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Abstract

Optimization problems constrained by Partial Di↵erential Equations (PDEs) are ubiquitous in mod-

ern science and engineering. They play a central role in optimal design and control of multiphysics

systems, as well as nondestructive evaluation and detection, and inverse problems. Methods to

solve these optimization problems rely on potentially many numerical solutions of the underlying

equations. For complicated physical interactions taking place on complex domains, these solutions

will be computationally expensive—in terms of both time and resources—to obtain, rendering the

optimization procedure di�cult or intractable.

This dissertation introduces a globally convergent, error-aware trust region algorithm for lever-

aging inexpensive approximation models to greatly reduce the cost of solving PDE-constrained

optimization problems in increasingly complex scenarios. While the trust region theory is general,

in that it is agnostic to the particular form of the approximation model, provided it possesses certain

properties, this work employs reduced-order models based on the method of snapshots and Proper

Orthogonal Decomposition (POD). The trust region algorithm proceeds by progressively refining

the fidelity of the reduced-order model while converging to the optimal solution. Thus, the reduced-

order model is trained exactly along the optimization trajectory, circumventing the task of training

in a potentially high-dimensional parameter space. The proposed method is shown to find the opti-

mal aerodynamic shape of a full aircraft configuration in about half the time required by accepted

methods.

The proposed error-aware trust region algorithm is extended to handle the case where uncertain-

ties are present in the governing equations. In such situations, the goal is to find a design or control

that is risk-averse with respect to some quantity of interest. The objective function and constraints

in these problems usually correspond to integrals of quantities of interest over the stochastic space,

which will inevitably require many solutions of the underlying partial di↵erential equation. For

this reason, dimension-adaptive sparse grids are combined with reduced-order models to define an

inexpensive approximation model, which is wrapped in the error-aware trust region framework to

ensure convergence to the optimal risk-averse solution. This framework is demonstrated on a model

problem from computational mechanics and shown to be several orders of magnitude faster than

existing methods.
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Chapter 1

Introduction

1.1 Motivation

Optimization problems governed by partial di↵erential equations, or PDE-constrained optimiza-

tion problems, arise in nearly every branch of engineering and science. The most classical PDE-

constrained optimization problems arise in the context of design and control of engineering systems.

The solutions of these problems promise to deliver engineering systems with superior performance

(in some chosen metric) than otherwise possible, and will have the greatest impact in highly complex

situations where intuition breaks down and prototyping and experimentation are expensive, di�cult,

or dangerous. Topological optimization can lead to lightweight, highly optimized designs intended to

operate in volatile multiphysics environments [180], which can be realized using 3D printing or addi-

tive manufacturing technology [111, 203]. Topology optimization also promises to have widespread

impact in medicine, specifically with regard to medical implants, since optimized, patient-specific

implants can be realized [213]. Shape optimization has been used to design aircraft and automobiles

with superior aerodynamic performance [164, 163, 123, 55] and reduced environmental and noise

[50, 73] impact. Shape optimization has also been used in biological applications, e.g., to design the

shape of the incoming branch of the aorto-coronaric bypass [160, 171]. Boundary and volumetric

control have been used to drive the state of an engineering system toward some desired using source

terms, e.g., diverting heat from a microprocessor using a fan.

PDE-constrained optimization problems also arise in the context of material and initial condition

inversion. In material inversion problems, an unknown material distribution must be inferred from

the response of a system to known inputs. Nondestructive evaluation [39, 72] seeks to determine

the material distribution of a solid object in situ, i.e., without extracting a sample and performing

laboratory tests, from the response measured from structural and acoustic inputs to detect structural

defects prior to operation. A similar PDE-constrained optimization problem underlies the emerging

technology of full waveform inversion [195] where the material properties of the Earth’s crust are

sought in order to detect the location and size of oil reservoirs. In initial condition inversion, the

1
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initial state of a system must be inferred from measurements at later times. An important instance

of such a PDE-constrained optimization problem occurs in the determination of the source of a

contaminant given its current configuration.

The problems considered to this point have been posed in the ideal setting of certain knowl-

edge of the data defining the coe�cients (material properties) and boundary conditions (loads) of

the partial di↵erential equation describing the physical system of interest. This is not realistic as

all physical systems, particularly those characterized by a high degree of volatility, are plagued

with uncertainties. An important consideration in any discipline in science and engineering is the

robustness of a particular system with respect to these uncertainties. PDE-constrained optimiza-

tion problems also arise when attempting to quantify the uncertainty in quantities of interest of

PDEs as a result of uncertain data or input. For example, in the Bayesian framework, locating the

Maximum A Posteriori (MAP) point is a required step in importance sampling [134], i.e., where

samples are e�ciently drawn from the posterior distribution of the uncertain PDE, and amounts to

a PDE-constrained optimization problem. Beyond simply using PDE-constrained optimization to

facilitate uncertainty quantification, it is important to incorporate uncertainty quantification into

the optimization problem to obtain designs and controls that are risk-averse with respect to the un-

certainties. This leads to PDE-constrained optimization under uncertainty—optimization problems

constrained by stochastic partial di↵erential equations with objective and constraints defined as risk

or hazard measures of its quantities of interests. These hazard measures usually penalize variance

from the mean or rare, catastrophic events.

While the potential benefit of widespread adoption of PDE-constrained optimization in engi-

neering and scientific practice are profound, a number of factors prevent this, most notably the

large computational cost, in terms of computing time and resources, associated with these problems.

Often, particularly in relevant 3D applications, partial di↵erential equations require a massive dis-

cretization to accurately resolve the underlying physics and the solution of the resulting (sequence

of) nonlinear equations requires significant computing time on a supercomputer. PDE-constrained

optimization problems require potentially many queries to the underlying discretized primal and dual

PDE to iteratively progress toward the optimal solution. Since even a single PDE solve constitutes a

significant investment in computational resources, the many-query setting of PDE-constrained opti-

mization exacerbates this problem and, in some cases, can be prohibitively expensive. This situation

is further complicated from the presence of uncertainty that exists in every physical setting, particu-

larly those with a high degree of volatility. In reality, the boundary conditions, material properties,

and sources terms of a system are not known with certainty and cannot be modeled as such if one

wishes to discover solutions that are robust with respect to these uncertainties. Depending on the

number of stochastic parameters incorporated into the PDE, the quantification of uncertainty in an

optimization problem will increase the computational cost by potentially many orders of magnitude.

This e↵ectively makes these problems infeasible for all except the smallest academic problems.
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1.2 Strategy and Objectives

The primary objective of this thesis is to develop a series of optimization methods to solve large-scale

deterministic and stochastic PDE-constrained optimization problems that can largely circumvent the

prohibitive cost of repeatedly running computational physics simulations without compromising the

quality of the resulting optimum. Focus will be placed on methods that apply to complex, nonlinear

partial di↵erential equations that do not possess significant structure, i.e., linearity, ellipticity, and

coercivity, that can be used to develop inexpensive, computable error bounds. The strategy taken

to accomplish this objective is modular in the sense that two independent technologies will be

developed and later combined and specialized to the context of deterministic and stochastic PDE-

constrained optimization. The two foundational technologies that are developed for this purpose

are: (1) a globally convergent, generalized trust region method for the management of approximation

models in the context of optimization and (2) minimum-residual, projection-based reduced-order and

hyperreduced models as low-dimensional approximations of the discretized PDE.

In the context of deterministic PDE-constrained optimization, these technologies, along with

the concept of a partially converged PDE solution, will be combined to yield an e�cient, globally

convergent optimization procedure. In the context of stochastic PDE-constrained optimization,

projection-based reduced-order models and dimension-adaptive sparse grids will define an e�cient

approximation model based on two levels of inexactness. This two-level approximation will be nested

in the generalized trust region method to produce an e�cient, globally convergent optimization

procedure.

1.3 Literature Review

This work builds on several foundational technologies including PDE-constrained optimization, trust

region methods, projection-based model reduction, and surrogate methods for PDE-constrained

optimization. This section presents a brief literature review of each technology and outlines the

contributions of this thesis to the state-of-the-art.

1.3.1 PDE-Constrained Optimization

This work is primarily concerned with the e�cient solution of optimization problems governed by

partial di↵erential equations, in both the deterministic and stochastic setting. This section provides

a brief literature review of deterministic and stochastic PDE-constrained optimization with an ex-

tensive mathematical formulation of PDE-constrained optimization problems provided in Chapter 2.

PDE-constrained optimization has been extensively studied in the case where the underlying

partial di↵erential equation is deterministic. A thorough review of the topic is provided in the

references [78, 96]. The PDE-constrained optimization problem is naturally posed in a continuous

setting [100, 135], that is, the PDE itself is a constraint of the optimization problem and the ob-

jective function and “side” constraints are defined by integrating the PDE solution over (portions)
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of the spatio-temporal domain. The corresponding optimality conditions are a system of partial

di↵erential equations that must be discretized to be solvable in a computational setting. A more

common and practical approach, particularly in large-scale implementations, defines an optimization

problem constrained by the discretized PDE, resulting in an optimality system consisting of a system

of discrete nonlinear equations [138, 187, 130, 140]. Once the optimization setting has been chosen,

the optimization problem can be solved using a full space [147, 69, 91, 116, 2] or reduced space

[100, 197, 138, 108, 109, 210] approach. The reduced space approach uses a PDE solver to eliminate

the PDE constraint from the optimization problem while the full space approach considers the PDE

as a constraint and directly solves the complete optimization problem. If the reduced space method

is employed and a gradient-based optimizer is used, the sensitivity [80, 138, 129, 127] or adjoint

[100, 197, 187, 130, 123] method are required to compute the required gradients of the optimiza-

tion functionals. The relative e�ciency of these methods depends on the number of optimization

variables and constraints: the sensitivity method is more e�cient if there are more constraints than

variables and the adjoint method is more e�cient in the opposite case. These concepts regarding

the continuous versus discrete formulation, full space versus reduced space approach, and sensitiv-

ity versus adjoint method for computing gradients apply whether the partial di↵erential equation

under consideration is static or transient [88, 116, 136, 124, 205, 140, 55, 132, 211, 212]. The case

where the PDE is unsteady represents a significant increase in computational expense as there are

substantially more optimization variables in the full space approach (one for each spatial degree of

freedom at each timestep) or the full transient PDE must be resolved at each optimization iteration

in the reduced space approach. This work will solely consider the discrete formulation of the PDE-

constrained optimization problem, which will be solved using the reduced space approach. Both the

sensitivity and adjoint methods will be used to compute gradients of quantities of interest.

In addition to the many considerations involved in the formulation and solution of deterministic

PDE-constrained optimization problems, the case where the underlying PDE depends on random

data [13, 141, 142, 199, 204, 12] involves an additional component—treatment of the stochastic

variables. Stochastic Galerkin [13] and collocation [12] are popular techniques for discretizing the

stochastic space associated with the PDE. This work will solely consider the non-intrusive approach

of stochastic collocation [24, 23, 22, 178, 188, 107] and the collocation nodes will be defined using

sparse grids [184, 144, 66, 145, 156, 18, 157, 67, 29, 146]. While there has been work considering

random optimization variables [24, 30], this work will consider the optimization variables to be

deterministic quantities, with the data underlying the PDE (boundary conditions, coe�cients) as

uncertain. These instances of PDE-constrained optimization problems under uncertainty can be

many orders of magnitude more expensive than the deterministic counterpart since the PDE solution

must be resolved over the stochastic space, which may be high dimensional. While these problems

have been solved in a number of relevant applications [30, 49, 178], they are impractically expensive

for many important engineering and science applications.
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1.3.2 Trust Region Methods

One of the foundational technologies that this thesis builds upon and extensively utilizes are trust

region methods for numerical optimization. Trust region methods are a popular and robust globaliza-

tion strategy for numerical optimization solvers, that is, a framework for ensuring a local minimum is

obtained, regardless of the starting point. While they are not usually considered as e�cient as line-

search methods [71, 143], they are popular due to their robustness and flexibility. Let F : RNµ ! R
define a function to be minimized and suppose evaluations of F (µ) and rF (µ) are expensive. Early

trust region methods replaced the potentially expensive optimization problem

minimize
µ2RNµ

F (µ)

with the inexpensive quadratic program

minimize
µ2RNµ

m

k

(µ) := F (µ
k

) +rF (µ
k

)(µ� µ
k

) +
1

2
(µ� µ

k

)TB
k

(µ� µ
k

)

subject to kµ� µ
k

k  �
k

,

where B
k

is a symmetric positive-definite approximation of the Hessian r2

F (µ
k

). The solution of

this trust region subproblem provides a candidate for the new trust region center and, depending on

how well the reduction actually achieved by accepting the step compares to the reduction predicted

by the quadratic model, the step is accepted or rejected and the trust region radius �
k

is modified

accordingly. The quality of the trust region step is assessed by comparing the actual-to-predicted

reduction ratio (⇢
k

) to unity

⇢

k

=
F (µ

k

)� F (µ̂
k

)

m

k

(µ
k

)�m

k

(µ̂
k

)
,

where µ̂
k

is the candidate step, defined as the solution of the trust region subproblem. Once the

details of the step acceptance and radius modification are complete, it can be shown [48] that the

sequence of trust region centers {µ
k

} converges to a first-order critical point

lim
k!1

krF (µ
k

)k = 0.

The pivotal work in [159, 133] established convergence under only mild conditions—known as the

fraction of Cauchy decrease—on the candidate step produced by the quadratic program. A slew

of specialized, e�cient solvers have been developed that generate steps guaranteed to satisfy the

fraction of Cauchy decrease; see [133, 48] for an extensive overview.

In many applications, it may be expensive or impossible to evaluate the objective function or

its gradient to construct the quadratic approximation, e.g., if F (µ) corresponds to the quantity of

interest of a partial di↵erential equation or an iterative linear solver [93, 166, 92] is used to compute to

compute F (µ) orrF (µ), and a host of work [133, 189, 34, 35, 36, 48, 93, 216, 108, 109] has been done

to allow for inexact gradient evaluations to be used in the definition of the trust region subproblem
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and inexact objective evaluations in the computation of ⇢
k

. Moré [133] introduced an inexact gradient

condition that requires the gradient approximation at the trust region center, g
k

, asymptotically

approaches the true gradient, i.e., krF (µ
k

)� g
k

k ! 0 for any convergent sequence {µ
k

}. While

this provides substantial flexibility over previous work that requires first-order consistency of the

approximation and model (g
k

= rF (µ
k

)), this condition does not suggest an accuracy condition on

g
k

at a particular iteration. Carter [34, 35, 36] suggested the relative gradient error condition

krF (µ
k

)� g
k

k  ⌘ kg
k

k ⌘ 2 (0, 1),

which has served as the basis for many trust region model management methods, including the

popular Trust Region Proper Orthogonal Decomposition [10] method. The Carter condition is

useful because it does not require g
k

be recomputed to higher accuracy after a failed step; however,

it requires the evaluation of the gradient error (or a tight bound), which may be impractical in many

situations. Toint [189] suggested the gradient condition

krF (µ
k

)� g
k

k  min{
1

�
k

, 

2

} 

1

, 

2

> 0

that requires increased accuracy as �
k

decreases, i.e., after failed iterations, but relies on arbitrary

constants 
1

, 
2

. Heinkenschloss and Vincent [93] suggested a similar gradient condition in the

context of a Sequential Quadratic Programming (SQP) method

krF (µ
k

)� g
k

k  ⇠min{kg
k

k , �
k

} ⇠ > 0

that requires increased accuracy after failed iterations or near convergence and also depends on an

arbitrary constant. The arbitrary constants required by the Toint [189] and Heinkenschloss-Vincent

[93] bounds are significant as they permit the use of error indicators that can completely circumvent

the need to compute or tightly bound the gradient error. Suppose an error indicator '
k

: RNµ ! R
can be derived such that

krF (µ
k

)� g
k

k  ⇠'
k

(µ
k

) ⇠ > 0,

where ⇠ > 0 is an arbitrary constant. Then the Heinkenschloss-Vincent [93] gradient condition will

be satisfied if the error indicator satisfies

'

k

(µ
k

)  min{kg
k

k , �
k

},

where  > 0 is any user-defined constant. Since the error indicator is solely used to enforce the

required gradient condition, the constant ⇠ > 0 is never computed and may depend on quantities

that, in general, cannot be computed such as Lipschitz constants or bounds on various quantities.

This work employs the Heinkenschloss-Vincent condition due to the required generality in handling

complex, nonlinear PDE-constrained optimization problems where tight gradient error bounds are

not readily available.
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Similar to the inexact gradient condition used in the trust region subproblem, conditions have

been developed [34, 216, 109] for using inexact objective function evaluations in the actual-to-

predicted reduction ratio, ⇢
k

. The asymptotic condition in [109] allows for the same flexibility as

the Heinkenschloss-Vincent gradient condition and will be used in this work. Kouri [109] replaced

the computation of ⇢
k

with

⇢̃

k

=
 

k

(µ
k

)�  
k

(µ̂
k

)

m

k

(µ
k

)�m

k

(µ̂
k

)
,

where  
k

: RNµ ! R is the inexact objective model that satisfies

|F (µ
k

)� F (µ̂
k

) +  

k

(µ̂
k

)�  
k

(µ
k

)|  � [⌘min{m
k

(µ
k

)�m

k

(µ̂
k

), r
k

}]1/! � > 0

and � is an arbitrary constant, {r
k

}1
k=1

is a forcing sequence such that r

k

! 0, and µ̂
k

is the

candidate step at iteration k. This condition permits the use of an error indicator ✓
k

: RNµ ! R
such that

|F (µ
k

)� F (µ) +  

k

(µ)�  
k

(µ
k

)|  �✓
k

(µ) � > 0.

The true error can be disregarded and the inexact objective condition enforced solely based on the

error indicator

✓

k

(µ̂
k

)!  ⌘min{m
k

(µ
k

)�m

k

(µ̂
k

), r
k

},

where !, ⌘ 2 (0, 1) are algorithmic constants. When the Heinkenschloss-Vincent gradient condition

[93] and Kouri objective condition [109] are combined into a single trust region method, as seen in

[109], the entire algorithm proceeds without requiring queries to F (µ) or rF (µ) and guarantees

global convergence—this flexibility will be built upon and leveraged in this work as I look to develop

methods that address large-scale, expensive problems where inexpensive, tight error bounds are not

available.

