlinear terms

Despite reduced dimensionality, $\mathcal{O}(n_u)$ operations are required to evaluate

$$oldsymbol{\Psi}^T oldsymbol{r}(oldsymbol{\Phi}oldsymbol{u}_r,oldsymbol{\mu}) = oldsymbol{\Psi}^T rac{\partialoldsymbol{r}}{\partialoldsymbol{u}}(oldsymbol{\Phi}oldsymbol{u}_r,oldsymbol{\mu}) oldsymbol{\Phi}$$

Solution: only perform minimization over a *subset* of the spatial domain

$$\min_{oldsymbol{u}_r\in\mathbb{R}^{k_{oldsymbol{u}}}} \; \left|\left|r(\Phi u_r,oldsymbol{\mu})
ight|
ight|_{oldsymbol{\Theta}}
ight.
ight. \Longrightarrow \min_{oldsymbol{u}_r\in\mathbb{R}^{k_{oldsymbol{u}}}} \; \left|\left|\left|P^Tr(\Phi u_r,oldsymbol{\mu})
ight|
ight|
ight|_{oldsymbol{\Theta}}
ight.$$

and hyperreduced model³ is independent of n_u

Sample mesh for CRM (left) and Passat (right) [Washabaugh, 2016]

sked minimum-residual property and weaker definitions of optimality, monotonicity, d interpolation hold

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

- Reduced-order models used for inexact PDE evaluations
- Partially converged solutions used for *inexact PDE evaluations*
- Anisotropic sparse grids used for *inexact integration* of risk measures

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad F(\boldsymbol{\mu}) \quad \longrightarrow \quad \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad m_k(\boldsymbol{\mu})$$

Manage inexactness with trust region method

- Embedded in globally convergent **trust region** method
- Error indicators to account for *all* sources of inexactness
- \bullet ${\bf Refinement}$ of approximation model using greedy algorithms

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} F(\boldsymbol{\mu})$$

 $\begin{array}{ll} \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & m_k(\boldsymbol{\mu}) \\ \text{subject to} & ||\boldsymbol{\mu} - \boldsymbol{\mu}_k|| \leq \Delta_k \end{array}$

A au-partially converged primal solution $u^{ au}(\mu)$ is any u satisfying

 $||\boldsymbol{r}(\boldsymbol{u},\,\boldsymbol{\mu})||_{\boldsymbol{\Theta}} \leq \tau$

A τ_1 - τ_2 -partially converged adjoint solution $\lambda^{\tau_1, \tau_2}(\mu)$ is any λ satisfying

 $\left|\left|\boldsymbol{r}^{\boldsymbol{\lambda}}(\boldsymbol{u}^{ au_{1}}(\boldsymbol{\mu}),\,\boldsymbol{\lambda},\,\boldsymbol{\mu})\right|\right|_{\boldsymbol{\Theta}^{\boldsymbol{\lambda}}}\leq au_{2}$

Trust region method: ROM/PCS approximation model

Approximation models based on ROMs and partially converged solutions

$$m_k(\boldsymbol{\mu}) = \mathcal{J}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu}) \qquad \psi_k(\boldsymbol{\mu}) = \mathcal{J}(\boldsymbol{u}^{\tau_k}(\boldsymbol{\mu}), \, \boldsymbol{\mu})$$

Error indicators from residual-based error bounds

$$\begin{split} \vartheta_k(\boldsymbol{\mu}) &= ||\boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}_k), \, \boldsymbol{\mu}_k)||_{\boldsymbol{\Theta}} + ||\boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})||_{\boldsymbol{\Theta}} \\ \varphi_k(\boldsymbol{\mu}) &= ||\boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})||_{\boldsymbol{\Theta}} + \left|\left|\boldsymbol{r}^{\boldsymbol{\lambda}}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\Psi}_k \boldsymbol{\lambda}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})\right|\right|_{\boldsymbol{\Theta}^{\boldsymbol{\lambda}}} \\ \theta_k(\boldsymbol{\mu}) &= ||\boldsymbol{r}(\boldsymbol{u}^{\tau_k}(\boldsymbol{\mu}_k), \, \boldsymbol{\mu}_k)||_{\boldsymbol{\Theta}} + ||\boldsymbol{r}(\boldsymbol{u}^{\tau_k}(\boldsymbol{\mu}), \, \boldsymbol{\mu})||_{\boldsymbol{\Theta}} \end{split}$$

Adaptivity to refine basis at trust region center

$$\begin{split} \boldsymbol{\Phi}_{k} &= \begin{bmatrix} \boldsymbol{u}^{\alpha_{k}}(\boldsymbol{\mu}_{k}) & \boldsymbol{\lambda}^{\alpha_{k},\,\beta_{k}}(\boldsymbol{\mu}_{k}) & \texttt{POD}(\boldsymbol{U}_{k}) & \texttt{POD}(\boldsymbol{V}_{k}) \end{bmatrix} \\ \boldsymbol{U}_{k} &= \begin{bmatrix} \boldsymbol{u}^{\alpha_{0}}(\boldsymbol{\mu}_{0}) & \cdots & \boldsymbol{u}^{\alpha_{k-1}}(\boldsymbol{\mu}_{k-1}) \end{bmatrix} \qquad \boldsymbol{V}_{k} = \begin{bmatrix} \boldsymbol{\lambda}^{\alpha_{0},\,\beta_{0}}(\boldsymbol{\mu}_{0}) & \cdots & \boldsymbol{\lambda}^{\alpha_{k-1},\,\beta_{k-1}}(\boldsymbol{\mu}_{k-1}) \end{bmatrix} \end{split}$$

and $\alpha_k, \beta_k, \tau_k$ selected such that

$$\vartheta_k(\boldsymbol{\mu}_k) \le \kappa_{\vartheta} \Delta_k \qquad \varphi_k(\boldsymbol{\mu}_k) \le \kappa_{\varphi} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\} \\ \theta_k^{\omega}(\hat{\boldsymbol{\mu}}_k) \le \eta \min\{m_k(\boldsymbol{\mu}_k) - m_k(\hat{\boldsymbol{\mu}}_k), r_k\}$$

Trust region method: ROM/PCS approximation model

Approximation models based on ROMs and partially converged solutions

$$m_k(\boldsymbol{\mu}) = \mathcal{J}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}),\, \boldsymbol{\mu}) \qquad \psi_k(\boldsymbol{\mu}) = \mathcal{J}(\boldsymbol{u}^{ au_k}(\boldsymbol{\mu}),\, \boldsymbol{\mu})$$

 $\underline{\mathbf{Error\ indicators}}$ from residual-based error bounds

$$\begin{split} \vartheta_k(\boldsymbol{\mu}) &= ||\boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}_k), \, \boldsymbol{\mu}_k)||_{\boldsymbol{\Theta}} + ||\boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})||_{\boldsymbol{\Theta}} \\ \varphi_k(\boldsymbol{\mu}) &= ||\boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})||_{\boldsymbol{\Theta}} + \left|\left|\boldsymbol{r}^{\boldsymbol{\lambda}}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}), \, \boldsymbol{\Psi}_k \boldsymbol{\lambda}_r(\boldsymbol{\mu}), \, \boldsymbol{\mu})\right|\right|_{\boldsymbol{\Theta}^{\boldsymbol{\lambda}}} \\ \theta_k(\boldsymbol{\mu}) &= ||\boldsymbol{r}(\boldsymbol{u}^{\tau_k}(\boldsymbol{\mu}_k), \, \boldsymbol{\mu}_k)||_{\boldsymbol{\Theta}} + ||\boldsymbol{r}(\boldsymbol{u}^{\tau_k}(\boldsymbol{\mu}), \, \boldsymbol{\mu})||_{\boldsymbol{\Theta}} \end{split}$$

Adaptivity to refine basis at trust region center

$$\begin{split} \boldsymbol{\Phi}_{k} &= \begin{bmatrix} \boldsymbol{u}^{\alpha_{k}}(\boldsymbol{\mu}_{k}) & \boldsymbol{\lambda}^{\alpha_{k},\,\beta_{k}}(\boldsymbol{\mu}_{k}) & \texttt{POD}(\boldsymbol{U}_{k}) & \texttt{POD}(\boldsymbol{V}_{k}) \end{bmatrix} \\ \boldsymbol{U}_{k} &= \begin{bmatrix} \boldsymbol{u}^{\alpha_{0}}(\boldsymbol{\mu}_{0}) & \cdots & \boldsymbol{u}^{\alpha_{k-1}}(\boldsymbol{\mu}_{k-1}) \end{bmatrix} \qquad \boldsymbol{V}_{k} = \begin{bmatrix} \boldsymbol{\lambda}^{\alpha_{0},\,\beta_{0}}(\boldsymbol{\mu}_{0}) & \cdots & \boldsymbol{\lambda}^{\alpha_{k-1},\,\beta_{k-1}}(\boldsymbol{\mu}_{k-1}) \end{bmatrix} \end{split}$$

and α_k , β_k , τ_k selected such that

$$\begin{split} \vartheta_k(\boldsymbol{\mu}_k) &\leq \kappa_{\vartheta} \Delta_k \qquad \varphi_k(\boldsymbol{\mu}_k) \leq \kappa_{\varphi} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\} \\ \theta_k^{\omega}(\hat{\boldsymbol{\mu}}_k) &\leq \eta \min\{m_k(\boldsymbol{\mu}_k) - m_k(\hat{\boldsymbol{\mu}}_k), r_k\} \\ \hline \\ \hline \\ \lim \inf ||\nabla \mathcal{J}(\boldsymbol{u}(\boldsymbol{\mu}_k), \boldsymbol{\mu}_k)|| &= 0 \end{split}$$

Error-aware trust region behavior

1D Quadrature Rules: Define the difference operator

$$\Delta_k^j \equiv \mathbb{E}_k^j - \mathbb{E}_k^{j-1}$$

where $\mathbb{E}_k^0 \equiv 0$ and \mathbb{E}_k^j as the level-*j* 1d quadrature rule for dimension *k* Anisotropic Sparse Grid: Define the index set $\mathcal{I} \subset \mathbb{N}^{n_{\xi}}$ and

$$\mathbb{E}_{\mathcal{I}} \equiv \sum_{\mathbf{i} \in \mathcal{I}} \Delta_1^{i_1} \otimes \cdots \otimes \Delta_{n_{\boldsymbol{\xi}}}^{i_{n_{\boldsymbol{\xi}}}}$$

Neighbors: Let $\mathcal{I}^c = \mathbb{N}^{n_{\xi}} \setminus \mathcal{I}$

$$\mathcal{N}(\mathcal{I}) = \{ \mathbf{i} \in \mathcal{I}^c \mid \mathbf{i} - \mathbf{e}_j \in \mathcal{I}, \, j = 1, \, \dots, \, n_{\boldsymbol{\xi}} \}$$

Truncation Error: [Gerstner and Griebel, 2003, Kouri et al., 2013]