In many cases, it is possible to obtain an approximation that is superior to the basic quadratic

model, which can be used to provide a better approximation model m

k

(µ) in the trust region

framework. Alexandrov [4, 6] introduced the trust region model management framework that al-

lows for this and proves global convergence, provided the approximation model satisfies first-order

consistency at trust region centers

m

k

(µ
k

) = F (µ
k

) rm
k

(µ
k

) = rF (µ
k

).

These requirements can be weakened by introducing the inexact gradient conditions of [189, 35, 93]

and inexact objective condition of [34, 109]. This flexibility has been leveraged in a number of

contexts, most notably the Trust Region Proper Orthogonal Decomposition method [10, 57, 1,

170, 186] where the approximation model is taken as the projection-based reduced-order model

whose reduced basis is computed via Proper Orthogonal Decomposition (POD) and the method

of snapshots [183] and the Carter condition [35] is employed. It was also leveraged in [108, 109]

in the context of PDE-constrained optimization uncertainty where the model problem employed
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dimension-adaptive sparse grids to approximate the integral of the PDE quantity of interest over

the stochastic space.

1.3.3 Projection-Based Model Reduction

Another pivotal technology in this work is projection-based model reduction, which will be used to

define inexpensive approximation models for the expensive PDE discretization and solver underlying

the PDE-constrained optimization problem of interest. The concepts underlying modern reduced-

order models have been used in the context of modal decomposition for linear structural dynamics

for several decades [65]. In this approach, the dynamics of a particular structure are approximated

using its dominant modes, which are computed via an eigenvalue decomposition of the system mass

and sti↵ness matrices. Generalization to the case of a nonlinear structure exist [98], but have not

seen the same widespread adoption as the linear case.

Modern approaches to projection-based model reduction include the reduced basis method [121,

122, 17, 173] and methods based on Proper Orthogonal Decomposition (POD) [21, 101] and the

method of snapshots [183]. The reduced basis method employs a variational framework and con-

structs a reduced basis from solutions of the underlying PDE that are greedily sampled in the

parameter space at locations where an inexpensive error bound on the reduced-order model is max-

imized [149, 173]. This is usually embedded in an o✏ine-online framework [17, 149, 173] where all

expensive operations related to sampling the PDE and construction of the reduced basis are con-

fined to an o✏ine phase and the inexpensive reduced-order model is repeatedly queried in the online

phase. While this method possesses a beautiful mathematical framework, it relies on properties

of the underlying PDE such as linearity and ellipticity for the derivation of the error bounds and

the e�cient o✏ine-online decomposition. POD-based model reduction is a general framework that

uses POD to compress “snapshots” of the PDE solution at particular time instances and parameter

configurations to generate a physics-based basis that will be used to approximate the solution. The

governing equations are restricted to a low-dimensional “trial” subspace and projected onto an ap-

propriate “test” subspace. The result is a small nonlinear system of equations—few unknowns from

the introduction of the trial subspace and few equations from the projection onto the test subspace.

An increasing popular approach in model reduction is to choose the test basis such that the resulting

reduced-order model minimizes the residual in some norm [31, 89]. Such reduced-order models have

been called “optimal” for a given trial subspace in this particular norm [31]. These “optimal” or

minimum-residual reduced-order models have been extensively studied in [115, 28, 31, 89]. Chapter 4

details several properties of minimum-residual reduced-order models, some of which are new, that

will be used in Chapters 5–6 in the construction of optimization methods based on reduced-order

models. An important contribution of this work is the extension of the concept of minimum-residual

reduced-order models from the primal setting to sensitivity and adjoint PDEs. It will be shown that

this approach to compute reduced sensitivities and adjoints will circumvent many di�culties that

arise in directly considering the sensitivity or adjoint of a minimum-residual reduced-order model.

Furthermore, conditions will be provided under which the minimum-residual sensitivity/adjoint
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reduced-order models agree with the sensitivity/adjoint of the primal reduced-order model. These

contributions are provided in Chapter 4.

Both the reduced basis method and POD-based methods construct the trial basis from solution

snapshots. A number of works have considered snapshots based on other types of information,

including sensitivities [87, 86, 32, 85, 52, 210, 198], adjoints [57, 74], unconverged solutions [198],

residuals at unconverged solutions [198], and Krylov vectors from the linear system solve that arises

at each Newton-Raphson iteration [198]. However, it is well-known that the singular value decom-

position underlying POD is sensitive to the relative scaling of the columns in the data matrix and

this heterogeneous collection of snapshots should not be carelessly lumped into a single data matrix

for compression. That is, when incorporating fundamentally di↵erent types of snapshots (entries

have di↵erent physical units and likely di↵erent scales), care must be taken to ensure the resulting

decomposition is useful. The work in [32] weighs sensitivities by increment in the parameter to make

their units consistent with primal snapshots. A more general approach taken in [74, 210, 198] is to

use POD to compress on each type of snapshot individually then concatenate the resulting basis. In

[52] a separate basis was constructed for each sensitivity in the construction of a sensitivity ROM,

each of which was computed based on POD of snapshots of the corresponding sensitivity. This work

builds on the approach in [74, 210, 198] by using POD to build a basis from homogeneous snapshot

types and combining the results into a single basis. I further generalize this method to ensure partic-

ular snapshots are preserved in the resulting subspace. This will be pivotal in guaranteeing required

accuracy at trust region centers when the model reduction technology is combined with the trust

region method of Chapter 3 to produce globally convergent, e�cient deterministic and stochastic

PDE-constrained optimization solvers in Chapters 5–6.

Finally, partial di↵erential equations that do not possess an a�ne dependence on their parameters

or state vector require an additional level of approximation for online e�ciency. This additional

approximation, referred to as hyperreduction, is required to reduce the complexity of evaluating

nonlinear terms that are not amenable to precomputation [17, 175, 115, 41, 31, 59]. An overview

of the most popular hyperreduction methods are provided in Section 4.2.3. Nonlinearities that are

polynomial do not strictly require hyperreduction since they are amenable to precomputation and

all dependence on the large dimension of the underlying PDE can be confined to the o✏ine phase

[149, 14, 16]. However, the approach quickly scales poorly with the size of the reduced-order model

as the highest polynomial degree increases, e.g., they usually scale as O(km+1

u

) where k

u

is the

ROM size and m is the polynomial order. Section 4.2.1 provides a detailed formulation of fully

discrete PDEs with polynomial nonlinearities in the state and parameter, as well as the details of

the precomputation of the monomial terms.

1.3.4 Surrogate Methods for PDE-Constrained Optimization

The methods introduced and developed in this thesis fall into the class of surrogate-based optimiza-

tion methods, whereby the expensive, high-fidelity model that defines the “true” objective F (µ) and

gradient rF (µ) is replaced by an inexpensive approximation. The surrogate models can be based
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on response surfaces [63], adaptive spatial discretizations [216], loose tolerances on linear solvers

[166, 216], partially converged solutions [62], projection-based reduced-order models [10, 171, 210],

and many other approximation models. This section provides a brief overview of methods that

use projection-based reduced-order models as a surrogate as they are most relevant to the methods

developed in this thesis. For a thorough review of surrogate-based optimization methods, see [63].

The methods reviewed in this section fall into two main categories: (1) those that adhere to a strict

o✏ine-online decomposition and (2) those that do not. For chronological accuracy, methods that do

not distinguish between an o✏ine and online phase are considered first.

Alexandrov developed the Trust Region Model Management (TRMM) framework that uses a

general approximation model that satisfies first-order consistency in the context of unconstrained

[4] and nonlinearly constrained optimization [6]. The famous Trust Region Proper Orthogonal

Decomposition (TRPOD) method [10, 57] was among the first methods to leverage projection-

based reduced-order models in a globally convergent optimization algorithm. This method does

not exactly fit into Alexandrov’s TRMM framework as TRPOD uses the Carter condition [35] to

define the accuracy required of the reduced-order model to ensure convergence. This condition is

considerably weaker than fist-order consistency and allows a relatively small reduced-order model

to be used. In the TRPOD method, at the control corresponding to the trust region center, the

snapshots are collected from the full-order PDE simulation and compressed using POD. The size of

the reduced basis is selected to ensure the Carter condition is satisfied, which involves computing

the true gradient error at reduced-order models of increasing size. Later work on TRPOD also

collected adjoint snapshots and built a separate POD-based ROM for the adjoint PDE [57]. While

this leads to gradients that are not consistent with the quantities of interest computed from the

primal reduced-order model, it did not hinder convergence in the numerical experiments in [57].

TRPOD was originally developed for unconstrained problems and was later applied to problems with

nonlinear constraints [1, 186] following Alexandrov’s work [6]. A method similar to TRPOD is called

Optimality System POD (OS-POD) [113], which attempts to build a reduced-order model at the

optimal control. It formulates an optimization problem that consists of the unreduced optimization

problem, the reduced optimization problem, and the POD system. The monolithic optimization

problem is solved using a simple splitting method that results in a method similar to TRPOD

with two main exceptions: a trust region framework is not used to manage the approximation

model and OS-POD involves an intermediate step with the true gradient of the objective function.

Another surrogate optimization solver similar to TRPOD was developed in [208]. This method used

projection-based reduced-order models based on a Krylov-Pade approximation (and therefore specific

to linear PDEs) as the approximation model. Two significant contributions of this work are: (1) the

flexibility to handle generalized (non-quadratic) trust region constraints and (2) a new method to

assess the trust region step without evaluating the HDM. This thesis considers similar generalizations

over the standard TRPOD method with the most significant di↵erence being the proposed methods

are built on the flexible trust region method of [109]. This flexibility is leveraged to use unconverged

solutions as snapshots and in the evaluation of the trust region step. It will also be used later to
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Figure 1.1: The adaptive approach to accelerate PDE-constrained optimization with projection-
based reduced-order models. Top left : block schematic of the workflow where few High-Dimensional
Model (HDM) samples are compressed to build the Reduced-Order Basis (ROB) and the resulting
Reduced-Order Model (ROM) is used in the optimization procedure, as long as it maintains accuracy.
When the accuracy degrades, an additional sample of the HDM is taken at the new point in the
parameter space and the ROB is enriched. Top right : schematic of parameter space (µ-space) where
the black dot and star are the initial guess and solution of the optimization problem, respectively, the
red circles indicate HDM samples, the gray regions are the “trust regions” for the ROM constructed
at each iteration, the blue line is the trajectory of the ROM optimization procedure, and the blue star
is the optimal solution found by the ROM optimization. Bottom: schematic of the computational
cost where the expensive (HDM evaluations and ROB construction) and inexpensive components are
intermixed throughout the algorithm. These methods are usually equipped with global convergence
theory that guarantee convergence to a local optimum of the PDE-constrained optimization problem,
as indicated in the top right plot.

build a two-level approximation to accelerate stochastic PDE-constrained optimization. All of the

methods based on Alexandrov’s TRMM framework, as well as the other variants described here,

are categorized as adaptive optimization procedures—see Figure 1.1—since the surrogate model is

not built once-and-for-all in an o✏ine phase and repeatedly queried in the online phase; rather, the

surrogates are adaptively built on-the-fly during the optimization procedure.

In contrast to the method that do not distinguish between o✏ine and online cost are the reduced

basis methods that do make such a distinction [172, 174, 114, 125, 52]—see Figure 1.2. These

methods sample the parameter space in an o✏ine phase to collect snapshots, build a reduced

basis, and precompute PDE operators contracted with the reduced basis. In the online phase, the

reduced-order model is queried many times as the PDE-constrained optimization problem is solved

with the ROM in place of the original PDE. Due to the strict o✏ine-online decomposition, global

convergence usually cannot be established. However, since these methods usually consider linear,

elliptic PDEs and a quadratic objective function (resulting in a convex optimization problem), error

bounds between the computed solution and unique optimum can be derived and computed. As the
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Figure 1.2: The o✏ine-online approach to accelerate PDE-constrained optimization with projection-
based reduced-order models. Top left : block schematic of the workflow where a number of High-
Dimensional Model (HDM) samples are compressed to build the Reduced-Order Basis (ROB) in
an o✏ine phase; the resulting inexpensive Reduced-Order Model (ROM) is repeatedly queried in
the online optimization phase. Top right : schematic of parameter space (µ-space) where the black
dot and star are the initial guess and solution of the optimization problem, respectively, the red
circles indicate HDM samples, the blue line is the trajectory of the ROM optimization procedure,
and the blue star is the optimal solution found by the ROM optimization. Bottom: schematic of
the computational cost where there is a clear distinction between the expensive components (HDM
evaluations and ROB construction) that are done once-and-for-all in the o✏ine phase and the
inexpensive components (ROM evaluations) that are repeatedly queried in the online phase. In
general, these methods are not guaranteed to converge to a local optimum of the PDE-constrained
optimization problem, as indicated in the top right plot.

assumptions on these methods are too strong for the applications of interest in this thesis, they will

not be considered further.

To this point, only methods developed for deterministic PDE-constrained optimization problems

have been considered. In the context of PDE-constrained optimization under uncertainty, Kouri [108,

109] used dimension-adaptive sparse grids to define the quadrature nodes in a stochastic collocation

method to define an inexpensive surrogate model (due to a quadrature rule with fewer points than

would be required by an isotropic sparse grid or tensor product rule). This approximation model was

embedded in the trust region method developed in those papers that allows for inexact gradient and

objective evaluations. Chen [44, 42, 43] introduced an additional level of approximation by using

reduced-order models in addition to sparse grids. This work focused on simple PDEs and employed

an o✏ine-online framework (instead of a globally convergent trust region framework that breaks

the o✏ine-online decomposition). The method developed in this work for e�cient PDE-constrained

optimization under uncertainty is a crossover between these two methods: I develop a two-level

approximation based on projection-based model reduction and dimension-adaptive sparse grids and

embed the approximation model in a globally convergent trust region framework. This enables the
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framework to handle general PDEs, leverage the e�ciency benefits of reduced-order models, and

ensure global convergence; see Chapter 6 for details.

The methods developed in this thesis most resemble TRPOD in that snapshots of the HDM

at the trust region center will define the reduced-order model. A crucial di↵erence that leads to

improved e�ciency and flexibility is that the proposed methods will be built on a more general and

flexible trust region theory that permits the use of inexact gradient and objective evaluations and

allows for more general trust region constraints. While the present work mostly focuses on problems

with a relatively small parameter space compared to the state space, Appendix C uses concepts from

linesearch [71, 143] and subspace [54, 119, 137, 143, 207] methods to remove this restriction. Other

research that has considered the more di�cult case of a large parameter space employs surrogate

models with a variable parametrization [168, 167] in the TRMM framework. Other work that

applies reduction to the parameter space include [117, 120]; however, these are not embedded in an

adaptation algorithm and cannot establish global convergence.

1.4 Thesis Accomplishments and Outline

The contributions of this thesis are divided into two primary contributions and two auxiliary contri-

butions. The two primary contributions are: (1) the development of an e�cient solver for determin-

istic PDE-constrained optimization problems that leverages projection-based reduced-order models

and partially converged PDE solutions and (2) the development of an e�cient solver for stochastic

PDE-constrained optimization problems that leverages projection-based reduced-order models and

anisotropic sparse grids. The primary contributions were built on two independent auxiliary contri-

butions that have applications that extend well beyond the scope of this thesis: (1) the introduction

of a globally convergent, generalized trust region method for managing e�cient approximation mod-

els and (2) the generalization and extension of minimum-residual projection-based reduced-order

models [115, 28, 31, 89] to sensitivity and adjoint PDEs.

The proposed multifidelity trust region method extends the trust region method introduced in

[109] by allowing a generalized trust region constraint to be used, provided the approximation model

and trust region constraint are related by an asymptotic error bound that mirrors the inexact objec-

tive condition in [109]. The asymptotic error conditions on the gradient and objective evaluations

are identical to those in [109]. It will be shown that the traditional trust region constraint, i.e.,

the ball in RNµ with center µ
k

, trivially satisfies the required asymptotic relationship and therefore

the proposed trust region method exactly reduces to the method in [109] under this choice. Global

convergence of the proposed generalized trust region method is established and closely follows the

convergence theory in [133, 108, 109]. Unlike traditional trust region methods, the non-quadratic

trust region constraint eliminates the possibility of using specialized methods to solve the trust

region subproblem that automatically satisfy the fraction of Cauchy decrease [48]. As a result,

an interior-point method is outlined to solve the trust region subproblem (an optimization prob-

lem with a single nonlinear inequality constraint) exactly. While the method is established in the
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unconstrained setting, an augmented Lagrangian approach for extending it to nonlinear equality

constraints is detailed. This multifidelity trust region method constitutes one of the pillars of this

thesis that will be extensively used throughout. The second pillar is the primary PDE approximation

technology employed in this work: projection-based model reduction.

While the concept of projection-based model reduction is not new, this work contributes to the

understanding of minimum-residual reduced-order models and extends it to apply to sensitivity

and adjoint PDEs. In particular, the concept of a minimum-residual reduced-order model for the

fully discrete sensitivity and adjoint PDE is introduced and important properties are established.

In particular, conditions are established that guarantee the reduced sensitivity and adjoint models

agree with the sensitivity and adjoint of the primal reduced-order model and exactly reconstruct the

high-dimensional model counterpart. These properties are crucial when the reduced-order model

is embedded into the trust region framework as they will be used to establish the error conditions

required for convergence. These minimum-residual sensitivity and adjoint reduced-order models, and

the surrounding theory, represent a significant contribution as it will be shown they are significantly

easier to implement in a large code-base and compute than the sensitivity and adjoint of the primal

reduced-order model.