Tensor product quadrature

Isotropic sparse grid quadrature

Anisotropic sparse grid quadrature

Anisotropic sparse grid quadrature: neighbors

Derivation of gradient error indicator

For brevity, let

$$egin{aligned} \mathcal{J}(m{\xi}) &\leftarrow \mathcal{J}(m{u}(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \ &
abla \mathcal{J}(m{\xi}) &\leftarrow
abla \mathcal{J}(m{u}(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \ &
onumber \mathcal{J}_r(m{\xi}) &= \mathcal{J}(m{\Phi}m{u}_r(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \ &
abla \mathcal{J}_r(m{\xi}) &=
abla \mathcal{J}(m{\Phi}m{u}_r(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \ & m{r}_r(m{\xi}) &= r(m{\Phi}m{u}_r(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \ & m{r}_r(m{\xi}) &= r^{m{\lambda}}(m{\Phi}m{u}_r(m{\mu},m{\xi}),\,m{\mu},m{\xi}) \end{aligned}$$

Separate total error into contributions from ROM inexactness and SG truncation

 $||\mathbb{E}[\nabla \mathcal{J}] - \mathbb{E}_{\mathcal{I}}[\nabla \mathcal{J}_r]|| \leq \mathbb{E}\left[||\nabla \mathcal{J} - \nabla \mathcal{J}_r||\right] + ||\mathbb{E}\left[\nabla \mathcal{J}_r\right] - \mathbb{E}_{\mathcal{I}}\left[\nabla \mathcal{J}_r\right]||$

Derivation of gradient error indicator

For brevity, let

$$egin{aligned} \mathcal{J}(m{\xi}) &\leftarrow \mathcal{J}(m{u}(m{\mu},m{\xi}),m{\mu},m{\xi}) \ &
abla \mathcal{J}(m{\xi}) &\leftarrow
abla \mathcal{J}(m{u}(m{\mu},m{\xi}),m{\mu},m{\xi}) \ & \mathcal{J}_r(m{\xi}) &= \mathcal{J}(m{\Phi}m{u}_r(m{\mu},m{\xi}),m{\mu},m{\xi}) \ &
abla \mathcal{J}_r(m{\xi}) &=
abla \mathcal{J}(m{\Phi}m{u}_r(m{\mu},m{\xi}),m{\mu},m{\xi}) \ & m{r}_r(m{\xi}) &= m{r}(m{\Phi}m{u}_r(m{\mu},m{\xi}),m{\mu},m{\xi}) \ & m{r}_r(m{\xi}) &= m{r}^{m{\lambda}}(m{\Phi}m{u}_r(m{\mu},m{\xi}),m{\mu},m{\xi}) \ & m{r}_r^{m{\lambda}}(m{\xi}) &= m{r}^{m{\lambda}}(m{\Phi}m{u}_r(m{\mu},m{\xi}),m{\mu},m{\xi}) \ & m{\mu},m{\xi}) \end{aligned}$$

Separate total error into contributions from ROM inexactness and SG truncation

$$\begin{split} ||\mathbb{E}[\nabla \mathcal{J}] - \mathbb{E}_{\mathcal{I}}[\nabla \mathcal{J}_r]|| &\leq \mathbb{E}\left[||\nabla \mathcal{J} - \nabla \mathcal{J}_r||\right] + ||\mathbb{E}\left[\nabla \mathcal{J}_r\right] - \mathbb{E}_{\mathcal{I}}\left[\nabla \mathcal{J}_r\right]|| \\ &\leq \zeta' \mathbb{E}\left[\alpha_1 \left||\boldsymbol{r}|\right| + \alpha_2 \left||\boldsymbol{r}^{\boldsymbol{\lambda}}|\right|\right] + \mathbb{E}_{\mathcal{I}^c}\left[||\nabla \mathcal{J}_r||\right] \end{split}$$

Derivation of gradient error indicator

For brevity, let

$$egin{aligned} \mathcal{J}(m{\xi}) &\leftarrow \mathcal{J}(m{u}(m{\mu},m{\xi}),m{\mu},m{\xi}) \ &
abla \mathcal{J}(m{\xi}) &\leftarrow
abla \mathcal{J}(m{u}(m{\mu},m{\xi}),m{\mu},m{\xi}) \ & \mathcal{J}_r(m{\xi}) &= \mathcal{J}(m{\Phi}m{u}_r(m{\mu},m{\xi}),m{\mu},m{\xi}) \ &
abla \mathcal{J}_r(m{\xi}) &=
abla \mathcal{J}(m{\Phi}m{u}_r(m{\mu},m{\xi}),m{\mu},m{\xi}) \ & m{r}_r(m{\xi}) &= r(m{\Phi}m{u}_r(m{\mu},m{\xi}),m{\mu},m{\xi}) \ & m{r}_r(m{\xi}) &= r^{m{\lambda}}(m{\Phi}m{u}_r(m{\mu},m{\xi}),m{\mu},m{\xi}) \end{aligned}$$

Separate total error into contributions from ROM inexactness and SG truncation

 $||\mathbb{E}[\nabla \mathcal{J}] - \mathbb{E}_{\mathcal{I}}[\nabla \mathcal{J}_r]|| \leq \mathbb{E}\left[||\nabla \mathcal{J} - \nabla \mathcal{J}_r||\right] + ||\mathbb{E}\left[\nabla \mathcal{J}_r\right] - \mathbb{E}_{\mathcal{I}}\left[\nabla \mathcal{J}_r\right]||$

 $\leq \zeta' \mathbb{E} \left[\alpha_1 \left| \left| \boldsymbol{r} \right| \right| + \alpha_2 \left| \left| \boldsymbol{r}^{\boldsymbol{\lambda}} \right| \right| \right] + \mathbb{E}_{\mathcal{I}^c} \left[\left| \left| \nabla \mathcal{J}_r \right| \right| \right]$

 $\lesssim \zeta \left(\mathbb{E}_{\mathcal{I} \cup \mathcal{N}(\mathcal{I})} \left[\alpha_1 || \boldsymbol{r} || + \alpha_2 \left| \left| \boldsymbol{r}^{\boldsymbol{\lambda}} \right| \right| \right] + \alpha_3 \mathbb{E}_{\mathcal{N}(\mathcal{I})} \left[|| \nabla \mathcal{J}_r || \right] \right)$

CCCCC (

Significant reduction in number of queries to HDM in comparison to state-of-the-art [Kouri et al., 2014]

Significant reduction in number of queries to HDM in comparison to state-of-the-art [Kouri et al., 2014]

At a price ... a large number of ROM evaluations

Trust region method: ROM/SG approximation model

Approximation models built on two sources of inexactness

$$egin{aligned} m_k(oldsymbol{\mu}) &= & \mathbb{E}_{\mathcal{I}_k}\left[\mathcal{J}(oldsymbol{\Phi}_koldsymbol{u}_r(oldsymbol{\mu},\,\cdot),\,oldsymbol{\mu},\,\cdot)
ight] \ \psi_k(oldsymbol{\mu}) &= & \mathbb{E}_{\mathcal{I}'_k}\left[\mathcal{J}(oldsymbol{\Phi}'_koldsymbol{u}_r(oldsymbol{\mu},\,\cdot),\,oldsymbol{\mu},\,\cdot)
ight] \end{aligned}$$

 $\underline{\mathbf{Error\ indicators}}$ that account for both sources of error

$$\begin{split} \vartheta_k(\boldsymbol{\mu}) &= ||\boldsymbol{\mu} - \boldsymbol{\mu}_k||\\ \varphi_k(\boldsymbol{\mu}) &= \alpha_1 \boldsymbol{\mathcal{E}}_1(\boldsymbol{\mu}; \, \mathcal{I}_k, \, \boldsymbol{\Phi}_k) + \alpha_2 \boldsymbol{\mathcal{E}}_2(\boldsymbol{\mu}; \, \mathcal{I}_k, \, \boldsymbol{\Phi}_k) + \alpha_3 \boldsymbol{\mathcal{E}}_4(\boldsymbol{\mu}; \, \mathcal{I}_k, \, \boldsymbol{\Phi}_k)\\ \theta_k(\boldsymbol{\mu}) &= \beta_1(\boldsymbol{\mathcal{E}}_1(\boldsymbol{\mu}; \, \mathcal{I}'_k, \, \boldsymbol{\Phi}'_k) + \boldsymbol{\mathcal{E}}_1(\boldsymbol{\mu}_k; \, \mathcal{I}'_k, \, \boldsymbol{\Phi}'_k)) + \beta_2(\boldsymbol{\mathcal{E}}_3(\boldsymbol{\mu}; \, \mathcal{I}'_k, \, \boldsymbol{\Phi}'_k) + \boldsymbol{\mathcal{E}}_3(\boldsymbol{\mu}_k; \, \mathcal{I}'_k, \, \boldsymbol{\Phi}'_k)) \end{split}$$

Reduced-order model errors

$$\begin{split} \boldsymbol{\mathcal{E}}_{1}(\boldsymbol{\mu}; \boldsymbol{\mathcal{I}}, \boldsymbol{\Phi}) &= \mathbb{E}_{\boldsymbol{\mathcal{I}} \cup \mathcal{N}(\boldsymbol{\mathcal{I}})} \left[|| \boldsymbol{r}(\boldsymbol{\Phi} \boldsymbol{u}_{r}(\boldsymbol{\mu}, \cdot), \boldsymbol{\mu}, \cdot)|| \right] \\ \boldsymbol{\mathcal{E}}_{2}(\boldsymbol{\mu}; \boldsymbol{\mathcal{I}}, \boldsymbol{\Phi}) &= \mathbb{E}_{\boldsymbol{\mathcal{I}} \cup \mathcal{N}(\boldsymbol{\mathcal{I}})} \left[\left| \left| \boldsymbol{r}^{\boldsymbol{\lambda}}(\boldsymbol{\Phi} \boldsymbol{u}_{r}(\boldsymbol{\mu}, \cdot), \boldsymbol{\Psi} \boldsymbol{\lambda}_{r}(\boldsymbol{\mu}, \cdot), \boldsymbol{\mu}, \cdot) \right| \right| \right] \end{split}$$

Sparse grid truncation errors

$$egin{aligned} \mathcal{E}_3(oldsymbol{\mu};\mathcal{I},oldsymbol{\Phi}) &= \mathbb{E}_{\mathcal{N}(\mathcal{I})} \left[|\mathcal{J}(oldsymbol{\Phi}oldsymbol{u}_r(oldsymbol{\mu},\,\cdot\,),\,oldsymbol{\mu},\,\cdot\,)|
ight] \ \mathcal{E}_4(oldsymbol{\mu};\mathcal{I},oldsymbol{\Phi}) &= \mathbb{E}_{\mathcal{N}(\mathcal{I})} \left[||
abla \mathcal{J}(oldsymbol{\Phi}oldsymbol{u}_r(oldsymbol{\mu},\,\cdot\,),\,oldsymbol{\mu},\,\cdot\,)||
ight] \end{aligned}$$

Final requirement for convergence: Adaptivity

With the approximation model, $m_k(\mu)$, and gradient error indicator, $\varphi_k(\mu)$

$$m_k(\boldsymbol{\mu}) = \mathbb{E}_{\mathcal{I}_k} \left[\mathcal{J}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}, \cdot), \, \boldsymbol{\mu}, \cdot) \right]$$

$$\varphi_k(\boldsymbol{\mu}) = \alpha_1 \frac{\boldsymbol{\mathcal{E}}_1}{\boldsymbol{\mathcal{L}}_1}(\boldsymbol{\mu}; \, \mathcal{I}_k, \, \boldsymbol{\Phi}_k) + \alpha_2 \frac{\boldsymbol{\mathcal{E}}_2}{\boldsymbol{\mathcal{E}}_2}(\boldsymbol{\mu}; \, \mathcal{I}_k, \, \boldsymbol{\Phi}_k) + \alpha_3 \boldsymbol{\mathcal{E}}_4(\boldsymbol{\mu}; \, \mathcal{I}_k, \, \boldsymbol{\Phi}_k)$$

the sparse grid \mathcal{I}_k and reduced-order basis Φ_k must be constructed such that the gradient condition holds

$$\varphi_k(\boldsymbol{\mu}_k) \leq \kappa_{\varphi} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\}$$