These two technologies—the generalized trust region method and minimum-residual projection-

based reduced-order models—serve as pillars for the primary contributions of the thesis: e�cient

optimization methods for deterministic and stochastic PDE-constrained optimization. The proposed

method for deterministic PDE-constrained optimization uses projection-based reduced-order models

as the approximation model in the generalized trust region method and residual-based error indi-

cators. For additional e�ciency, partially converged primal and sensitivity/adjoint solutions are

used as snapshots in the construction of the reduced-order models and partially converged primal

solutions are used to evaluate the trust region step. The flexibility of the underlying trust region

framework is leveraged to ensure the use of partially converged solutions does not hinder conver-

gence. The proposed method for stochastic PDE-constrained optimization employs an additional

level of inexactness to e�ciently integrate quantities of interest over the stochastic space to form

risk measures. This lead to the development of the two-level approximation of risk measures of

PDE quantities of interest that uses dimension-adaptive anisotropic sparse grids to perform e�cient

integration in the stochastic space and model reduction for e�cient PDE queries at each colloca-

tion node. This approximation is embedded in the multifidelity trust region method and global

convergence is established by employing a two-level, dimension-adaptive greedy algorithm to simul-

taneously construct the sparse grid and reduced-order basis to satisfy required error conditions. The

proposed method directly extends the work in [108, 109] that only defines the approximation model

using dimension-adaptive sparse grids with PDE queries at collocation nodes performed using the

high-dimensional model. It is also similar to [42, 43] that employs the same two-level approximation,

but embeds it in an o✏ine-online framework and claims regarding convergence only apply to simple

PDEs.

This thesis is organized as follows (Figure 1.3). Chapter 2 provides necessary background on
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Deterministic PDE Op-
timization with ROMs

(Chapter 5)

Stochastic PDE Opti-
mization with SG-ROMs

(Chapter 6)

Deterministic PDE Optimization
with ROMs – Many Parameters

(Appendix C)

Multifidelity Trust-
Region Method
(Chapter 3)

Projection-Based
Model Reduction

(Chapter 4)

Anisotropic Sparse Grids
(Chapter 6)

Subspace Optimization Methods
(Appendix C)

Partially Converged
PDE Solutions
(Chapter 5)

Residual-Based Error Bounds
(Appendix B)

Trust Region Global
Convergence Theory

(Appendix A)

High-Order, Time-Dependent
PDE Optimization

(Appendix D)

Figure 1.3: Organization of thesis

partial di↵erential equations, their discretization, and PDE-constrained optimization. Chapter 3

discusses some necessary elements of optimization theory and introduces the proposed generalized

trust region method for leveraging approximation models in an optimization setting. The con-

vergence proof for the proposed method is provided in Appendix A. This method will serve as a

cornerstone for the e�cient solvers developed in Chapters 5 and 6 for deterministic and stochas-

tic PDE-constrained optimization. Chapter 4 introduces projection-based model reduction—the

approximation models that will eventually define the trust region subproblems—including some

novel contributions pertaining to minimum-residual sensitivity and adjoint reduced-order models.

Chapter 5 introduces one of the primary contributions of this thesis: the use projection-based

reduced-order models in the generalized trust region framework to yield an e�cient solver for de-

terministic PDE-constrained optimization problems. The potential of the method is demonstrated

on a number of problems in computational mechanics, including a large-scale industrial examples

of aerodynamic shape design of a full aircraft configuration. The second primary contribution of

this thesis is presented in Chapter 6: the extension of the method in Chapter 5 to handle stochastic

PDE-constrained optimization problems where an additional level of inexactness is introduced into

the approximation model through the use of anisotropic sparse grids to e�ciently integrate risk

measures of PDE quantities of interest over the stochastic space. While the methods introduced in

these chapters implicitly assume the number of parameters is small in comparison to the size of the

PDE discretization, Appendix C develops a method to generalize these algorithms to the case where

the number of parameters and state variables are comparable. Finally, Chapter 7 o↵ers conclusions

and ideas for future research and Appendix D introduces an adjoint method for optimization of

time-dependent PDEs, possibly with periodicity constraints, discretized with high-order methods.



Chapter 2

PDE-Constrained Optimization

This chapter provides an overview of parametrized partial di↵erential equations and PDE-constrained

optimization that will be used extensively in the remainder of this document. The focus is primarily

on static, nonlinear PDEs with either deterministic or stochastic coe�cients and boundary condi-

tions. The various elliptic and hyperbolic PDEs encountered in this document are also introduced,

which include: the 1D viscous and inviscid Burgers’ equation, linear elasticity, the total Lagrangian

form of the finite deformation continuum equations, the compressible Euler equations, and the

compressible Navier-Stokes equations. The chapter concludes with relevant concepts pertaining to

PDE-constrained optimization including: the continuous and discrete version of the optimization

problem, full-space and reduced-space solvers, gradient computations in the reduced-space approach

via the sensitivity and adjoint method, and approaches to handle side constraints, i.e., optimization

constraints other than the PDE constraint itself.

2.1 Parametrized Partial Di↵erential Equations

Consider a system of partial di↵erential equations of the form: find U such that

@U

@t

+ G(U, rU) = g(x, t) x 2 B, t 2 T

H(U, rU) = h(x, t) x 2 @B, t 2 T

U(x, t
0

) = U

0

(x) x 2 B

(2.1)

where T = (t
0

, t

f

) ⇢ R
+

is the temporal domain, B ⇢ Rn

sd is the spatial domain with boundary @B,
U(x, t) is the unknown state vector with n

c

components, G and H are first-order spatial di↵erential

operators, g and h are volumetric and boundary source terms, and U

0

: B ! Rn

sv is the initial

data. In the most general case, the domain B can be time-dependent, leading to rigid and deforming

domain problems. In such settings, an arbitrary Lagrangian-Eulerian description of the PDE can

be employed to transform the equations to a fixed domain; see Appendix D for additional details.

16
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From the solution of the partial di↵erential equation (U), relevant Quantities of Interest (QoIs)1

are defined as space-time integrals of various solution-dependent quantities over the domain. Quan-

tities of interest are essential from a practical perspective as they provide metrics to quantify the

performance and behavior of the system under consideration. In this work, QoIs will take the form

F(U) =

Z

T

Z

B
fB(U) dV dt+

Z

T

Z

@B
f

@B(U) dAdt, (2.2)

where fB and f

@B are relevant pointwise quantities. The form in (2.2) is general in that it encom-

passes integrals over subsets of the spatial and temporal domains, as well as pointwise quantities at

fixed spatial locations or times. This results from the lack of regularity imposed on fB and f

@B that

allows for the use of indicator or Dirac functions.

In the remainder of this document, the primary interest will be in the behavior of solutions

(U) and QoIs (F(U)) of the PDE under perturbations to data of the problem—the domain (B)
and boundary (@B), source terms (g and h), initial condition (U

0

), or coe�cients defining the

di↵erential operators G and H. In subsequent sections, these parameters of the partial di↵erential

equation will be the optimization variables whose values will be sought such that the objective QoI is

minimized and other QoI-based constraints are satisfied. Before proceeding to the discussion of PDE-

constrained optimization, the various PDEs considered in this document are introduced and details

regarding the discretization of parametrized partial di↵erential equations and the corresponding

quantities of interest are discussed.

2.1.1 Examples

This section provides specific examples of partial di↵erential equations (2.1) and quantities of interest

(2.2) that will be encountered in this thesis. While the examples are mostly from the fields of solid

and fluid mechanics, this is not a fundamental restriction in any of the subsequent developments.

Linear Elasticity

Consider a solid body B ⇢ Rn

sd subject to distributed body forces b(x, t) with boundary @B de-

composed into two parts: @B
u

and @B
t

such that @B = @B
u

[ @B
t

. Displacements are prescribed

along @B
u

and @B
t

is subject to prescribed traction forces. Under the assumption that the result-

ing deformations are infinitesimal and the pointwise stress and strain are related through a linear

relationship, the deformation of the body is governed by the following system of partial di↵erential

equations

⇢ü = r · � + b x 2 B, t 2 T

u = ū x 2 @B
u

, t 2 T

� · n = t̄ x 2 @B
t

, t 2 T ,

(2.3)

1Quantity of Interest (singular) will be abbreviated QoI and Quantities of Interest (plural) will be abbreviated
QoIs.
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where u(x, t) 2 Rn

sd is the pointwise deformation and state vector of the PDE, �(x, t) 2 Rn

sd

⇥n

sd

is the symmetric stress tensor, ⇢(x, t) 2 R
+

is the density of the material that comprises B, b(x, t) 2
Rn

sd is the body force, ū(x, t) 2 Rn

sd is the prescribed displacement on @B
u

, t̄(x, t) 2 Rn

sd is the

prescribed traction on @B
t

, and n(x) 2 Rn

sd is the pointwise outward normal to the boundary. The

system of PDEs is closed with the stress-strain relationship (Hooke’s law)

� = C : ✏, (2.4)

where C 2 Rn

sd

⇥n

sd

⇥n

sd

⇥n

sd is the elasticity tensor with major and minor symmetry and ✏(x, t) 2
Rn

sd

⇥n

sd is the strain tensor. The kinematic constraint relates the deformation to strain

✏ =
1

2

⇥
ru+ruT

⇤
. (2.5)

Remark. The system in (2.3) does not strictly fit into the form in (2.1) due to presence of the

second-order temporal derivative, i.e., the inertial term. This can be remedied by introducing the

velocity v = u̇ and defining the state vector U = (u, v). This will not preserve the structure of the

governing equations and they are usually treated directly in their second-order form.

There are number of relevant quantities of interest in linear elasticity including: (1) pointwise

displacement magnitude, (2) pointwise stress measures, (3) mass/volume, and (4) global sti↵ness,

to name a few. The volume of the structure and its global sti↵ness are defined as

V =

Z

B
dV and S(u) =

Z

B
u

k

b

k

dV +

Z

@B
u

k

t̄

k

dA, (2.6)

respectively, where summation from 1 to n

sd

over repeated indices is implied. The volume is a

purely geometric quantity of interest as it does not depend on the solution of the partial di↵erential

equation.

Finite Deformation Continuum Mechanics

The system of partial di↵erential equations that governs the physical setup of the previous section

in the general case, that is, without the linearity assumption, is

⇢ü = r · P + b X 2 B, t 2 T

u = ū X 2 @B
u

, t 2 T

P · N = t̄ X 2 @B
t

, t 2 T

(2.7)

where ⇢, u, b, ū, t̄ are defined in the previous section on linear elasticity, P (X, t) is the first Piola-

Kirchho↵ stress tensor, and N(X) is the pointwise outward normal to the boundary in the reference

configuration (B). The equations are closed with a general constitutive relationship

P = P (F ), (2.8)
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where F = I +
@u

@X

is the deformation gradient. The governing equations in (2.7), posed on the

reference or undeformed configuration (B), are called the total Lagrangian form [19]. The equations

can be transformed to the current or physical configuration using the di↵eomorphism: x(X, t) :=

X + u(X, t), but the so-called updated Lagrangian form will not be considered in this document.

The quantities of interest from the previous section (2.6) will also be used here.

General Conservation Laws

The next sequence of partial di↵erential equations considered take the form viscous or inviscid

conservation laws

@U

@t

+r · F
I

(U) +r · F
V

(U, rU) = g(x, t) x 2 B (2.9)

where F

I

is the inviscid flux, F
V

is the viscous flux, and g is a source term. Hyperbolic systems

of partial di↵erential equations of this form describe propagation phenomena such as those in fluid

dynamics and electromagnetics.

1D Inviscid Burgers’ Equation

The first and simplest conservation law considered is the 1D inviscid Burgers’ equation with an

inflow boundary condition, which describes shock propagation of a conserved variable, u

@u

@t

+ u

@u

@x

= g(x, t) x 2 (x
l

, x

r

), t 2 (t
0

, t

f

)

u(x
l

, t) = h(t) t 2 (t
0

, t

f

).
(2.10)

This constitutes a conservation law of the form (2.9) where the conserved variable, inviscid flux, and

viscous flux are

U

:= u F

I

(U) :=
u

2

2
F

V

(U, rU) := 0.

Two quantities of interest for Burgers’ equation are: the regularized tracking-type functional and

the amount of the conserved variable that exits the domain through the outflow boundary

T (u) =
1

2

Z
t

f

t

0

Z
x

r

x

l

⇥
(u� ū)2 + ↵g

2

⇤
dx dt and R(u) =

Z
t

f

t

0

u(x
r

, t) dt,

respectively, where ū is a target state and ↵ > 0 is a prescribed regularization constant.
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Compressible Navier-Stokes Equations

The compressible Navier-Stokes equations govern viscous fluid flow in a domain B and take the form

@⇢

@t

+
@

@x

i

(⇢u
i

) = 0, (2.11)

@

@t

(⇢u
i

) +
@

@x

i

(⇢u
i

u

j

+ p) = +
@⌧

ij

@x

j

for i = 1, 2, 3, (2.12)

@

@t

(⇢E) +
@

@x

i

(u
j

(⇢E + p)) = � @qj
@x

j

+
@

@x

j

(u
j

⌧

ij

), (2.13)

where ⇢ is the fluid density, u
1

, u

2

, u

3

are the velocity components, and E is the total energy. The

viscous stress tensor and heat flux are given by

⌧

ij

= µ

✓
@u

i

@x

j

+
@u

j

@x

i

� 2

3

@u

k

@x

k

�

ij

◆
and q

j

= � µ

Pr

@

@x

j

✓
E +

p

⇢

� 1

2
u

k

u

k

◆
. (2.14)

Here, µ is the viscosity coe�cient and Pr = 0.72 is the Prandtl number which we assume to be

constant. For an ideal gas, the pressure p has the form

p = (� � 1)⇢

✓
E � 1

2
u

k

u

k

◆
, (2.15)

where � is the adiabatic gas constant. All walls have no-slip boundary conditions, i.e., u
i

= 0 for

i = 1, 2, 3. Equations (2.11)-(2.13) can be written in conservation form as

U =

2

66666664

⇢

⇢u

1

⇢u

2

⇢u

3

⇢E

3

77777775

F

I

(U) =

2

66666664

⇢u

1

⇢u

2

⇢u

3

p+ ⇢u

2

1

⇢u

1

u

2

⇢u

1

u

3

⇢u

1

u

2

p+ ⇢u

2

2

⇢u

2

u

3

⇢u

1

u

3

⇢u

2

u

3

p+ ⇢u

2

3

u

1

(E + p) u

2

(E + p) u

3

(E + p)

3

77777775

(2.16)

F

V

(U, rU) =

2

66666664

0 0 0

�⌧
11

�⌧
21

�⌧
31

�⌧
12

�⌧
22

�⌧
32

�⌧
13

�⌧
23

�⌧
33

q

1

� u

i

⌧

i1

q

2

� u

i

⌧

i2

q

3

� u

i

⌧

i3

3

77777775

. (2.17)

While there are a plethora of quantities of interest in fluid dynamics, the most relevant quantities

tend to be time-averaged integrated forces and moments on surfaces, particularly in aerodynamics

applications. The time-averaged force in the ith direction on a surface @B
w

takes the form

F

i

=
1

|T |

Z

T

Z

@B
w

(p+ ⇢u

i

u

j

n

j

� ⌧
ji

n

j

) dAdt. (2.18)
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Compressible Euler Equations

The compressible Euler equations

@⇢

@t

+
@

@x

i

(⇢u
i

) = 0, (2.19)

@

@t

(⇢u
i

) +
@

@x

i

(⇢u
i

u

j

+ p) = 0 for i = 1, 2, 3, (2.20)

@

@t

(⇢E) +
@

@x

i

(u
j

(⇢E + p)) = 0 (2.21)

model an inviscid fluid. The Navier-Stokes equations in (2.11)-(2.13) reduce to the compressible

Euler equations above in the limit of no viscosity, i.e., µ ! 0. The conservation form is identical

to the Navier-Stokes case with F

V

(U, rU) := 0 and the time-averaged force on a surface @B
w

are

defined as

F

i

=
1

|T |

Z

T

Z

@B
w

(p+ ⇢u

i

u

j

n

j

) dA. (2.22)

Compressible Navier-Stokes Equations—Isentropic Assumption

In situations where the entropy in the system is constant, i.e., adiabatic and reversible, the Navier-

Stokes equations can be simplified to its isentropic form. For a perfect gas, the entropy is defined

as

s = p/⇢

� = constant, (2.23)

which explicitly relates the pressure and density of the flow, rendering the energy equation redundant

and leads to

@⇢

@t

+
@

@x

i

(⇢u
i

) = 0, (2.24)

@

@t

(⇢u
i

) +
@

@x

i

(⇢u
i

u

j

+ p) = +
@⌧

ij

@x

j

for i = 1, 2, 3. (2.25)

This e↵ectively reduces the square system of PDEs of size n

sd

+ 2 to one of size n

sd

+ 1. It can

be shown, under suitable assumptions, that the solution of the isentropic approximation of the

Navier-Stokes equations converges to the solution of the incompressible Navier-Stokes equations as

the Mach number approaches zero [118, 51, 64]. In conservation form, the compressible, isentropic

Navier-Stokes equations are

U =

2

66664

⇢

⇢u

1

⇢u

2

⇢u

3

3

77775
F

I

(U) =

2

66664

⇢u

1

⇢u

2

⇢u

3

p+ ⇢u

2

1

⇢u

1

u

2

⇢u

1

u

3

⇢u

1

u

2

p+ ⇢u

2

2

⇢u

2

u

3

⇢u

1

u

3

⇢u

2

u

3

p+ ⇢u

2

3

3

77775
(2.26)
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F

V

(U, rU) =

2

66664

0 0 0

�⌧
11

�⌧
21

�⌧
31

�⌧
12

�⌧
22

�⌧
32

�⌧
13

�⌧
23

�⌧
33

3

77775
. (2.27)

and the time-averaged, integrated forces are computed according to (2.18).

2.1.2 Discretization: Parametrization

The primary interest in this document is not the study of partial di↵erential equations themselves,

rather the behavior of PDE solutions (U) and QoIs (F(U)) under perturbations to the PDE itself,

e.g., the domain (B), source terms (g and h), and coe�cients of the di↵erential operators (usually

manifest as material properties in physical problems). This will lead naturally to the discussion of

optimization in the next section where we seek to find the PDE domain, source term, and coe�cients

that minimizes some QoI and meets performance constraints on other QoIs.