Define dimension-adaptive greedy method to target each source of error such that the stronger conditions hold

$$\begin{split} & \boldsymbol{\mathcal{E}}_{1}(\boldsymbol{\mu}_{k}; \mathcal{I}, \boldsymbol{\Phi}) \leq \frac{\kappa_{\varphi}}{3\alpha_{1}} \min\{||\nabla m_{k}(\boldsymbol{\mu}_{k})||, \Delta_{k}\} \\ & \boldsymbol{\mathcal{E}}_{2}(\boldsymbol{\mu}_{k}; \mathcal{I}, \boldsymbol{\Phi}) \leq \frac{\kappa_{\varphi}}{3\alpha_{2}} \min\{||\nabla m_{k}(\boldsymbol{\mu}_{k})||, \Delta_{k}\} \\ & \boldsymbol{\mathcal{E}}_{4}(\boldsymbol{\mu}_{k}; \mathcal{I}, \boldsymbol{\Phi}) \leq \frac{\kappa_{\varphi}}{3\alpha_{3}} \min\{||\nabla m_{k}(\boldsymbol{\mu}_{k})||, \Delta_{k}\} \end{split}$$

while
$$\mathcal{E}_4(\Phi, \mathcal{I}, \mu_k) > \frac{\kappa_{\varphi}}{3\alpha_3} \min\{||\nabla m_k(\mu_k)||, \Delta_k\}$$
 do

<u>Refine index set</u>: Dimension-adaptive sparse grids

$$egin{aligned} \mathcal{I}_k \leftarrow \mathcal{I}_k \cup \{\mathbf{j}^*\} & ext{ where } & \mathbf{j}^* = rg\max_{\mathbf{j} \in \mathcal{N}(\mathcal{I}_k)} \mathbb{E}_{\mathbf{j}}\left[||
abla \mathcal{J}(\mathbf{\Phi} m{u}_r(m{\mu},\,\cdot\,),\,m{\mu},\,\cdot\,)||
ight] \end{aligned}$$

while
$$\mathcal{E}_4(\Phi, \mathcal{I}, \boldsymbol{\mu}_k) > rac{\kappa_{\varphi}}{3\alpha_3} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\} ext{ do }$$

<u>Refine index set</u>: Dimension-adaptive sparse grids

$$\mathcal{I}_k \leftarrow \mathcal{I}_k \cup \{\mathbf{j}^*\}$$
 where $\mathbf{j}^* = \operatorname*{arg\,max}_{\mathbf{j} \in \mathcal{N}(\mathcal{I}_k)} \mathbb{E}_{\mathbf{j}} \left[|| \nabla \mathcal{J}(\mathbf{\Phi} \boldsymbol{u}_r(\boldsymbol{\mu}, \cdot), \, \boldsymbol{\mu}, \, \cdot \,) ||
ight]$

 $\begin{array}{ll} \label{eq:reduced-order basis} \textbf{Refine reduced-order basis} \textbf{:} \mbox{ Greedy sampling} \\ \textbf{while} \ \ \mathcal{E}_1(\Phi, \, \mathcal{I}, \, \pmb{\mu}_k) > \frac{\kappa_\varphi}{3\alpha_1} \min\{||\nabla m_k(\pmb{\mu}_k)|| \, , \, \Delta_k\} \ \textbf{do} \end{array}$

$$egin{aligned} \Phi_k &\leftarrow iggl[\Phi_k \quad oldsymbol{u}(oldsymbol{\mu}_k,oldsymbol{\xi}^*) \quad oldsymbol{\lambda}(oldsymbol{\mu}_k,oldsymbol{\xi}^*) iggr] \ oldsymbol{\xi}^* &= rgmax_{oldsymbol{\xi}\in oldsymbol{\Xi}_{\mathbf{j}^*}}
ho(oldsymbol{\xi}) \,||oldsymbol{r}(\Phi_koldsymbol{u}_r(oldsymbol{\mu}_k,oldsymbol{\xi}),oldsymbol{\mu}_k,oldsymbol{\xi})|| \end{aligned}$$

end while

$$\mathbf{while} \ \ \mathcal{E}_4(\mathbf{\Phi}, \, \mathcal{I}, \, \boldsymbol{\mu}_k) > \frac{\kappa_{\varphi}}{3\alpha_3} \min\{||\nabla m_k(\boldsymbol{\mu}_k)|| \, , \, \Delta_k\} \ \mathbf{do}$$

<u>Refine index set</u>: Dimension-adaptive sparse grids

$$\mathcal{I}_k \leftarrow \mathcal{I}_k \cup \{\mathbf{j}^*\}$$
 where $\mathbf{j}^* = rg\max_{\mathbf{j} \in \mathcal{N}(\mathcal{I}_k)} \mathbb{E}_{\mathbf{j}} \left[|| \nabla \mathcal{J}(\mathbf{\Phi} \boldsymbol{u}_r(\boldsymbol{\mu}, \cdot), \, \boldsymbol{\mu}, \, \cdot \,) ||
ight]$

 $\begin{array}{ll} \hline \textbf{Refine reduced-order basis:} & \text{Greedy sampling} \\ \textbf{while} \ \ \mathcal{E}_1(\boldsymbol{\Phi}, \mathcal{I}, \boldsymbol{\mu}_k) > \frac{\kappa_{\varphi}}{3\alpha_1} \min\{||\nabla m_k(\boldsymbol{\mu}_k)||, \Delta_k\} \ \textbf{do} \end{array}$

$$\begin{split} \boldsymbol{\Phi}_k &\leftarrow \begin{bmatrix} \boldsymbol{\Phi}_k & \boldsymbol{u}(\boldsymbol{\mu}_k,\,\boldsymbol{\xi}^*) & \boldsymbol{\lambda}(\boldsymbol{\mu}_k,\,\boldsymbol{\xi}^*) \end{bmatrix} \\ \boldsymbol{\xi}^* &= \operatorname*{arg\,max}_{\boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathbf{j}^*}} \rho(\boldsymbol{\xi}) \left| \left| \boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{u}_r(\boldsymbol{\mu}_k,\,\boldsymbol{\xi}),\,\boldsymbol{\mu}_k,\,\boldsymbol{\xi}) \right| \right| \end{split}$$

end while

while
$$\mathcal{E}_{2}(\Phi, \mathcal{I}, \mu_{k}) > \frac{\kappa_{\varphi}}{3\alpha_{2}} \min\{||\nabla m_{k}(\mu_{k})||, \Delta_{k}\}$$
 do

$$\begin{split} \Phi_k &\leftarrow \begin{bmatrix} \Phi_k & u(\mu_k, \xi^*) & \lambda(\mu_k, \xi^*) \end{bmatrix}\\ \boldsymbol{\xi}^* &= \operatorname*{arg\,max}_{\boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathbf{j}^*}} \rho(\boldsymbol{\xi}) \left| \left| \boldsymbol{r}^{\boldsymbol{\lambda}}(\Phi_k \boldsymbol{u}_r(\mu_k, \boldsymbol{\xi}), \Psi_k \boldsymbol{\lambda}_r(\mu_k, \boldsymbol{\xi}), \boldsymbol{\mu}_k, \boldsymbol{\xi}) \right| \right| \underbrace{\boldsymbol{\xi}^* = \operatorname{arg\,max}_{\boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathbf{j}^*}} \rho(\boldsymbol{\xi}) \left| \left| \boldsymbol{r}^{\boldsymbol{\lambda}}(\Phi_k \boldsymbol{u}_r(\mu_k, \boldsymbol{\xi}), \Psi_k \boldsymbol{\lambda}_r(\mu_k, \boldsymbol{\xi}), \boldsymbol{\mu}_k, \boldsymbol{\xi}) \right| \right| \underbrace{\boldsymbol{\xi}^* = \operatorname{arg\,max}_{\boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathbf{j}^*}} \rho(\boldsymbol{\xi}) \left| \left| \boldsymbol{r}^{\boldsymbol{\lambda}}(\Phi_k \boldsymbol{u}_r(\mu_k, \boldsymbol{\xi}), \Psi_k \boldsymbol{\lambda}_r(\mu_k, \boldsymbol{\xi}), \boldsymbol{\mu}_k, \boldsymbol{\xi}) \right| \right| \underbrace{\boldsymbol{\xi}^* = \operatorname{arg\,max}_{\boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathbf{j}^*}} \rho(\boldsymbol{\xi}) \left| \boldsymbol{r}^{\boldsymbol{\lambda}}(\Phi_k \boldsymbol{u}_r(\mu_k, \boldsymbol{\xi}), \Psi_k \boldsymbol{\lambda}_r(\mu_k, \boldsymbol{\xi}), \boldsymbol{\mu}_k, \boldsymbol{\xi}) \right| \right| \underbrace{\boldsymbol{\xi}^* = \operatorname{arg\,max}_{\boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathbf{j}^*}} \rho(\boldsymbol{\xi}) \left| \boldsymbol{r}^{\boldsymbol{\lambda}}(\Phi_k \boldsymbol{u}_r(\mu_k, \boldsymbol{\xi}), \Psi_k \boldsymbol{\lambda}_r(\mu_k, \boldsymbol{\xi}), \boldsymbol{\mu}_k, \boldsymbol{\xi}) \right| \left| \boldsymbol{\xi}^* = \operatorname{arg\,max}_{\boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathbf{j}^*}} \rho(\boldsymbol{\xi}) \left| \boldsymbol{\xi}^* \right| \mathbf{\xi} \right| \mathbf{\xi} \left| \boldsymbol{\xi}^* \right| \mathbf{\xi} \right| \mathbf{\xi} \left| \boldsymbol{\xi}^* \right| \mathbf{\xi} \left| \boldsymbol{\xi} \right| \mathbf{\xi} \left| \boldsymbol{$$

- Framework introduced for accelerating **deterministic** and **stochastic** PDE-constrained optimization problems
 - Adaptive model reduction
 - Partially converged primal and adjoint solutions
 - $\bullet\,$ Dimension-adaptive sparse grids
- Inexactness managed with flexible trust region method
- Applied to variety of problems in computational mechanics and outperforms state-of-the-art methods
 - $1.6\times$ speedup on (deterministic) shape design of aircraft
 - $100\times$ speedup on (stochastic) optimal control of 1D flow

Extension to time-dependent problems

- **Applications**: inverse problems, optimal flapping flight and swimming⁴ and design of helicopter blades, wind turbines, and turbomachinery
- Monolithic **space-time** formulation of reduced-order model
 - Increased speed due to natural **parallelism** in *space and time*
 - Treat as **steady state** problem in $n_{sd} + 1$ dimensions
- Error indicators and adaptivity algorithms in space-time setting to solve with multifidelity trust region method