In general, the quantities defining the PDE lie in infinite-dimensional function spaces, which are

not convenient or practical to work with in a computational setting. Furthermore, it is di�cult to

design practical and relevant perturbation strategies in these spaces that will be useful in engineering

and scientific applications. Accordingly, the remainder of this section discusses the finite-dimensional

parametrization of the partial di↵erential equation in (2.1). This will entail the definition of a vector

of N
µ

parameters, µ 2 RNµ , and a precise description of the dependence of the PDE on µ. In

general, the parameters can be decomposed as µ = (µB, µg

, µ
h

, µG , µH, µ
U

0

), where

B = B(µB) U

0

(x) = U

0

(x, µ
U

0

)

g(x, t) = g(x, t, µ
g

) h(x, t) = h(x, t, µ
h

)

G(U, rU) = G(U, rU, µG) H(U, rU) = H(U, rU, µH).

(2.28)

All quantities are assumed to be continuously di↵erentiable with respect to their respective param-

eters. This level of granularity is not significant for this document, but must be exploited in a

computational setting for an e�cient implementation. Therefore, only the monolithic vector µ is

considered and the PDE dependence on this parameter takes the form

B = B(µ) U

0

(x) = U

0

(x, µ)

g(x, t) = g(x, t, µ) h(x, t) = h(x, t, µ)

G(U, rU) = G(U, rU, µ) H(U, rU) = H(U, rU, µ).

(2.29)

The various quantities in (2.28)-(2.29) are fundamentally di↵erent and specialized techniques have

been developed to parametrize each. In the remainder of this section, a few techniques are discussed

that are relevant to the shape and topology parametrization of B and parametrization of space-time

functions such as the source terms and initial conditions, as they will be most relevant to problems
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encountered in subsequent chapters.

Parametrization of spatial functions

The first type of operator that arises in PDE applications, particularly in the context of optimal

and distributed control [214, 190], that requires parametrization are spatial functions such as the

source terms in (2.1). This section seeks to define a parameter vector µ such that the set {g(x, µ) |
µ 2 RNµ} includes a relevant set of scalar-valued functions with some level of regularity for a given

application. Only scalar-valued functions will be considered in this section as vector-valued function

can be parametrized through the parametrization each component—with either the same or di↵erent

parameters for each.

Local interpolation is a general strategy for parametrizing spatial functions in n

sd

dimensions.

In this setting, the domain B is decomposed into elements of standard shapes—such as simplices

or hyper-rectangles—and a set of polynomials of a given degree are introduced over each element.

The coe�cients of each polynomial in the discretization of B comprise the parameter vector and the

parametrized spatial function takes the form

g(x, µ) =

NµX

I=1

µ

I

N

I

(x) (2.30)

where N

I

are the shape functions and µ

I

are the components of µ. While a parametrization of this

form can be applied in any number of spatial dimensions and has a built-in refinement mechanism (by

subdividing the elements in the discretization and defining polynomials over the new elements), it

can lead to large parameter vectors, i.e., N
µ

� 1. An additional benefit of such a parametrization is

the use of an unstructured discretization of B to refine regions where increased resolution is required,

if such information is known.

On the other end of the spectrum lie global interpolation methods where the interpolant is

defined based on information from the entire domain B or parameter vector µ. Cubic splines in one

dimension fall into this category—the parameter vector defines the value of the spline at “knots”

and an interpolant is constructed that passes through these values and satisfies boundary conditions.

In higher dimensions, radial basis functions [27] serve a similar purpose.

Parmetrization of spatio-temporal functions

In time-dependent applications, spatio-temporal functions are often used to describe source terms,

boundary conditions, or even domain deformations. To optimize over these types of terms, they must

be parametrized with a finite number of parameters. One option is to consider the domain B ⇥ T
as a domain in n

sd

+1 dimensions and apply the local interpolation method of the previous section.

Alternatively, the spatio-temporal function can be defined and parametrized using a separation of

variables approach

g(x, t, µ) = g

s

(x, µ)g
t

(t, µ), (2.31)
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where g
s

is a parametrized spatial function in Rn

sd and g

t

is a parametrized univariate function. Any

of the methods discussed in the previous section can be employed to parametrize g

s

and g

t

. This

approach enables certain spatial or temporal requirements—such as periodicity—to be explicitly

enforced in the parametrization of g(x, t, µ) through the selection of g
s

and g

t

. For example, if g
t

(t)

is taken as a periodic function of period T , then g( · , t, · ) is guaranteed to be periodic with period

T .

Shape parametrization of domain, B

Parametrization of the shape (at a fixed topology) of two- and three-dimensional objects with a finite

number of intuitive parameters is essential in computer graphics as well as a number of engineering

disciplines, usually in the context of design. A plethora of shape parametrization techniques exist

[99, 177, 9, 61], each with strengths and weaknesses. These methods can be divided into two

distinct classes: (1) those that parametrize B directly and (2) those that parametrize the boundary

@B := B \ B and extend the deformation to the interior—usually by solving an auxiliary PDE.

Methods that parametrize B directly define an analytical mapping

' : Rn

sd ⇥ RNµ ! Rn

sd (2.32)

that maps the reference domain B to the new shape B0
, i.e., '(B, µ) = B0

. These methods are usually

easily parallelized as they involve local operations, i.e., given µ, any subset v ⇢ B gets transformed

as '(v, µ) independent of the action of ' on B \ v. Smoothness of the new shape, B0
is guaranteed

from the smoothness of the original shape and mapping. In many cases, a mapping of the form (2.32)

can be defined analytically given a geometry of interest and requirements of the parametrization.

For example, the camber of the NACA0012 airfoil in Figure 2.1 can be parametrized with three

parameters using a Gaussian of the form

'(X, µ) = µ

1

e

�µ

2

(X

1

�µ

3

)

2

(2.33)

where µ

1

, µ

2

, µ

3

control the magnitude, sharpness, and center of the camber, respectively; see

the shape corresponding to µ

1

= 0.2, µ
2

= 2.0, µ
3

= 0.0 in Figure 2.1. While this approach is

trivial to parallelize and can lead to highly intuitive parameters, it can be cumbersome for complex

3D geometries and requires considerable expertise in designing parameters. Another approach for

parametrizing B directly that is extremely popular in the computer graphics community is known

as Free Form Deformation (FFD) [179]. In this method, a n

sd

-dimensional lattice of control points

define an analytic function on the interior of the lattice, which can be extended to the entire space.

In this setting, the displacement of the control nodes of the lattice are the parameters, which induce

a deformation on the volume enclosed by the lattice and thus any body embedded in it. Figure 2.2

shows a circle parametrized with FFD based on B-splines, including the undeformed and deformed

geometry and FFD lattice. While FFD is more general and flexible than manual parametrization

and nearly as parallelizable, it may quickly lead to a large number of parameters, which may lead to
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Figure 2.1: Left : Undeformed NACA0012 airfoil and surrounding triangular mesh. Right : Deforma-
tion of R2 according to mapping ' in (2.33) that deforms the NACA0012 geometry and surrounding
mesh.

slower convergence in the context of optimization. When gradient-based optimization techniques are

employed, this trade-o↵ is usually worthwhile, particularly in aerodynamic applications. The number

of parameters may be reduced by combining the manual parametrization with FFD techniques, that

is, introduce a FFD lattice to control the underlying geometry and a manual parametrization that

controls the FFD lattice nodes. Figures 2.3 shows the parametrization of a model of a Volkswagen

Passat using FFD with two relevant and intuitive shape parameters—the height of the roof and

taper of the trunk. Figure 2.4 shows the parametrization of the Common Research Model (CRM)

geometry with one intuitive parameter—the dihedral of the wing.

The other class shape parametrization methods defines a parametrization of the boundary @B and

propagates the deformation to the interior B, usually via the solution of a partial di↵erential equation

such as linear or nonlinear elasticity with prescribed displacement on @B [58, 155]. Analytical

methods such as splines (n
sd

= 2) or Non-Uniform Rational B-Splines (NURBS) patches (n
sd

= 3)

are commonly used for the surface parametrization. Another popular method uses the design element

concept where a finite element mesh is defined such that it encloses the geometry of interest, @B,
and the finite element shape functions define the deformation of the enclosed volume2. Figure 2.5

provides an example of a NACA0012 airfoil parametrized with a single cubic design element.

All of the parametrization methods considered in this section are useful in parametrizing the

shape of an object with a fixed topology. Methods for parametrizing the topology of a domain will

be discussed in the next section—they are fundamentally di↵erent and inevitably lead to a large

number of parameters, N
µ

� 1.

Topology parametrization of domain, B

Two prevailing methods are available for parametrizing the topology of a domain, B: (1) density-

based methods [181, 20] and (2) level set methods [192]. Density methods define the topology of the

domain using an indicator function

� : Rn

sd ! {0, 1}, (2.34)

2The design element concept can also be used to directly parametrize B.
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Figure 2.2: Top left : Undeformed geometry of a circle (blue) and a FFD lattice (gray). Top center :
Perturbation of FFD control nodes according to an x-directed elongation mode and resulting shape
of the circle. Top right : Perturbation of FFD control nodes according to a bending mode and
resulting shape of the circle. Bottom: Local perturbations to individual FFD control nodes in the y

direction and the resulting shape of the circle.

where �(x) = 1 if x 2 B and �(x) = 0 otherwise. The topology of B is then parametrized by

parametrizing the function � using any of the methods previously discussed. The most common

approach to parametrize � is to partition a subset of Rn

sd into N

µ

elements or patches of finite

volume and define � to be constant within each element k with value µ

k

2 {0, 1}3. Figures 2.6 –

2.9 show the topology of a cantilever, cube, and lacrosse head parametrized with a density-based

approach that uses a constant value of � in each element. This approach has the advantage of a

simple implementation, but smooth topologies can only be obtained if an extremely large number

of elements are used, i.e., N
µ

� 1.

Conversely, level set methods define the topology implicitly by identifying all surfaces or interfaces

as the zero level-set of an implicit function,

� : Rn

sd ! R, (2.35)

where B = {x 2 Rn

sd | �(x)  0} and @B = {x 2 Rn

sd | �(x) = 0}. The parametrization

of the spatial function � using any of the techniques previously discussed leads to the topology

parametrization.

2.1.3 Discretization: Governing Equations

With the techniques described in the previous section, the parametrization of the PDE can be

encoded in the finite-dimensional vector µ 2 RNµ that contains all types of parameters considered.

3It is often necessary to relax the range of µk to [0, 1] to obtain a continuous optimization problem.
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Figure 2.3: Free form deformation lattices and Volkswagen Passat geometry: (left) undeformed
configuration, (top right) deformed configuration with lowered roof, and (bottom right) deformed
configuration with steeply tapered trunk.

Figure 2.4: Free form deformation lattice and Common Research Model (CRM) geometry: (left)
undeformed configuration and (right) deformed configuration with positive dihedral.

The partial di↵erential equation in (2.1) under the finite-dimensional parametrization takes the form:

for any µ 2 RNµ , find U such that

@U

@t

+ G(U, rU, µ) = g(x, t, µ) x 2 B(µ), t 2 T

H(U, rU, µ) = h(x, t, µ) x 2 @B(µ), t 2 T

U(x, t
0

, µ) = U

0

(x, µ) x 2 B(µ).

(2.36)

At this point, the parametrized PDE in (2.36) will be discretized in the usual two-step manner:

discretization in space, i.e., semi-discretization, to yield a system of Ordinary Di↵erential Equations

(ODEs) and subsequent temporal discretization. A less commonly used alternative is to employ a

monolithic space-time discretization. Given the generality of the di↵erential operators in (2.36), it

is inappropriate to commit to a single spatial discretization method given the myriad of possibilities

including finite di↵erences, finite volumes, finite elements, and discontinuous Galerkin and spectral

methods. The most appropriate method depends on a number of factors including the properties

of the spatial operators in (2.36), regularity of the solution U , and the complexity of the domain

B. Finite volume, finite element, and discontinuous Galerkin methods will be used to discretize the
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(a) µ1 = 0.1 (b) µ2 = 0.1

(c) µ3 = 0.1 (d) µ4 = 0.1

(e) µ5 = 0.1 (f) µ6 = 0.1

(g) µ7 = 0.1 (h) µ8 = 0.1

Figure 2.5: Shape parametrization of a NACA0012 airfoil using a cubic design element. Blue nodes
and lines designate the undeformed design element and shape and black nodes and lines designate
the deformed design element and shape.

various PDEs that arise in this work. At this point, an unspecified spatial discretization is applied

to the parametrized PDEs in (2.36) to yield the nonlinear system of ODEs: for any µ 2 RNµ , find

u such that
Mu̇ = r(u, t, µ) t 2 T

u(0) = u
0

(µ)
(2.37)

where u( · ) 2 RNu is the semi-discrete state vector, M 2 RNu⇥Nu is the mass matrix, r : RNu⇥R
+

⇥
RNµ ! RNu is the nonlinear function that encodes the spatial discretization of the partial di↵erential

equation and boundary conditions in (2.36), and u
0

(µ) 2 RNu is the parameter-dependent initial

condition that arises from the spatial discretization of U
0

(x, µ). If the partial di↵erential equation

in (2.36) is steady or static, i.e., U
,t

= 0, (2.37) becomes

r(u, µ) = 0 (2.38)

and the discretization is complete.

Remark. As written, the mass matrix M is time- and parameter-independent, which will not be

the case if the domain is time- or parameter-dependent or, for example, if corotator-based shell

elements are used in a finite element discretization of structural problems [19]. In the first case, the

mass matrix can be completely fixed by using an arbitrary Lagrangian-Eulerian mapping to a fixed

reference domain [211]; see Appendix D for details.
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Figure 2.6: Left : Quadrilateral mesh of a subset of R2 corresponding to a rectangle (160 ⇥ 100
elements) whose topology is parametrized by a density-based method. Right : An example of an
admissible topology of the density-based topological parametrization—an optimized cantilever de-
signed to maximize the global sti↵ness of the structure under a vertical load at the right end.

Figure 2.7: Left : Quadrilateral mesh of a subset of R2 corresponding to a rectangle (160 ⇥ 100
elements) with a hole whose topology is parametrized by a density-based method. Right : An example
of an admissible topology of the density-based topological parametrization—a Michell structure
[37, 94] designed to maximize the global sti↵ness of the structure under a vertical load at the right
end.

Figure 2.8: Left : Hexahedral mesh of a subset of R3 corresponding to a cube (35⇥35⇥35 elements)
whose topology is parametrized by a density-based method. Right : An example of an admissible
topology of the density-based topological parametrization—a trestle designed to maximize the global
sti↵ness of the structure under a vertical load.
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Figure 2.9: Left : Tetrahedral mesh of a subset of R3 corresponding to an unoptimized lacrosse
head (475, 666 elements) whose topology is parametrized by a density-based method. Right : An
example of an admissible topology of the density-based topological parametrization—an unconverged
maximum sti↵ness topology. The entire object is included in the top row and the bottom row is a
slice to show internal voids in the optimized shape.
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Table 2.1: Butcher Tableau for s-stage diagonally implicit Runge-Kutta scheme

c

1

a

11

c

2

a

21

a

22

...
...

...
. . .

c

s

a

s1

a

s2

· · · a

ss

b

1

b

2

· · · b

s

For time-dependent problems, the system of ODEs is discretized to yield the complete dis-

cretization: a sequence of algebraic, nonlinear systems of equations. The two prevailing classes of

high-order implicit temporal integration schemes are: (a) Backward Di↵erentiation Formulas (BDF)

and (b) Implicit Runge-Kutta (IRK). BDF schemes are multistep schemes that have the general

form

Mu(n) �
n�1X

i=0

↵

i

Mu(i) = �tr(u(n)

, t

n

, µ) (2.39)

where ↵
i

and  are constants that define di↵erent schemes, such as (1) BDF1 (backward Euler):

 = ↵

n�1

= 1 and ↵

0

= · · ·↵
n�2

= 0, (2) BDF2:  = 2/3, ↵
n�1

= 4/3, ↵
n�2

= �1/3, ↵
0

=

· · · = ↵

n�3

= 0, and (3) BDF3:  = 6/11, ↵
n�1

= 18/11, ↵
n�2

= �9/11, ↵
n�3

= 2/11, ↵
0

=

· · · = ↵

n�4

= 0. They are popular since high-order accuracy can be achieved at the cost of a single

nonlinear solve of size N

u

at each time step. However, they su↵er from initialization issues and are

limited to second-order accuracy, if A-stability is required. In contrast, IRK schemes are single-step

methods that can be A-stable and arbitrarily high-order, at the cost of solving an enlarged nonlinear

system of equations of size s ·N
u

, for an s-stage scheme, at each time step. For practical problems,

this can be prohibitively expensive, in terms of memory and CPU time.

A particular subclass of the IRK schemes, known as Diagonally Implicit Runge-Kutta (DIRK)

schemes [3], are capable of achieving high-order accuracy with the desired stability properties, with-

out requiring the solution of an enlarged system of equations. The DIRK schemes are defined by a

lower triangular Butcher tableau (Table 2.1) and take the following form when applied to (2.37)

u(0) = u
0

(µ)

u(n) = u(n�1) +
sX

i=1

b

i

k
(n)

i

Mk
(n)

i

= �t

n

r
⇣
u
(n)

i

, t

n�1

+ c

i

�t

n

, µ
⌘
,

(2.40)

for n = 1, . . . , N
t

and i = 1, . . . , s, where N
t

are the number of time steps in the temporal discretiza-

tion and s is the number of stages in the DIRK scheme. The temporal domain T is discretized into

N

t

segments with endpoints {t
0

, t

1

, . . . , t

N

t

}, with the nth segment having length �t

n

= t

n

� t

n�1

for n = 1, . . . , N
t

. Additionally, in (2.40), u(n)

i

is used to denote the approximation of u(n) at the
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ith stage of time step n

u
(n)

i

= u
(n)

i

(u(n�1)

, k
(n)

1

, . . . , k(n)

s

) = u(n�1) +
iX

j=1

a

ij

k
(n)

j

. (2.41)

From (2.40), a complete time step requires the solution of a sequence of s nonlinear systems of

equation of size N

u

.