Un-optimized flapping motion (left), optimal control (center), and optimal control and time-morphed geometry (right)

ight into bio-locomotion, design of micro-aerial vehicles

 $\begin{array}{ll} \underset{\mu \in \mathbb{R}^{n_{\mu}}}{\text{minimize}} & \mathbb{E}[\mathcal{J}(u, \, \mu, \, \cdot \,)] \\ & \text{subject to} & r(u; \, \mu, \, \xi) = 0 \quad \forall \xi \in \Xi \end{array}$ $\bullet \ r : \mathbb{R}^{n_{u}} \times \mathbb{R}^{n_{\mu}} \times \mathbb{R}^{n_{\xi}} \to \mathbb{R}^{n_{u}} \qquad & \text{discretized stochastic PDE} \\ \bullet \ \mathcal{J} : \mathbb{R}^{n_{u}} \times \mathbb{R}^{n_{\mu}} \times \mathbb{R}^{n_{\xi}} \to \mathbb{R} \qquad & \text{quantity of interest} \end{array}$

- $\boldsymbol{u} \in \mathbb{R}^{n_{\boldsymbol{u}}}$
- $\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}$
- $\boldsymbol{\xi} \in \mathbb{R}^{n_{\boldsymbol{\xi}}}$

•
$$\mathbb{E}[\mathcal{F}] \equiv \int_{\Xi} \mathcal{F}(\boldsymbol{\xi}) \rho(\boldsymbol{\xi}) d\boldsymbol{\xi}$$

Each function evaluation requires integration over stochastic space - expensive

PDE state vector

stochastic parameters

(deterministic) optimization parameters

Optimizer

Dual PDE

BERKELEY LAB

80

Stochastic collocation using anisotropic sparse grid nodes to approximate integral with summation

$$\begin{array}{ll} \underset{u \in \mathbb{R}^{n_{u}}, \ \mu \in \mathbb{R}^{n_{\mu}}}{\text{minimize}} & \mathbb{E}[\mathcal{J}(u, \ \mu, \ \cdot)] \\ \text{subject to} & r(u, \ \mu, \ \xi) = 0 \quad \forall \xi \in \Xi \end{array}$$

\downarrow

$$\begin{array}{ll} \underset{u \in \mathbb{R}^{n_{u}}, \ \mu \in \mathbb{R}^{n_{\mu}}}{\text{minimize}} & \mathbb{E}_{\mathcal{I}}[\mathcal{J}(u, \ \mu, \ \cdot)] \\ \text{subject to} & r(u, \ \mu, \ \xi) = 0 \quad \forall \xi \in \Xi_{\mathcal{I}} \end{array}$$

[Kouri et al., 2013, Kouri et al., 2014]

Second source of inexactness: reduced-order models

Stochastic collocation of the reduced-order model over anisotropic sparse grid nodes used to approximate integral with cheap summation

 $\begin{array}{ll} \underset{u \in \mathbb{R}^{n_{u}}, \ \mu \in \mathbb{R}^{n_{\mu}}}{\text{minimize}} & \mathbb{E}_{\mathcal{I}}[\mathcal{J}(u, \ \mu, \ \cdot)] \\ \text{subject to} & r(u, \ \mu, \ \xi) = 0 \quad \forall \xi \in \Xi_{\mathcal{I}} \end{array}$

 \downarrow

 $\begin{array}{l} \underset{\boldsymbol{u}_r \in \mathbb{R}^{k_{\boldsymbol{u}}}, \ \boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} \quad \mathbb{E}_{\mathcal{I}}[\mathcal{J}(\boldsymbol{\Phi}\boldsymbol{u}_r, \ \boldsymbol{\mu}, \ \cdot)] \\ \text{subject to} \quad \boldsymbol{\Psi}^T \boldsymbol{r}(\boldsymbol{\Phi}\boldsymbol{u}_r, \ \boldsymbol{\mu}, \ \boldsymbol{\xi}) = 0 \quad \forall \boldsymbol{\xi} \in \boldsymbol{\Xi}_{\mathcal{I}} \end{array}$

Proposed approach: managed inexactness

Replace expensive PDE with inexpensive approximation model

- Reduced-order models used for inexact PDE evaluations
- Anisotropic sparse grids used for *inexact integration* of risk measures

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad F(\boldsymbol{\mu}) \quad \longrightarrow \quad \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad m_k(\boldsymbol{\mu})$$

Manage inexactness with trust region method

- Embedded in globally convergent **trust region** method
- Error indicators to account for *all* sources of inexactness
- **Refinement** of approximation model using *greedy algorithms*

$$\underset{\boldsymbol{\mu}\in\mathbb{R}^{n_{\boldsymbol{\mu}}}}{\operatorname{minimize}} \quad F(\boldsymbol{\mu}) \qquad \longrightarrow$$

 $\begin{array}{ll} \underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} & m_{k}(\boldsymbol{\mu}) \\ \text{subject to} & ||\boldsymbol{\mu} - \boldsymbol{\mu}_{k}|| \leq \Delta_{k} \end{array}$

Source of inexactness: anisotropic sparse grids

Source of inexactness: anisotropic sparse grids

• Optimization problem:

$$\underset{\boldsymbol{\mu} \in \mathbb{R}^{n_{\boldsymbol{\mu}}}}{\text{minimize}} \quad \int_{\boldsymbol{\Xi}} \rho(\boldsymbol{\xi}) \left[\int_{0}^{1} \frac{1}{2} (u(\boldsymbol{\mu}, \boldsymbol{\xi}, \, x) - \bar{u}(x))^2 \, dx + \frac{\alpha}{2} \int_{0}^{1} z(\boldsymbol{\mu}, \, x)^2 \, dx \right] d\boldsymbol{\xi}$$

where $u(\boldsymbol{\mu}, \boldsymbol{\xi}, x)$ solves

$$\begin{aligned} -\nu(\boldsymbol{\xi})\partial_{xx}u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,x) + u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,x)\partial_{x}u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,x) &= z(\boldsymbol{\mu},\,x) \quad x \in (0,\,1), \quad \boldsymbol{\xi} \in \boldsymbol{\Xi} \\ u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,0) &= d_0(\boldsymbol{\xi}) \qquad u(\boldsymbol{\mu},\,\boldsymbol{\xi},\,1) = d_1(\boldsymbol{\xi}) \end{aligned}$$

- Target state: $\bar{u}(x) \equiv 1$
- Stochastic Space: $\boldsymbol{\Xi} = [-1, 1]^3, \, \rho(\boldsymbol{\xi}) d\boldsymbol{\xi} = 2^{-3} d\boldsymbol{\xi}$

$$u(\boldsymbol{\xi}) = 10^{\boldsymbol{\xi}_1 - 2} \qquad d_0(\boldsymbol{\xi}) = 1 + \frac{\boldsymbol{\xi}_2}{1000} \qquad d_1(\boldsymbol{\xi}) = \frac{\boldsymbol{\xi}_3}{1000}$$

• **Parametrization**: $z(\mu, x)$ – cubic splines with 51 knots, $n_{\mu} = 53$

Optimal control and statistics

timal control and corresponding mean state $(--) \pm \text{one} (---)$ and two (standard deviations

BERKEL

	Majo	or iteration				
$F(\boldsymbol{\mu}_k)$	$m_k(oldsymbol{\mu}_k)$	$F(\hat{\mu}_k)$	$m_k(\hat{oldsymbol{\mu}}_k)$	$ \nabla F(\boldsymbol{\mu}_k) $	$ ho_k$	Success?
6.6506e-02	7.2694e-02	5.3655e-02	5.9922e-02	2.2959e-02	$1.0257e{+}00$	1.0000e+00
5.3655e-02	5.9593e-02	5.0783e-02	5.7152e-02	2.3424e-03	9.7512e-01	1.0000e+00
5.0783e-02	5.0670e-02	5.0412e-02	5.0292e-02	1.9724e-03	9.8351e-01	1.0000e+00
5.0412e-02	5.0292e-02	5.0405e-02	5.0284e-02	9.2654e-05	8.7479e-01	1.0000e+00
5.0405e-02	5.0404e-02	5.0403e-02	5.0401e-02	8.3139e-05	9.9946e-01	1.0000e+00
5.0403e-02	5.0401e-02	-	-	2.2846e-06	-	-

 $(\longrightarrow) |F(\boldsymbol{\mu}_k) - F(\boldsymbol{\mu}^*)|$ $(- \bullet -) |F(\hat{\boldsymbol{\mu}}_k) - F(\boldsymbol{\mu}^*)|$

 $(--) |m_k(\boldsymbol{\mu}_k) - F(\boldsymbol{\mu}^*)|$ $(--) |m_k(\hat{\boldsymbol{\mu}}_k) - F(\boldsymbol{\mu}^*)|$

BERKELEY LAE

Convergence history of trust region method built on two-level approximation

 $Cost = nHdmPrim + 0.5 \times nHdmAdj + \tau^{-1} \times (nRomPrim + 0.5 \times nRomAdj)$

evel isotropic SG (—), dimension-adaptive SG [Kouri et al., 2014] (), and posed ROM/SG for $\tau = 1$ (), $\tau = 10$ (), $\tau = 100$ (), $\tau = \infty$ (received and the second se

 $Cost = nHdmPrim + 0.5 \times nHdmAdj + \tau^{-1} \times (nRomPrim + 0.5 \times nRomAdj)$

evel isotropic SG (—), dimension-adaptive SG [Kouri et al., 2014] (–), and posed ROM/SG for $\tau = 1$ (), $\tau = 10$ (), $\tau = 100$ (), $\tau = \infty$ for $\tau = 1$

 $Cost = nHdmPrim + 0.5 \times nHdmAdj + \tau^{-1} \times (nRomPrim + 0.5 \times nRomAdj)$

evel isotropic SG (—), dimension-adaptive SG [Kouri et al., 2014] (–), and posed ROM/SG for $\tau = 1$ (–), $\tau = 10$ (–), $\tau = 100$ (–), $\tau = \infty$ for $\tau = 1$ (–)

 $Cost = nHdmPrim + 0.5 \times nHdmAdj + \tau^{-1} \times (nRomPrim + 0.5 \times nRomAdj)$

evel isotropic SG (—), dimension-adaptive SG [Kouri et al., 2014] (–), and posed ROM/SG for $\tau = 1$ (–), $\tau = 10$ (–), $\tau = 100$ (–), $\tau = \infty$ for $\tau = 1$ (–)

 $Cost = nHdmPrim + 0.5 \times nHdmAdj + \tau^{-1} \times (nRomPrim + 0.5 \times nRomAdj)$

evel isotropic SG (—), dimension-adaptive SG [Kouri et al., 2014] (–), and posed ROM/SG for $\tau = 1$ (–), $\tau = 10$ (–), $\tau = 100$ (–), $\tau = \infty$ (received at

 $Cost = nHdmPrim + 0.5 \times nHdmAdj + \tau^{-1} \times (nRomPrim + 0.5 \times nRomAdj)$

evel isotropic SG (—), dimension-adaptive SG [Kouri et al., 2014] (–), and posed ROM/SG for $\tau = 1$ (–), $\tau = 10$ (–), $\tau = 100$ (–), $\tau = \infty$ (–), $\tau = 0$