From this exposition on the spatio-temporal discretization of the parametrized partial di↵erential

equation in (2.36), finding the solution of the continuous form of the equations—a task that requires

searching an infinite-dimensional trial space for the solution U—has been reduced the task of finding

the solution of the algebraic nonlinear system of equations in (2.38) or a sequence of such equations.

The solution, u, of the algebraic equations can be used, along with the shape functions underlying

the spatio-temporal discretization, to reconstruct an approximation to the solution U(x, t).

Remark. One option to treat second-order temporal problems, such as those in (2.3) and (2.7) is to

recast them in first-order form, as discussed in the previous section, and apply a BDF or IRK/DIRK

scheme, as developed in this section. However, it is usually better to apply specialized integrators

that work directly on the second-order form of the equation, such as the Newmark scheme [139]

or generalized ↵-method [45], as these schemes are constructed with tunable damping to promote

stability—a particularly important consideration in these problems.

At this point, the governing equation and its parameters have been discretized. The final dis-

cretization task is to treat the quantity of interest. To ensure the truncation error of the governing

equation and quantity of interest exactly match, a solver-consistent discretization [211] is employed

and detailed in the next section.

2.1.4 Discretization: Quantities of Interest

Quantities of interest are among the most important aspects of a computational physics simulation,

particularly in engineering applications. Optimization problems, the main focus of this work, are

completely driven by quantities of interest as these comprise the objective and constraint functions.

Therefore, care must be taken in the discretization of the integrals in (2.2) since this will introduce

an additional error, i.e., on top of the error in the discretization of the PDE itself. To ensure

the quantity of interest discretization does not dominate, thereby lowering the global order of the

scheme, it is necessary that its discretization order matches that of the the governing equations.

Clearly, it is wasteful to discretize this to a higher order than the state equation, using a similar

argument.

For these reasons, discretization of (2.2) will be done in a solver-consistent manner, i.e., the

spatial and temporal discretization used for the governing equation will also be used for the quan-

tities of interest. Define f

h

as the approximation of

Z

B
fB(U) dV +

Z

@B
f

@B(U) dA using the shape

functions underlying the spatial discretization of the governing equations. This ensures the spatial
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integration error in the quantity of interest exactly matches that of the governing equations. Next,

define

F
h

(u, µ, t) :=

Z
t

t

0

f

h

(u, µ, ⌧) d⌧, (2.42)

where the temporal domain is taken to be T = (t
0

, t

f

). Before the temporal discretization of the

governing equations can be applied to discretize the integral in (2.42), it must be converted to an

ODE. This is accomplished via di↵erentiation of (2.42) with respect to t to yield

Ḟ
h

(u, µ, t) = f

h

(u, µ, t). (2.43)

Augmenting the semi-discrete governing equations with this ODE results in the enlarged system of

ODEs "
M 0

0 1

#"
u̇

Ḟ
h

#
=

"
r(u, µ, t)

f

h

(u, µ, t)

#
. (2.44)

At this point, the same temporal discretization used for the governing equations in the previous

section can be applied to discretize (2.44). A monolithic discretization of this form ensures the

temporal truncation error of the governing equations and quantity of interest will exactly match.

The development will proceed assuming a DIRK scheme is used—the same procedure would apply

if BDF or another first-order temporal discretization was applied. Application of the DIRK scheme

yields the fully discrete governing equations and corresponding solver-consistent discretization of the

quantity of interest (2.2)

u(n) = u(n�1) +
sX

i=1

b

i

k
(n)

i

F (n)

h

= F (n�1)

h

+
sX

i=1

b

i

f

h

⇣
u
(n)

i

, µ, t
n�1

+ c

i

�t

n

⌘

Mk
(n)

i

= �t

n

r
⇣
u
(n)

i

, µ, t
n�1

+ c

i

�t

n

⌘
.

(2.45)

for n = 1, . . . , N
t

, i = 1, . . . , s, and u
(n)

i

is defined in (2.41). Finally, the functional in (2.42) is

evaluated at time t = t

f

to yield the solver-consistent approximation of F
h

(u,µ, t
f

)

F (u(0)

, . . . , u(N

t

)

, k
(1)

1

, . . . , k(N

t

)

s

) := F (N

t

)

h

⇡ F
h

(u, µ, t
f

). (2.46)

While the spatially solver-consistent discretization of QoIs is widely used, particularly in the con-

text of finite element methods, temporal discretization is commonly done via low-order quadrature

rules, usually the trapezoidal rule [193, 130, 124, 205, 102]. The main advantage of this solver-

consistent discretization is the asymptotic discretization order of the governing equation and quan-

tity of interest are guaranteed to exactly match, which ensures there is no wasted error in “over-

integrating” one of the terms. The solver-consistent discretization also has the advantage of a natural
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and convenient implementation given the spatial and temporal discretization implementation. Fi-

nally, this method has the additional convenience of keeping a high-order accurate “current” value

of the integral, i.e. at time step n, F (n)

h

⇡
Z

t

n

t

0

f

h

(⌧) d⌧ to high-order accuracy. This property does

not hold for high-order numerical quadrature since

Z
t

n

t

0

f

h

(⌧) d⌧ will involve u(n+j), where j � 1

depends on the quadrature rule used.

This completes the discussion of parametrized deterministic partial di↵erential equations. Before

proceeding to the main topic of this work, PDE-constrained optimization, the notion of parametric

stochastic partial di↵erential equations is introduced and relevant details discussed, such as mean-

ingful risk measures and methods to discretize the stochastic space. This will lead to the discussion

of PDE-constrained optimization that will be applicable in both the deterministic and stochastic

setting.

2.2 Parametrized Stochastic Partial Di↵erential Equations

This section generalizes the concepts discussed in Section 2.1 to the case where uncertainty is present

in the parametrized partial di↵erential equation—for simplicity only static problems are considered.

The ultimate goal is to setup the stochastic PDE-constrained optimization problem. The discussion

begins with the formulation of parametrized, Stochastic Partial Di↵erential Equations (SPDEs) and

introduces the concept of risk measures of PDE quantities of interest. These risk measures will

comprise the objective and constraint functions in stochastic (risk-averse) optimization problems.

The SPDE will be discretized in space using the techniques introduced in Section 2.1 and collocation

will be used to discretize the stochastic space. Finally, the deterministic and stochastic PDE-

constrained optimization problems will be collectively detailed in Section 2.3.

Let B be a bounded domain in Rn

sd and let (⌦, F , P ) be a complete probability space. Here

⌦ is the set of outcomes, F ⇢ 2⌦ is the �-algebra of events, and P : F ! [0, 1] is a probability

measure. Consider the stochastic boundary value problem: find U such that P -almost everywhere

in ⌦
G(U, rU, µ, !) = g(x, µ, !) x 2 B(µ, !)

H(U, rU, µ, !) = h(x, µ, !) x 2 @B(µ, !),
(2.47)

where B ⇢ Rn

sd is the spatial domain with boundary @B, U is the unknown solution, µ 2 RNµ

are deterministic parameters, G and H are first-order spatial di↵erential operators, and g and h

are volumetric and boundary source terms. For generality, the domain, boundary, source terms,

and di↵erential operators are all taken as stochastic. The presence of the parameter vector µ

indicates that the di↵erential operators, source terms, and boundary conditions have already been

parametrized using the techniques in Section 2.1.2. Each realization of the parametrized, stochastic

PDE in (2.47), i.e., for a given ! 2 ⌦, constitutes a deterministic PDE of the form (2.1), which

can be discretized according to the methods outlined in that section. The following finite-noise

assumption [13, 12] allows the source of randomness to be approximated using a finite number of
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independent random variables.

Assumption 2.1 (Finite-dimensional noise). The stochastic terms in (2.47) depend on a finite

number of real-valued random variables, i.e.,

G( · , · , · , !) = G( · , · , · , Y
1

(!), . . . , Y
Ny (!))

g( · , · , !) = g( · , · , , Y
1

(!), . . . , Y
Ny (!))

B( · , !) = B( · , Y
1

(!), . . . , Y
Ny (!)),

(2.48)

where N

y

2 N
+

and {Y
n

}Ny

n=1

are real-valued, independent random variables. A similar expansion is

assumed to hold for the boundary terms.

Define ⌅
n

:= Y

n

(⌦) as the image of the random variables in Assumption 2.1 and ⌅ = ⌅
1

⌦ · · ·⌦
⌅
Ny ⇢ RNy . Let ⇢

n

: ⌅
n

! R
+

denote the probability density of the random variable Y

n

and,

due to the independence of {Y
n

}Ny

n=1

, the joint density of the random vector Y = (Y
1

, . . . , Y

N

) is

⇢ : ⌅! R
+

where ⇢ = ⇢

1

⌦ · · ·⌦ ⇢
Ny . The finite noise assumption allows a change of variables that

converts the parametrized stochastic partial di↵erential equation in (2.47) to: find U(µ, y) such

that for all y 2 ⌅
G(U, rU, µ, y) = g(x, µ, y) x 2 B(µ, y)

H(U, rU, µ, y) = h(x, µ, y) x 2 @B(µ, y)
(2.49)

for µ 2 RNµ .

2.2.1 Risk Measures of Quantities of Interest

The uncertainty that has been incorporated in the partial di↵erential equation in (2.47) will be

propagated to the quantities of interest through the solution U(µ, y) and possibly the domain

B(µ, y), boundary @B(µ, y), and di↵erential operators. To formulate a well-defined and meaningful

optimization problem, we consider an objective and constraints that consist of risk measures of these

uncertain quantities of interest. For the remainder of this section, let X be a real-valued random

variable, defined as X(y; µ) = F(U(µ, y), µ, y) where F is the quantity of interest in (2.2) without

temporal dependence, generalized to the stochastic case, i.e.,

F(U, µ, y) =

Z

B(µ,y)

fB(U, µ, y) dV +

Z

@B(µ,y)

f

@B(U, µ, y) dA. (2.50)

The dependence of the random variable X on the parameter will be dropped for the remainder of

this section as treatment of the stochastic dimension is the focus.

The simplest risk measure is the expected value of the random variable

E[X] =

Z

⌅
⇢(y)X(y) dy. (2.51)

The mean of the random variable does not necessarily encode a useful measure of risk, but is a
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straightforward generalization of the deterministic quantity of interest to the stochastic case. An

obvious deficiency in its use as a risk measure is it does not incorporate the spread of random variable

about the mean. The mean plus semideviation, defined as

R
�

[X] = E[X] + �E[(X � E[X])
+

] (2.52)

for � 2 R
+

, where (x)+ = max{0, x} overcomes this limitation. In an optimization setting, the value

of � must be determined to balance minimization of the (expected) quantity of interest with risk

aversion, which may be di�cult to do in practice. Another relevant risk measure is the �-quantile

of the random variable, also called the value-at-risk, defined as the smallest value such that the

probability that the random variable lies below said value is at least �, i.e.,

VaR
�

[X] = inf{t 2 R | Pr[X  t] � �}, (2.53)

where

Pr[X  t] =

Z

y2⌅:X(y)t

⇢(y) dy. (2.54)

The main disadvantage of the value-at-risk is that it fail to emphasize rare and low probability

events, which tend to be particularly important in engineering settings since they often correspond

to failure. The conditional value-at-risk, defined as

CVaR
�

[X] = inf
t2R

F

�

(t,X), (2.55)

where

F

�

(t, X) = t+
1

1� �E [(X � t)
+

] (2.56)

circumvents this limitation. While the conditional value-at-risk is non-smooth (due to the presence of

the max operator) and non-trivial to evaluate, it emphasizes rare events for � � 0. In the remainder

of this thesis, only the expectation risk measure will be considered for simplicity. All developments

will extend to any smooth risk measure. For non-smooth risk measures such as the semideviation

and conditional value-at-risk, well-defined smoothed approximations can be used [110] in place of

the risk measure itself.

2.2.2 Examples

1D Steady, Viscous Burgers’ Equation with Uncertain Coe�cients

The only stochastic partial di↵erential equation considered in this thesis is the 1D steady, viscous

Burgers’ equation with uncertain boundary conditions, source term, and viscosity

�⌫(y)@
xx

u(x, y) + u(x, y)@
x

u(x, y) = g(x, y) x 2 (x
l

, x

r

), y 2 ⌅

u(x
l

, y) = d

0

(y), u(x
r

, y) = d

1

(y) y 2 ⌅.
(2.57)
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The risk-neutral measure (expectation) of the tracking-type functional

T (u) = E

1

2

Z
x

r

x

l

⇥
(u(x, · )� ū(x))2 + ↵g(x, · )2

⇤
dx

�
.

will be used to define an optimal control problem in Chapter 6.

Static Linear Elasticity with Uncertain Loading

Another stochastic partial di↵erential equation that will be considered in future work is linear elastic-

ity with stochasticity in the load conditions. Consider the same physical setup as the deterministic

linear elasticity setup—a solid body B ⇢ Rn

sd subject to uncertain distributed body forces with

boundary @B decomposed into two parts: @B
u

and @B
t

such that @B = @B
u

[ @B
t

. Displacements

are prescribed along @B
u

and @B
t

is subject to uncertain, prescribed traction forces. Under the

assumption that the resulting deformations are infinitesimal and the pointwise stress and strain

are related through a linear relationship, the deformation of the body is governed by the following

system of partial di↵erential equations

r · �(x, y) + b(x, y) = 0 x 2 B, y 2 ⌅

u(x, y) = ū(x) x 2 @B
u

�(x, y) · n = t̄(x, y) x 2 @B
t

,y 2 ⌅,

(2.58)

where u is the pointwise deformation and state vector of the PDE, � is the stress tensor, b is the

uncertain body force, ū is the prescribed displacement on @B
u

, t̄ is the uncertain, prescribed traction

on @B
t

, and n is the pointwise outward normal to the boundary. The system of PDEs is closed with

the stress-strain relationship (Hooke’s law)

� = C : ✏ (2.59)

and the kinematic constraint relates deformation to strain as

✏ =
1

2

⇥
ru+ruT

⇤
. (2.60)

The quantities of interest considered are the volume of the structure—a deterministic quantity since

it is a geometrical quantity and all uncertainty is in the loading—and the expectation of the tracking

functional

V =

Z

B
dV and T (u) = E


1

2

Z

B
(u(x, · )� ū)

k

(u(x, · )� ū)
k

dV

�
. (2.61)

2.2.3 Finite-Dimensional Approximation

Since analytical techniques cannot, in general, be used to solve parametrized stochastic di↵erential

equations in (2.47), discretization techniques are applied to reduce the continuous (di↵erential)
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form of the problem to a discrete (algebraic) form. Unlike the continuous formulation, the discrete

problem can be solved using computational methods and resources. Two types of discretization

must be applied to the SPDE in (2.47) to the yield a (sequence of) algebraic equations that are

amenable numerical computation—-spatio-temporal and stochastic discretization.

Each realization of the SPDE in (2.47), i.e., for a given y 2 ⌅, constitutes a deterministic

parametrized partial di↵erential equation and requires spatio-temporal discretization (only spatial

discretization for static problems), e.g., such as those in Section 2.1.3, to yield a discrete problem.

The specific spatial discretization technique is left unspecified since the appropriate choice depends

on the properties of the di↵erential operators G( · , · , µ, y) and H( · , · , µ, y). The semi-discrete

form of the SPDE in (2.49) is: find u such that

r(u, µ, y) = 0 8y 2 ⌅. (2.62)

A variant of the Implicit Function Theorem (Theorem 2.1) implies the existence of a continuous

function u(µ, y), defined implicitly as the solution of r( ·, µ, y) = 0. The corresponding semi-

discrete stochastic quantity of interest and its risk measure take the form

f(u, µ, y) and R[f(u(µ, · ), µ, · )], (2.63)

where R is any risk measure introduced in the previous section.

Despite the spatial discretization, the semi-discrete form of the SPDE in (2.62) can still not be

treated computationally as the set ⌅ contains infinitely many points. There are a few approaches,

including stochastic Galerkin methods and stochastic collocation, to discretize the stochastic dimen-

sion and yield a fully discrete form of the SPDE that can be solved in a computational setting. This

work uses stochastic collocation whereby the equation is (2.62) is enforced only on a finite subset of

⌅, that is, (2.62) is replaced with

r(u, µ, y) = 0 8y 2 ⌅
h

(2.64)

where ⌅
h

⇢ ⌅ and card(⌅
h

) < 1. The integrals involved in the computation of the risk measure

must then be approximated with a quadrature scheme with nodes ⌅
h

. Section 6.1.3 details an

e�cient method to construct ⌅
h

using anisotropic sparse grids [67].

2.3 PDE-Constrained Optimization

Given the exposition on parametrized partial di↵erential equations in the previous section, atten-

tion is turned to the main interest of this document: optimization problems governed by partial

di↵erential equations. There are three primary components required to define a PDE-constrained

optimization problem:



CHAPTER 2. PDE-CONSTRAINED OPTIMIZATION 39

• the governing partial di↵erential equation and corresponding state vector that define the phys-

ical problem of interest,

• an objective function and constraint functions—the goal of the optimization problem—these

are usually quantities of interest of the partial di↵erential equation that define a performance

measure to be optimized and design requirements, and

• optimization parameters—usually a control or design—that are used to meet the performance

requirements.

Each of these components were discussed in the previous section, including details pertaining to their

formulation and discretization, and concrete examples were provided. The remainder of this section

will consider an abstract vector of parameters, µ 2 RNµ , i.e., the parameter space has already been

discretized and the discrete parameters can control any aspect of the PDE (shape/topology of the

domain, boundary conditions, coe�cient in di↵erential operators). To encompass the wide array of

features in the parametrized partial di↵erential equations discussed previously, an abstract PDE of

the form

D(U, µ) = 0 (2.65)

will be considered, where U is the state vector and D is the di↵erential operator. The abstract

quantity of interest will be denoted

F(U, µ) (2.66)

and will be the objective function or cost functional in the remainder of this section. This notation

will encompass static and time-dependent, deterministic and stochastic PDEs from previous sections.

In the static, deterministic case, U is understood to be only a function of space, i.e., U = U(x),

and F is likely an integral over a volume or surface. In the time-dependent, deterministic case, U

is a function of space and time, i.e., U = U(x, t), and F is a space-time integral. In the stochastic

counterparts, U also depends on the realization, i.e., U( · ) = U( · , y), and F requires an integral

over the stochastic space to compute the risk measure of the quantity of interest. The discretized

PDE and QoI will be denoted

r(u, µ) = 0 and f(u, µ), (2.67)

respectively, where u is the discrete state vector. While this abstract framework would lead to a hor-

ribly ine�cient implementation, it is useful to consider these various cases at once as the same issues

and concepts regarding PDE-constrained optimization arise in all cases. Each case must be consid-

ered separately to obtain a formulation that will be e�cient from an implementation viewpoint. The

remainder of this chapter discusses important details in the formulation of PDE-constrained opti-

mization problems and introduces concepts and notation that will be used throughout the remainder

of this thesis.
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2.3.1 Continuous vs. Discrete Formulation

The many steps involved in the discretization of partial di↵erential equations provides a large degree

of flexibility in the formulation of the PDE-constrained optimization problem. Namely, it can be

formulated at the continuous level or at any stage in the discretization process and these will not,

in general, be equivalent for finite values of the discretization parameter since the operations of

di↵erentiation and discretization do not commute.

The PDE-constrained optimization problem at the continuous level takes the form

minimize
U,µ

F(U, µ)

subject to D(U, µ) = 0.
(2.68)

The continuous formulation of the optimization problem, also known as the di↵erentiate-then-

discretize approach [78], proceeds by deriving the optimality conditions of (2.68), which leads to

a system of partial di↵erential equations that includes the primal and adjoint PDE and optimality

condition. These PDEs are discretized using the methods introduced in the previous section and

solved using an iterative method. Since this process is heavily dependent on the specific form of the

PDE and QoI under consideration, a specific example is provided next.

Example 1 (Optimal control of Poisson’s equation). Consider the optimal control problem that

looks to find a distributed control z(x) such that u(x), the solution of the Poisson equation with

homogeneous Dirichlet boundary conditions, matches a given target state ū(x) with a penalty on the

magnitude of the control. This problem is stated precisely as

minimize
u(x), z(x)

1

2

Z

⌦

(u(x)� ū(x))2 dx+
↵

2

Z

⌦

z(x)2 dx

subject to ��u(x) = z(x) x 2 ⌦

u(x) = 0 x 2 @⌦.

(2.69)

The Lagrangian of this PDE-constrained optimization problem is

L(u, z, �) = 1

2

Z

⌦

(u� ū)2 dx+
↵

2

Z

⌦

z

2

dx�
Z

⌦

� [��u� z] dx�
Z

@⌦

�u dx. (2.70)

Any solution of (2.69) must render the Lagrangian stationary, i.e.,

d

d✏
L(u+ ✏�u, z, �)|

✏=0

= 0 8�u
d

d✏
L(u, z + ✏�z, �)|

✏=0

= 0 8�z
d

d✏
L(u, z, �+ ✏��)|

✏=0

= 0 8��.

(2.71)

After direct di↵erentiation of the Lagrangian and subsequent integration-by-parts, the first condition
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in (2.71) reduces to

d

d✏
L(u+ ✏�u, z, �)|

✏=0

=

Z

⌦

[���� (u� ū)] �u dx�
Z

@⌦

� [�u+r�u · n] dx = 0 (2.72)

Since this relation holds for all �u, it is equivalent to the following partial di↵erential equation

���(x) = u(x)� ū(x) x 2 ⌦

�(x) = 0 x 2 @⌦,
(2.73)

which is known as the adjoint PDE. Direct di↵erentiation of the Lagrangian (2.70) reduces the second

condition in (2.71) to

d

d✏
L(u, z + ✏�z, �)|

✏=0

=

Z

⌦

(↵z + �)�z dx = 0, (2.74)

which is equivalent to the pointwise relationship

�(x) = �↵z(x). (2.75)

This is known as the optimality condition. Finally, the last condition in (2.71) reduces to

d

d✏
L(u, z, �+ ✏��)|

✏=0

=

Z

⌦

�� [��u� z] dx�
Z

@⌦

��u dx = 0 (2.76)

and recovers the governing PDE since this holds for all ��

��u(x) = z(x) x 2 ⌦

u(x) = 0 x 2 @⌦.
(2.77)

The adjoint PDE (2.73), optimality condition (2.75), and primal PDE (2.77) comprise the optimality

system at the continuous level, known as the Karush-Kuhn-Tucker (KKT) conditions. Thus, the

optimal control problem in (2.71) reduces to: find u(x), z(x), and �(x) such that

��u(x) = z(x) x 2 ⌦

u(x) = 0 x 2 @⌦

���(x) = u(x)� ū(x) x 2 ⌦

�(x) = 0 x 2 @⌦

z(x) = ��(x)/↵ x 2 ⌦.

(2.78)

The derivation of the above KKT system at the continuous level is the first step in the di↵erentiate-

then-discretize approach to PDE-constrained optimization. The KKT system is solved by discretizing

the parameters, quantities of interest, and primal and adjoint PDEs with the methods outlined in
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Sections 2.1.2–2.1.4. This leads to a coupled system of equations that are solved to yield an approx-

imation to (2.69). In general, di↵erent discretization methods and levels of refinement can be used

for the primal and adjoint equations. This is one of the advantages of this approach compared to the

discretize-then-di↵erentiate approach discussed next [78].

The discrete formulation, also known as the discretize-then-di↵erentiate approach [78], first dis-

cretizes the optimization problem in (2.68) to yield

minimize
u,µ

f(u, µ)

subject to r(u, µ) = 0.
(2.79)

Subsequently, the optimality conditions of (2.79) are derived by introducing its Lagrangian

L(u, µ, �) = f(u, µ)� �Tr(u, µ) (2.80)

and requiring its stationarity, i.e., (u, µ, �) such that

@L
@u

(u, µ, �) = 0
@L
@µ

(u, µ, �) = 0
@L
@�

(u, µ, �) = 0. (2.81)

These are the Karush-Kuhn-Tucker (KKT) conditions [143] and lead to the coupled system of

nonlinear algebraic equations
@r

@u
(u, µ)T� =

@f

@u
(u, µ)T

@r

@µ
(u, µ)T� =

@f

@µ
(u, µ)T

r(u, µ) = 0,

(2.82)

which are solved simultaneously.

The continuous formulation has a significant disadvantage in that it does not possess discrete

consistency in the reduced space setting (Section 2.3.2), that is, the computed gradient is not the

true gradient of the computed QoI since di↵erentiation and discretization do not commute. This

makes it di�cult to use blackbox optimizers to solve the optimization problem as convergence may

fail or be slowed when supplied with inconsistent gradients. Despite this disadvantage, there a

number of advantages to the continuous formulation. Di↵erent discretizations can be used for the

primal, sensitivity, and adjoint equations (either predefined or adaptively refined grids) depending

on required resolution of each. In shape optimization problems, there is no need to account for the

grid motion in the sensitivity and adjoint equations since they are posed directly on the new domain.

Finally, this approach can naturally be embedded in an optimization framework that leverages and

manages inexact gradients since error bounds on the computed sensitivities and adjoints are available

[108, 109].

The discrete formulation has a number of advantages as compared to the continuous framework,

most notable discrete consistency of computed functionals and gradients. Additionally, the discrete
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formulation allows for the use of sophisticated di↵erentiation software, such as automatic [161] and

symbolic [126] di↵erentiation, to compute the various quantities that arise in the sensitivity and

adjoint equations. The discrete setting also allows for a large degree of flexibility in the quantities of

interest and optimization parameters considered, particularly if a well-defined di↵erentiation frame-

work is used in the implementation. The continuous approach requires re-deriving the corresponding

adjoint equations for each partial di↵erential equation, boundary condition, and quantity of interest.

For these reasons, the discrete formulation will be solely considered throughout the remainder of

this thesis.

In certain situations, the continuous and discrete formulations of the optimization problem are

equivalent. This equivalence holds if the scheme used to discretize the partial di↵erential equation is

adjoint consistent—that is, the discrete adjoint equations correspond to a consistent discretization

of the continuous adjoint equations [11, 84]. This property is not crucial for this work since the

discrete formulation is considered and therefore gradients automatically possess discrete consistency.

However, it has been shown that an adjoint consistent discretization of the PDE is necessary for

optimal convergence rates in L

2 and in quantities of interest [97, 83, 82].

2.3.2 Full Space vs. Reduced Space Approach

To this point, the PDE-constrained optimization problem has been posed as an optimization problem

over the state and parameter. This is usually called a full space or one-shot formulation as the

solution of the PDE and optimization problem are sought simultaneously. In contrast, the reduced

space approach explicitly enforces the PDE constraint and considers an optimization problem over

the parameters only. In the optimization community, this is commonly referred to as nonlinear

elimination of equality constraints [71, 143].

To consider the reduced space approach to PDE-constrained optimization, the following assump-

tion on existence and uniqueness of solutions of the PDE is crucial.

Assumption 2.2. For any µ 2 RNµ , there exists a unique u(µ) such that r(u(µ), µ) = 0.

From this assumption, it is clear that optimization of pure Neumann problems is not possible in

the reduced space setting as the solutions of these problems are only unique up to a constant. For

such problems, a full space setting is more appropriate. The implicit function theorem guarantees

Assumption 2.2 holds if r is su�ciently regular and its Jacobian is invertible; in fact, it guarantees

the existence of a smooth function that maps µ 2 RNµ to the corresponding solution of the PDE,

u(µ).

Theorem 2.1 (Implicit Function Theorem). Let A be an open set in RNu ⇥ RNµ and suppose

r : A! RNu is a C

r function (r � 1). Consider ū 2 RNu and µ̄ 2 RNµ such that r(ū, µ̄) = 0 and
@r

@u
(ū, µ̄) is invertible. Then, there exists a neighborhood B ⇢ RNµ of µ̄ and a unique C

r function

u : RNµ ! RNu such that ū = u(µ̄) and r(u(µ), µ) = 0 for all µ 2 B.
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This mapping from µ to u(µ) is used to define a quantity of interest that only depends on µ

F (µ) := f(u(µ), µ). (2.83)

Thus, the constrained optimization problem in (2.79) can be reduced to the unconstrained optimiza-

tion problem

minimize
µ2RNµ

F (µ) (2.84)

since the solution of the PDE is fully accounted for in u(µ). In a gradient-based optimization

setting, the reduced space approach requires the computation of gradients of quantities of interest

that account for the total dependence on µ, that is, the explicit dependence on µ and the implicit

dependence through the solution of the PDE itself. This will be the focus of the next two sections

that consider two distinct approaches to obtaining such gradients.

There are a number of advantages of the reduced space approach over full space methods, par-

ticularly in the context of large-scale, practical problems. First, the optimization problem is smaller

and simpler—it is only posed over the parameters since the state variable is taken as an implicit

function of these parameters, u(µ), and the nonlinearly constrained optimization problem is reduced

to an unconstrained one. The reduced space framework also allows for the use of state-of-the-art

PDE solvers and black-box optimizers since it decouples the solution of the PDE and the optimiza-

tion problem. This is particularly important in the context of computational fluid dynamics where

specialized methods exist for solving the steady-state partial di↵erential equation such as pseudo-

transient continuation [104, 105]. For these reasons, the remainder of this thesis will focus solely

on the reduced space formulation of PDE-constrained optimization. The close this discussion, it is

worthwhile to mention some advantages of the full space approach: (1) it does not require Assump-

tion 2.2, thereby enlarging the class of problems to which it can be applied and (2) it is usually

more e�cient than the reduced space approach since it does not require full resolution of the PDE

solution at every iteration.

2.3.3 Sensitivity Method for Computing Gradients

Once one commits to using a reduced space approach, the gradient of F (µ) in (2.84) must be

computed, if a gradient-based optimization method is to be employed. This gradient must account

for the explicit dependence of f on µ as well as its implicit dependence through the solution of

the PDE. Throughout the remainder of this chapter, u(µ) will be used to denote the function in

Theorem 2.1 that maps µ to the solution of the PDE. Application of the chain rule leads to the

expansion
dF

dµ
(µ) =

@f

@µ
(u(µ), µ) +

@f

@u
(u(µ), µ)

@u

@µ
(µ). (2.85)

Furthermore, since u(µ) is the solution of the PDE for any µ, r(u(µ), µ) = 0 and

dr

dµ
(u(µ), µ) = 0 =) @r

@µ
(u(µ), µ) +

@r

@u
(u(µ), µ)

@u

@µ
(µ) = 0 (2.86)
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From the assumptions in Theorem 2.1, the Jacobian matrix
@r

@u
(u(µ), µ) is invertible, which leads

to the following expression for the sensitivity

@u

@µ
(µ) = � @r

@u
(u(µ), µ)�1

@r

@µ
(u(µ), µ). (2.87)

Combining this equation for the sensitivity with the expression for the gradient of F leads to

dF

dµ
(µ) =

@f

@µ
(u(µ), µ)� @f

@u
(u(µ), µ)

@r

@u
(u(µ), µ)�1

@r

@µ
(u(µ), µ). (2.88)

This method of computing the gradient of F is known as the sensitivity or direct method. An

important observation is that each column of the sensitivity matrix,
@u

@µ
, requires the solution of

a linear system of equation with the Jacobian matrix—a total of N
µ

linear systems with the same

matrix and di↵erent right-hand sides. In large-scale applications, particularly for time-dependent

problems, this will be a very expensive endeavor—see Appendix D for details regarding the sensitivity

method for time-dependent problems. An advantage of the sensitivity method is that once the

sensitivity,
@u

@µ
is computed, the gradient of any number of functionals can be computed essentially

for free. This is useful if the problem has a large number of side constraints—see Section 2.3.5.

Before closing this discussion on sensitivity analysis, define the sensitivity residual as

r@(u, v, µ) :=
@r

@µ
(u, µ) +

@r

@u
(u, µ)v, (2.89)

which is motivated from the sensitivity equations in (2.86). Clearly, we have

r@
✓
u(µ),

@u

@µ
(µ), µ

◆
= 0.

The sensitivity residual will be used as an error indicator for any approximation u, w of the true

primal solution u(µ) and sensitivity
@u

@µ
(µ), as well as an error bound on the corresponding ap-

proximation of rF (µ)—see Appendix B. In a similar manner, the gradient computation in (2.88)

is generalized to consider non-equilibrium solutions u and sensitivities w

g@(u, w, µ) =
@f

@µ
(u, µ) +

@f

@u
(u, µ)w (2.90)

as this will play a role in the residual-based error bounds on QoIs (Appendix B). The next section

introduces a method to compute rF (µ)—the adjoint method—that circumvents the large cost of

the sensitivity approach when N

µ

� 1.

2.3.4 Adjoint Method for Computing Gradients

The adjoint method is an alternative approach to compute the gradient of F that circumvents the

sensitivity computation in (2.87) and only requires a single linear system solve with the transpose
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of the Jacobian matrix to compute the entire gradient. In this section, three di↵erent derivations of

the adjoint method will be provided, leading to various interpretations of the adjoint variable.

The first and simplest derivation of the adjoint method applies a simple algebraic trick to the

gradient expression in (2.88) to yield

dF

dµ
=
@f

@µ
� @f

@u

@r

@u

�1

@r

@µ
=
@f

@µ
�
 
@r

@u

�T

@f

@u

T

!
T

@r

@µ
=
@f

@µ
� �T

@r

@µ
(2.91)

where the arguments u(µ) and µ have been dropped for brevity and �(µ) is defined as the solution

of
@r

@u
(u(µ), µ)T�(µ) =

@f

@u
(u(µ), µ)T . (2.92)

The linearized equations in (2.92) are known as the adjoint equations and � is the adjoint or dual

variable. From (2.91) and (2.92) it is clear the gradient of F can be computed from one linear system

solve, regardless of N
µ

.

The second derivation proceeds by introducing � as an arbitrary test function, multiplying it

by the sensitivity equations in (2.86), and adding the resulting expression to the equation for the

gradient of F in (2.85)
dF

dµ
=
@f

@µ
+
@f

@u

@u

@µ
� �T


@r

@µ
+
@r

@u

@u

@µ

�
. (2.93)

This equation is valid since the term in brackets on the right side is identically zero from (2.86) and

the fact that all terms are evaluated at the primal and sensitivity solutions. Recall the goal is to get

an expression for
dF

dµ
that is independent of the sensitivity

@u

@µ
. To this end, the terms in (2.93) are

re-arranged such that the sensitivity is isolated

dF

dµ
=
@f

@µ
� �T

@r

@µ
+


@f

@u
� �T

@r

@u

�
@u

@µ
. (2.94)

Define �, which has remained arbitrary to this point, as the solution of the adjoint equation

@r

@u
(u(µ), µ)T�(µ) =

@f

@u
(u(µ), µ)T (2.95)

and the expression in the brackets vanishes, leading to an expression for
dF

dµ
that is independent of

the sensitivities
dF

dµ
(µ) =

@f

@µ
(u(µ), µ)� �(µ)T

@r

@µ
(u(µ), µ) (2.96)

and agrees with (2.92).

The final derivation will introduce the adjoint variable as the Lagrange multipliers corresponding
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to the PDE constraint of the auxiliary PDE-constrained optimization problem

minimize
u

f(u, µ̂)

subject to r(u, µ̂) = 0,
(2.97)

where µ̂ is fixed, i.e., not an optimization variable. Assumption 2.2 implies that the optimization

problem is equivalent to the nonlinear system of equation

r(u, µ̂) = 0.

This follows directly from µ̂ being fixed and uniqueness of the solution of r(·, µ) = 0, i.e., the

feasible set of the optimization problem in (2.97) is {u(µ̂)} and therefore u(µ̂) must be the solution

of (2.97), regardless of the objective function. The Lagrangian of the optimization problem in (2.97)

is

L(u, �) = f(u, µ̂)� �Tr(u, µ̂) (2.98)

and the KKT system is
@L
@u

=
@f

@u
(u, µ̂)� �T

@r

@u
(u, µ̂) = 0

@L
@�

= �r(u, µ̂) = 0
(2.99)

The first condition is exactly the adjoint equations in (2.92) and the second condition is the PDE

constraint. Substitution into (2.94) yields the familiar expression for
dF

dµ

dF

dµ
(µ) =

@f

@µ
(u(µ), µ)� �(µ)T

@r

@µ
(u(µ), µ). (2.100)

Thus, the adjoint variable has been introduced as an algebraic trick to re-arrange the operations

in (2.88), a test function multiplying the sensitivity equations, and the Lagrange multipliers of an

auxiliary PDE-constrained optimization problem. Appendix D details the derivation of the adjoint

equations—using the test function and Lagrange multiplier approach—for a time-dependent PDE

posed on a deforming domain and discretized with high-order spatial and temporal schemes. Similar

to the previous section, the adjoint equations in (2.92) are used to motivate the definition of the

adjoint residual

r�(u, v, µ) :=
@f

@u
(u, µ)T � @r

@u
(u, µ)Tv, (2.101)

which will be used as an error measure when inexact primal and adjoint solution are used to compute

rF (µ)—see Appendix B. In a similar manner, the gradient computation in (2.91) is generalized to

consider non-equilibrium solutions u and adjoints z

g�(u, z, µ) =
@f

@µ
(u, µ)� zT

@r

@µ
(u, µ) (2.102)
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as this will play a role in the residual-based error bounds on QoI gradients (Appendix B).

2.3.5 Optimization Problems with Side Constraints

To this point, unconstrained PDE-constrained optimization problems, i.e, optimization problems

where the PDE is the only constraint, have been solely considered due to simplicity in the exposition.

Nearly all practical problems, particularly in a design setting, will have additional performance

constraints, usually referred to as side constraints. In this case, the fully discrete optimization

problem in the full space takes the form

minimize
u,µ

f(u, µ)

subject to r(u, µ) = 0

c(u, µ) = 0

d(u, µ)  0,

(2.103)

where c and d are equality and inequality side constraints, respectively. In a gradient-based opti-

mization framework, the terms
@c

@u
,

@c

@µ
,

@d

@u
,

@d

@µ

are required in addition to
@f

@u
,

@f

@µ
,

@r

@u
,

@r

@µ
,

the terms required in the case without side constraints. In the reduced space setting, the optimization

problem becomes

minimize
µ

F (µ)

subject to C(µ) = 0

D(µ)  0,

(2.104)

where F (µ) is defined in (2.83) and

C(µ) := c(u(µ), µ) and D(µ) := d(u(µ), µ). (2.105)

This is a nonlinearly constrained optimization problem over µ and a gradient-based optimization

setting will require the Jacobians of the constraints

dC

dµ
,

dD

dµ
,

which can be computed using the sensitivity or adjoint approach discussed previously. In the case

where one of the constraints does not depend on the state vector u, the sensitivity/adjoint method

are not needed as the gradient will be equivalent to the partial derivative with respect to µ. If

the sensitivity approach is used, the sensitivity
@u

@µ
(µ) is computed once-and-for-all and used to
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reconstruct the required gradients as

dF

dµ
(µ) =

@f

@µ
(u(µ), µ) +

@f

@u
(u(µ), µ)

@u

@µ
(µ)

dC

dµ
(µ) =

@c

@µ
(u(µ), µ) +

@c

@u
(u(µ), µ)

@u

@µ
(µ)

dD

dµ
(µ) =

@d

@µ
(u(µ), µ) +

@d

@u
(u(µ), µ)

@u

@µ
(µ)

(2.106)

Thus, even though the sensitivity computation requires a linear solve for each entry in µ, it is used to

construct the gradient of any number of functionals and is e�cient when the number of constraints

is large compared to N

µ

.

Conversely, the adjoint equation is tied to a specific functional and each separate constraint

requires the solution of a di↵erent adjoint equation

@r

@u
(u(µ), µ)T�

f

(µ) =
@f

@u
(u(µ), µ)T

@r

@u
(u(µ), µ)T�

c

(µ) =
@c

@u
(u(µ), µ)T

@r

@u
(u(µ), µ)T�

d

(µ) =
@d

@u
(u(µ), µ)T .

(2.107)

Once the dual variable for each functional has been computed, the required derivatives are recon-

structed as
dF

dµ
(µ) =

@f

@µ
(u(µ), µ)� �

f

(µ)T
@r

@µ
(u(µ), µ)

dC

dµ
(µ) =

@c

@µ
(u(µ), µ)� �

c

(µ)T
@r

@µ
(u(µ), µ)

dD

dµ
(µ) =

@d

@µ
(u(µ), µ)� �

d

(µ)T
@r

@µ
(u(µ), µ).

(2.108)

Although it is not common, certain cases arise where it is possible to use nonlinear elimination

to remove side constraints, identical to elimination of the PDE constraint in the reduced space

approach. In these cases, for each µ, there must exist a u(µ) that satisfies the PDE and side

constraint. In general, this mapping will be di↵erent from the one defined in Theorem 2.1 and will

modify the sensitivity and adjoint equations. Appendix D provides a concrete example of a time-

dependent PDE-constrained optimization problem with two side constraints—the first is a lower

bound on a QoI (not amenable to elimination) and the second requires time-periodicity of the PDE

solution (amenable to elimination). Nonlinear elimination is applied to the periodicity constraint

and the adjoint equations are modified accordingly.



Chapter 3

Generalized Multifidelity Trust

Region Method

Given the broad discussion on partial di↵erential equations and PDE-constrained optimization in

Chapter 2, the scope will be narrowed to consider only the reduced-space framework for the remain-

der of the document. In this setting, nonlinear elimination is used to explicitly enforce the PDE

constraint and eliminate the state variables from the optimization problem. This leads to an uncon-

strained or constrained optimization problem, depending on the presence of side constraints, over

only the parameters, µ. Each query to the objective or constraint requires a primal PDE solve and

each query to the corresponding gradient requires (possibly many) sensitivity or adjoint PDE solves.

For PDEs with uncertain coe�cients, an ensemble of primal and dual PDE solves are required to

evaluate these optimization functionals and gradients (in order to evaluate risk-averse measures of

quantities of interest). For large-scale problems that commonly arise in engineering and scientific

practice, this will be an expensive endeavor. To mitigate this computational burden, a globally

convergent optimization method is developed that enables the use of inexpensive, locally accurate

approximation models. This chapter will develop the multifidelity optimization method with an

abstract approximation model for the sake of generality, i.e., any approximation model that satisfies

the assumptions to be laid out. Chapters 5–6 will detail the use of projection-based reduced-order

models as the approximation model.

This chapter begins with necessary background regarding unconstrained optimization theory.

Subsequently, an error-aware multifidelity trust region method—one of the auxiliary contributions

of this thesis—is developed. Finally, the special case of an unconstrained problem, i.e., no side

constraints, is generalized to handle nonlinear equality constraints.

50
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3.1 Unconstrained Optimization

Consider the unconstrained optimization of a twice-continuously di↵erentiable function F : RNµ ! R
that is bounded below, i.e., F 2 {g 2 C

2(RNµ) | inf g(µ) > �1}, stated as

minimize
µ2RNµ

F (µ). (3.1)

This is the exact form of the reduced-space PDE-constrained optimization problem in (2.84). In

general, it is desirable to find the global minimum of (3.1), i.e., the point µ⇤ such that F (µ⇤)  F (µ)

for all µ 2 RNµ ; however, it is impossible to construct an e�cient and reliable global optimization

algorithm for an arbitrary nonlinear function and we settle for local minima, as defined in Defini-

tion 3.1.

Definition 3.1 (Unconstrained local minima). A point µ⇤ 2 RNµ is a local minima of F if there

is a neighborhood N of µ⇤ such that F (µ⇤)  F (µ) for all µ 2 N .

From Theorem 3.1, if a point µ⇤ 2 RN is a local minima of (3.1), it must be a stationary

point (Definition 3.2) of the function F . This is known as a first-order condition since it places a

requirement on the gradient of F .

Theorem 3.1 (First-order unconstrained optimality conditions). If µ⇤ is a local minimizer of F (µ)

and F is continuously di↵erentiable in a neighborhood of µ⇤, then

rF (µ⇤) = 0. (3.2)

Proof. See [143]

Definition 3.2 (Unconstrained stationary point). Any point µ that satisfies rF (µ) = 0 is called a

stationary point.

There are also second-order necessary and su�cient conditions for µ⇤ to be a local minima of

(3.1) that involve (semi-)positive definiteness of the Hessian of F [143]. This work will primarily be

concerned with first-order optimality conditions.

3.1.1 Error-Aware Multifidelity Trust Region Method

In this section, we consider optimization problems of the form (3.1) where the evaluation of F and its

gradient are expensive and look to develop an optimization algorithm that leverages an inexpensive

approximation model, m
k

(µ), at iteration k. It is assumed that evaluation of m
k

(µ) and its gradient

are substantially less expensive than the corresponding operation with F (µ). The approximation

model m
k

(µ) is required to be locally accurate around the kth iterate, µ
k

, but may be inaccurate

away from this point. An inexpensive optimization procedure involving the approximation model

is intended to improve the current iterate and make progress toward the optimal solution. Due to
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the inherent locality of the approximation model, it will not su�ce to consider the unconstrained

optimization problem

minimize
µ2RNµ

m

k

(µ) (3.3)

as the new iterate µ
k+1

may fail to make progress toward the local minima of (3.1). For this reason,

the optimization problem is only posed within a trust region, defined as the sublevel sets of a function

#

k

: RNµ ! R
+

, i.e.,

minimize
µ2RNµ

m

k

(µ)

subject to #

k

(µ)  �
k

.

(3.4)

In traditional trust region methods [48], the model is taken as the quadratic approximation of F at

µ
k

and the trust region constraint is the Euclidean distance from µ
k

m

k

(µ) = F (µ
k

) +rF (µ
k

)(µ� µ
k

) +
1

2
(µ� µ

k

)Tr2

F (µ
k

)(µ� µ
k

)

#

k

(µ) = kµ� µ
k

k
2

,

A plethora of variants have been proposed that leverage inexact gradients and Hessians in the

definition of m
k

(µ) [189, 35, 48, 108] and non-quadratic model objectives [4, 48, 10, 108]. In this

work, the trust region constraint itself is generalized such that error bounds between the objective

function and approximation model can be directly leveraged. This will, in a sense, define an error-

aware trust region.

Before proceeding to the statement of the complete generalized trust region algorithm, an inter-

pretation of an error-aware trust region is provided for a special case. Suppose the scalar-valued

constraint function #
k

: RNµ ! R
+

is defined as the Euclidean norm of a linear vector-valued error

indicator #
k

: RNµ ! Rm, i.e.,

#

k

(µ) = k#
k

(µ)k
2

.

Additionally, suppose the approximation model is exact at trust region centers and this is reflected

in the vector-valued error indicator (#
k

(µ
k

) = 0), i.e.,

#
k

(µ) = A
k

(µ� µ
k

),

where A
k

2 Rm⇥Nµ is a fixed matrix. Then the constraint function can be expanded as

#(µ) = k#
k

(µ)k
2

= kµ� µ
k

k
A

T

k

A

k

, (3.5)

which is precisely a traditional trust region constraint in the AT

k

A
k

-norm. Consider the eigenvalue

decomposition of the symmetric positive (semi)-definite matrix AT

k

A
k

AT

k

A
k

= Q
k

⇤
k

QT

k

, (3.6)
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Figure 3.1: Geometry of trust region constraint in special case where #
k

= kA
k

(µ� µ
k

)k
2

=
kµ� µ

k

k
A

T

k

A

k

. The eigenvalue decomposition of AT

k

A
k

is AT

k

A
k

= Q
k

⇤
k

QT

k

with eigenvectors

q
i

= Q
k

e
i

and eigenvalues �
i

= eT
i

⇤
k

e
i

.

where Q
k

is an orthogonal matrix of eigenvectors of AT

k

A
k

and ⇤
k

is the diagonal matrix of non-

negative eigenvalues. The trust region constraint #
k

(µ)  �
k

with #
k

(µ) defined in (3.5) is an ellipse

with principal axis directions q
i

= Q
k

e
i

and lengths
�

k

eT
i

⇤e
i

for i = 1, . . . ,m, where e
i

2 RNµ is

the ith canonical vector; see Figure 3.1. Thus the ellipse is stretched (compressed) in directions

corresponding small (large) eigenvalues. The matrix AT

k

A
k

represents the sensitivity of the error

indicator with respect to the components of µ, which provides intuition to the ellipse interpretation:

directions where the error indicator is highly sensitive to perturbations (large eigenvalues) correspond

to small principal axes and vice versa.

For the sake of both generality and e�ciency, the proposed generalized trust region method

will allow the model gradient to be inexact at trust region centers, µ
k

. Aside from the standard

assumption imposed on the model function, m
k

, such as twice-continuous di↵erentiability and uni-

formly bounded Hessians, the proposed method requires the existence of functions #
k

: RNµ ! R
+

,

'

k

: RNµ ! R
+

and arbitrary constants ⇣, ⇠ > 0 such that

|F (µ
k

)� F (µ) +m

k

(µ)�m

k

(µ
k

)|  ⇣#
k

(µ) 8µ 2 R
k

krF (µ
k

)�rm
k

(µ
k

)k  ⇠'
k

(µ
k

)
(3.7)

where R
k

:= {µ 2 RNµ | #
k

(µ)  �
k

}. The first bound in (3.7) requires the variation of m
k

from µ
k

to µ to be related to the variation of F from µ
k

to µ. The does not necessarily place a

requirement on the pointwise accuracy of m
k

with respect to F , even at the trust region center µ
k

.

However, a requirement on pointwise accuracy is su�cient to lead to the bound in (3.7) as follows.

Suppose there exists a function �
k

: RNµ ! R
+

and arbitrary constant  > 0 such that

|F (µ)�m

k

(µ)|  �
k

(µ). (3.8)

A simple application of the triangle inequality lead to the first bound in (3.7) with ⇣ =  and

#

k

(µ) = �

k

(µ
k

) + �

k

(µ). The second bound in (3.7) is a requirement on the gradient accuracy
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at the trust region center. The existence of the arbitrary constants implies #
k

(µ) and '

k

(µ) are

asymptotic error bounds, which will provide considerable flexibility in deriving explicit expressions

for them, even for general PDE-constrained optimization problems, in Chapters 5–6 when specific

approximation models are considered.

Each iteration k of the proposed trust region method will rely on four main steps: (1) definition

of the trust region model, m
k

(µ), and constraint, #
k

(µ), (2) computation of a candidate point, µ̂
k

,

for the next iterate as the solution of the optimization problem (3.4), (3) computation of the ratio

of the actual reduction realized by µ̂
k

to that predicted by the model

⇢

k

=
F (µ

k

)� F (µ̂
k

)

m

k

(µ
k

)�m

k

(µ̂
k

)
, (3.9)

and (4) using the value of ⇢
k

, decide whether to accept or reject the candidate, µ̂
k

, and how to

modify the trust region radius, �
k

. Each of these steps will be detailed in the sections to follow.

The generalized trust region algorithm that incorporates these steps is summarized in Algorithm 1.

A proof of global convergence, that is, convergence to a local minima from any starting point µ
0

, is

provided in Appendix A. The computation of the actual-to-predicted reduction ratio (⇢
k

) is a severe

bottleneck of Algorithm 1 since it requires an evaluation of F . Another approximation model will be

introduced to enable an approximation of ⇢
k

to be used in place of the true value without destroying

global convergence. Therefore, the modified trust region method, summarized in Algorithm 2,

circumvents the primary bottleneck of Algorithm 1.

Step 1: Model and constraint update

The first and most important step in an iteration of the generalized trust region method is the

definition of the model function, m
k

(µ), and constraint, #
k

(µ). To guarantee global convergence,

the model must be equipped with error bounds of the form (3.7) and conditions must be placed on

the value of the error indicators, #
k

(µ) and '
k

(µ), at trust region centers to control the quality of

the approximation. The requirement on #
k

(µ
k

) is simply

#

k

(µ
k

)  
#

�
k

(3.10)

where 0 < 

#

< 1 is an algorithmic constant, which ensures the feasible set of (3.4) is not empty

and the trust region center (µ
k

) is in the feasible set. In the special case where #
k

(µ) is a pointwise

error indicator of the form �

k

(µ
k

) + �

k

(µ), it places a requirement on the accuracy of the model

at the trust region center. In the next section and Lemma A.1, this condition will also be used to

circumscribe a traditional trust region feasible set (with modified radius) inside the feasible set of

(3.4), which enables standard results from trust region theory to be recycled.

The requirement on '
k

(µ
k

) is recycled from [93, 108, 109]

'

k

(µ
k

)  
'

min{krm
k

(µ
k

)k , �
k

} (3.11)
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Algorithm 1 Error-aware multifidelity trust region method with exact objective evaluations

1: Initialization: Given

µ
0

, �
0

, 0 < � < 1, �
max

> 0, 0 < ⌘

1

< ⌘

2

< 1, 0 < 

#

< 1, 0 < 

'

2: Model and constraint update: Choose a model, m

k

(µ), constraint, #
k

(µ), and gradient
error bound, '

k

(µ), such that

kF (µ
k

)� F (µ) +m

k

(µ)�m

k

(µ
k

)k  ⇣#
k

(µ) µ 2 R
k

krF (µ
k

)�rm
k

(µ
k

)k  ⇠'
k

(µ
k

)

#

k

(µ
k

)  
#

�
k

'

k

(µ
k

)  
'

min{krm
k

(µ
k

)k , �
k

}

where ⇣, ⇠ > 0 are arbitrary constants and R
k

= {µ 2 RNµ | #
k

(µ)  �
k

}
3: Step computation: Approximately solve the trust region subproblem

min
µ2RNµ

m

k

(µ) subject to #

k

(µ)  �
k

for a candidate, µ̂
k

, that satisfies #
k

(µ̂
k

)  �
k

and

m

k

(µ
k

)�m

k

(µ̂
k

) � 
s

krm
k

(µ
k

)kmin

⇢
(1� 

#

)�1

r#

�
k

,

krm
k

(µ
k

)k
�

k

�

where 
s

2 (0, 1), kr#
k

(µ)k  r#

for all µ 2 R
k

, and �
k

:= 1 + sup
µ2R

k

��r2

m

k

(µ)
��.

4: Actual-to-predicted reduction: Compute actual-to-predicted reduction ratio approximation
according to

⇢

k

=
F (µ

k

)� F (µ̂
k

)

m

k

(µ
k

)�m

k

(µ̂
k

)

5: Step acceptance:

if ⇢

k

� ⌘
1

then µ
k+1

= µ̂
k

else µ
k+1

= µ
k

end if

6: Trust region update:

if ⇢

k

 ⌘
1

then �
k+1

2 (0, �#
k

(µ̂
k

)] end if

if ⇢

k

2 (⌘
1

, ⌘

2

) then �
k+1

2 [�#
k

(µ̂
k

),�
k

] end if

if ⇢

k

� ⌘
2

then �
k+1

2 [�
k

,�
max

] end if
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where 
'

> 0 is an algorithmic constant. The main purpose of the gradient condition is to ensure

su�cient accuracy in the model gradient is obtained near convergence (krm
k

(µ
k

)k small) or after

failed steps (�
k

small). When combined with the error bound in (3.7), it also guarantees a local

minima of F is approached as krm
k

(µ
k

)k ! 0. The error bounds and requirements on the error

indicators are summarized in (3.12)-(3.15) below

|F (µ
k

)� F (µ) +m

k

(µ)�m

k

(µ
k

)|  ⇣#
k

(µ) µ 2 R
k

(3.12)

krF (µ
k

)�rm
k

(µ
k

)k  ⇠'
k

(µ
k

) (3.13)

#

k

(µ
k

)  
#

�
k

(3.14)

'

k

(µ
k

)  
'

min{krm
k

(µ
k

)k , �
k

}. (3.15)

where ⇠, ⇣ > 0 are arbitrary constants.

Traditional trust region methods (#
k

(µ) = kµ� µ
k

k) that allow for inexact objective and gra-

dient evaluations [93, 108, 109] naturally fit requirements (3.12)-(3.15) as follows. Consider an

arbitrary model, m
k

(µ), and gradient error bound, '
k

(µ
k

), such that (3.13) and (3.15) are satis-

fied. Then, #
k

(µ) = kµ� µ
k

k automatically satisfies (3.12) and (3.14). Condition (3.14) is trivial

to verify since #
k

(µ
k

) = 0. Condition (3.12) is verified, following [108], by considering the Taylor

expansion of F and m

k

about µ
k

F (µ) = F (µ
k

) +rF (µ
k

)(µ� µ
k

) +
1

2
(µ� µ

k

)Tr2

F (y)(µ� µ
k

)

m

k

(µ) = m

k

(µ
k

) +rm
k

(µ
k

)(µ� µ
k

) +
1

2
(µ� µ

k

)Tr2

m

k

(z)(µ� µ
k

)

where y, z 2 RNµ are arbitrary points that lie on the line between µ and µ
k

. Subtracting these

equations, subsequent rearrangement, and application of the triangle inequality leads to

|F (µ
k

)�F (µ)+m

k

(µ)�m
k

(µ
k

)|  krF (µ
k

)�rm
k

(µ
k

)k kµ� µ
k

k+1

2

��r2

F (y)�rm
k

(z)
�� kµ� µ

k

k2 .

The gradient condition (3.15) and the fact that µ 2 R
k

= {y 2 RN | ky � µ
k

k  �
k

} are used to

reduce the above inequality to

|F (µ
k

)� F (µ) +m

k

(µ)�m

k

(µ
k

)|  (⇠
'

+
1

2
↵

k

)�
k

kµ� µ
k

k

where ↵
k

= sup
µ2R

k

���r2

F (µ)
��+

��r2

m

k

(µ)
��� is well-defined if the objective and model Hessians

are uniformly bounded on R
k

. Furthermore, assume these Hessians are uniformly bounded on all

of RNµ , i.e., there exists ↵ > 0 such that ↵
k

 ↵. This assumption and the introduction of an

algorithmic parameter �
max

such that �
k

 �
max

(see discussion of step 4) leads to the desired

result

|F (µ
k

)� F (µ) +m

k

(µ)�m

k

(µ
k

)|  ⇣#
k

(µ)

where ⇣ = (⇠
'

+ ↵/2)�
max

is a constant.
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Remark. A similar generalization of trust region methods was introduced in [208] that used reduced-

order models for the approximation model of the linear PDE. However, the method in that work

requires the pointwise error bound (3.8) on the objective accuracy. The bound on the objective

variation in (3.7) was shown to be a weaker condition than the pointwise bound since (3.8) is a

special case of (3.7). Additionally, the objective variation bound provides considerable flexibility

compared to the pointwise bound. For example, the bound in (3.7) encompasses the traditional trust

region constraint #
k

(µ) = kµ� µ
k

k without requiring zeroth-order consistency m

k

(µ
k

) = F (µ
k

),

whereas this would would be required by the pointwise bound since #
k

(µ
k

) = 0. Therefore the bound in

(3.7) enables the generalized trust region method to reduce to a traditional trust region method, even

when the model objective is inexact at trust region centers. This will be exploited in Chapters 5–6.

Step 2: Step candidate as solution of trust region subproblem

The model and trust region constraint functions are used to form the trust region subproblem in

(3.4) whose minimizer is used as the candidate for µ
k+1

. In traditional trust region methods, it is

well-known that the trust region subproblem does not need to be solved exactly. In fact, it may be

as di�cult to solve the trust region subproblem as the original unconstrained optimization problem

(3.1). Define the Cauchy point (Definition 3.3) as the minimizer of the trust region subproblem

restricted to the steepest decent direction. It turns out that an essential component in the global

convergence theory of trust region methods is the decrease in the model realized by the Cauchy

point (Theorem 3.2) [133].

Definition 3.3 (Cauchy point). The Cauchy point of the trust region subproblem

minimize
µ2RNµ

m

k

(µ)

subject to kµ� µ
k

k  �
k

(3.16)

is µC

k

= µ
k

� s

⇤rm
k

(µ
k

), where s

⇤ is the solution of the univariate optimization problem

minimize
s�0

m

k

(µ
k

� srm
k

(µ
k

))

subject to s krm
k

(µ
k

)k  �
k

.

(3.17)

Theorem 3.2 (Cauchy decrease). The decrease in the model from µ
k

to the Cauchy point µC

k

is at

least

m

k

(µ
k

)�m

k

(µC

k

) � 1

2
krm

k

(µ
k

)kmin

⇢
km

k

(µ
k

)k
�

k

, �
k

�
, (3.18)

where �
k

:= 1 + sup
µ2R

k

��r2

m

k

(µ)
��.

Proof. See Theorem 6.3.1 of [48].

Therefore, instead of requiring the candidate for µ
k+1

be the exact minimizer of (3.16), it su�ces

to use any point that achieves a fraction of the Cauchy decrease [133, 48]. This not only provides
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an opportunity for e�ciency, but also a convenient framework for analyzing global convergence

properties.

Since these results pertaining to the Cauchy point and its connection to global convergence

theory are specific to the quadratic constraint constraint in (3.16), this section aims to generalize

these concepts for trust region subproblems of the form (3.4). This can easily be done if the gradient

of the constraint is bounded within the trust region, i.e., kr#
k

(µ)k  r#

for all µ 2 R
k

. In this

case, Lemma A.1 guarantees {µ 2 RNµ | kµ� µ
k

k  (1� 
'

)�1

r#

�
k

} ⇢ {µ 2 RNµ | #
k

(µ)  �
k

}.
Thus, from Theorem 3.2, there exists a point in the trust region µ 2 R

k

such that

m

k

(µ
k

)�m

k

(µ) � 
s

krm
k

(µ
k

)kmin

⇢
km

k

(µ
k

)k
�

k

, (1� 
'

)�1

r#

�
k

�
(3.19)

where 
s

2 (0, 1). Appendix A will show that this condition that resembles the fraction of Cauchy

decrease leads to global convergence of the proposed trust region method.

In this work, a substantial cost di↵erence is assumed to separate evaluations of F (µ) and rF (µ)

from evaluations m

k

(µ) and rm
k

(µ) so the trust region subproblem is solved exactly with little

penalty. Section 3.1.2 details an interior-point method to solve the trust region subproblem (3.4).

Step 3: Actual-to-predicted decrease ratio

After the candidate µ̂
k

has been computed, the ratio between the reduction in F and m

k

that would

be realized by taking this step is computed according (3.9). This will be used in the next section to

determine if the step should be accepted and to modify the trust region radius. The computation

of ⇢
k

according to (3.9) requires queries to the expensive function F (µ) and therefore constitutes

a major bottleneck in the trust region algorithm. Following the work in [109], this bottleneck is

mitigated through the introduction of another approximation,  
k

(µ) that will be used solely in the

computation of ⇢
k

, i.e.,

⇢

k

=
 

k

(µ
k

)�  
k

(µ̂
k

)

m

k

(µ
k

)�m

k

(µ̂
k

)
. (3.20)

Define  
k

: RNµ ! R as an approximation of the F (µ), equipped with a familiar asymptotic error

bound: there exists a constant � > 0 such that

|F (µ
k

)� F (µ) +  

k

(µ)�  
k

(µ
k

)|  �✓
k

(µ), (3.21)

where ✓
k

: RNµ ! R
+

is an error indicator. To ensure global convergence (see Appendix A for

proof) in the presence of this additional approximation, ✓
k

(µ̂
k

) must satisfy

✓

!

k

(µ̂
k

)  ⌘min{m
k

(µ
k

)�m

k

(µ̂
k

), r
k

}, (3.22)

where ! 2 (0, 1), ⌘ < min{⌘
1

, 1�⌘
2

}, and {r
k

}1
k=1

is a sequence such that r
k

! 0. The algorithmic

parameters ⌘
1

and ⌘

2

are related to the specifics of the step assessment and radius modification

detailed in the next section. The forcing sequence r

k

is required to ensure ⇢
k

in (3.20) approaches
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the true ratio between the actual and predicted reduction and is taken in this work as r
k

= 1/(k+1).

The flexibility a↵orded by the use of an approximation model reveals an immediate and obvious

improvement to the generalized trust region algorithm. The error bound required between  
k

(µ) and

✓

k

(µ) in (3.21) is identical to the relationship between m

k

(µ) and #
k

(µ) in (3.7), which immediately

suggests the choice  
k

(µ) = m

k

(µ) and ✓
k

(µ) = #

k

(µ). From the discussion above, this choice will

lead to a globally convergent algorithm provided

#

k

(µ̂
k

)!  ⌘min{m
k

(µ
k

)�m

k

(µ̂
k

), r
k

}. (3.23)

This condition is inexpensive to check since it only involves queries to the approximation model

and error indicator and does not require evaluations of the expensive objective function F (µ).

Additionally, the choice  
k

(µ) = m

k

(µ) guarantees the approximation of the actual-to-predicted

reduction ratio is always unity, i.e.,

⇢

k

=
 

k

(µ
k

)�  
k

(µ̂
k

)

m

k

(µ
k

)�m

k

(µ̂
k

)
=

m

k

(µ
k

)�m

k

(µ̂
k

)

m

k

(µ
k

)�m

k

(µ̂
k

)
= 1. (3.24)

Thus, for a given iteration k, if the approximation model m
k

(µ) and error indicator #
k

(µ) chosen

in the first step of the generalized trust region algorithm satisfy (3.23), ⇢
k

can be taken as unity

without any additional work. The next section will classify such a step as very successful and the

step will be accepted µ
k+1

= µ̂
k

and the trust region radius increased. In the event that (3.23)

is not satisfied, the choice  
k

(µ) = m

k

(µ) and ✓
k

(µ) = #

k

(µ) is not su�cient to guarantee global

convergence and  
k

(µ) and ✓
k

(µ) must be constructed to satisfy (3.21)-(3.22).

Algorithm 2 states the optimized trust region method that incorporates this additional level

of approximation. Appendix A details the global convergence proof for this algorithm. Global

convergence of Algorithm 1, i.e., without the  
k

approximation model, follows trivially by taking

 

k

(µ) = F (µ) and ✓
k

(µ) = 0.

Step 4: Step assessment and radius update

Once ⇢
k

is computed according to either (3.9) or (3.20), the quality of the step is assessed by

comparing ⇢
k

to unity, i.e., the actual-to-predicted ratio if the model was perfect, m
k

(µ) = F (µ).

If the ⇢
k

is close to unity, the step is accepted by setting µ
k+1

= µ̂
k

and the trust region radius is

increased. In the case where ⇢
k

⌧ 1, especially if it is negative (the true objective fails to decrease:

F (µ̂
k

) > F (µ
k

)), the step is rejected, µ
k+1

= µ
k

, and trust region radius is decreased.

For a practical algorithm, define algorithmic constants 0 < ⌘

1

< ⌘

2

< 1 that will indicate

values of ⇢
k

that govern step acceptance and the radius update. If ⇢
k

 ⌘

1

, the model did not

substantially reduce the true objective so the step is rejected and the trust region radius decreased

such that �
k+1

 �#

k

(µ̂
k

) where 0 < � < 1 is a constant. This will be called an unsuccessful

step. Modification of the radius in this manner ensures that if the optimization problem in (3.4)

terminates at a point µ̂
k

strictly interior to the feasible set R
k

= {µ 2 RNµ | #
k

(µ)  �
k

}, the
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Algorithm 2 Error-aware multifidelity trust region method with inexact objective evaluations

1: Initialization: Given

µ
0

, �
0

, 0 < � < 1, �
max

> 0, 0 < ⌘

1

< ⌘

2

< 1, 0 < 

#

< 1, 0 < 

'

,
! 2 (0, 1), {r

k

}1
k=1

⇢ [0,1) such that r
k

! 0

2: Model and constraint update: Choose a model, m

k

(µ), constraint, #
k

(µ), and gradient
error bound, '

k

(µ), such that

|F (µ
k

)� F (µ) +m

k

(µ)�m

k

(µ
k

)|  ⇣#
k

(µ) µ 2 R
k

krF (µ
k

)�rm
k

(µ
k

)k  ⇠'
k

(µ
k

)

#

k

(µ
k

)  
#

�
k

'

k

(µ
k

)  
'

min{krm
k

(µ
k

)k , �
k

}

where ⇣, ⇠ > 0 are arbitrary constants and R
k

= {µ 2 RNµ | #
k

(µ)  �
k

}
3: Step computation: Approximately solve the trust region subproblem

min
µ2RNµ

m

k

(µ) subject to #

k

(µ)  �
k

for a candidate, µ̂
k

, that satisfies #
k

(µ̂
k

)  �
k

and

m

k

(µ
k

)�m

k

(µ̂
k

) � 
s

krm
k

(µ
k

)kmin

⇢
(1� 

#

)�1

r#

�
k

,

krm
k

(µ
k

)k
�

k

�
(3.25)

where 
s

2 (0, 1), kr#
k

(µ)k  r#

for all µ 2 R
k

, and �
k

:= 1 + sup
µ2R

k

��r2

m

k

(µ)
��

4: Actual-to-predicted reduction: Compute actual-to-predicted reduction ratio approximation
according to

⇢

k

=

8
><

>:

1 if #

k

(µ̂
k

)!  ⌘min{m
k

(µ
k

)�m

k

(µ̂
k

), r
k

}
 

k

(µ
k

)�  
k

(µ̂
k

)

m

k

(µ
k

)�m

k

(µ̂
k

)
otherwise

where  
k

(µ) and ✓
k

(µ) satisfy

k 
k

(µ
k

)�  
k

(µ) +m

k

(µ)�m

k

(µ
k

)k  �✓
k

(µ) µ 2 R
k

✓

!

k

(µ̂
k

)  ⌘min{m
k

(µ
k

)�m

k

(µ̂
k

), r

k

}
(3.26)

where ⌘ < min{⌘
1

, 1� ⌘
2

} and � > 0 is an arbitrary constant

5: Step acceptance:

if ⇢

k

� ⌘
1

then µ
k+1

= µ̂
k

else µ
k+1

= µ
k

end if

6: Trust region update:

if ⇢

k

 ⌘
1

then �
k+1

2 (0, �#
k

(µ̂
k

)] end if

if ⇢

k

2 (⌘
1

, ⌘

2

) then �
k+1

2 [�#
k

(µ̂
k

),�
k

] end if

if ⇢

k

� ⌘
2

then �
k+1

2 [�
k

,�
max

] end if
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feasible set at the next iteration, R
k+1

, will not include µ̂
k

. If ⇢
k

2 (⌘
1

, ⌘

2

), the step is accepted

and the trust region radius is not modified, �
k+1

= �
k

. This is called a successful step. Finally,

if ⇢
k

� ⌘

2

, the step is accepted since the model predicted the decrease in the objective to high

accuracy. In this type of very successful step, the trust region constraint may be too restrictive

so the radius is increased, usually according to �
k+1

= min{(1/�)�
k

, �
max

}, where �
max

is an

algorithmic parameter that specifies the maximum trust region radius.

Summary

Two variants of a generalized, multifidelity trust region method were introduced in this section and

global convergence was established for both methods in Appendix A. The first version, presented

in Algorithm 1, requires the computation of the exact ratio of actual-to-predicted reduction. This

method is completely prescribed once the approximation function m

k

(µ) and error indicators #
k

(µ)

and '

k

(µ) that satisfy (3.12)-(3.15) have been defined. Unlike traditional trust region methods,

the trust region subproblem of the proposed method is a di�cult optimization problem that cannot

leverage the many highly e�cient trust region solvers—see [48] for a review—and calls for an exact

nonlinear optimization solver. Section 3.1.2 presents a simple primal interior point method based

on quasi-Newton search directions and a backtracking linesearch to solve the optimization problem

in (3.4) exactly. This guarantees the candidate point µ̂
k

will satisfying the fraction of Cauchy

decrease condition (Theorem 3.2), an important component of the global convergence theory. The

variant of the error-aware multifidelity trust region method presented in Algorithm 2 leverages

an approximation of the actual-to-predicted reduction ratio. In additional to m

k

(µ) and the error

indicators #
k

(µ), '
k

(µ), this method requires the construction of an additional approximation model

 

k

(µ) and error indicator ✓
k

(µ) that satisfy (3.21)-(3.22). This flexibility was leveraged to define

condition (3.23) that ensures the choice  
k

(µ) = m

k

(µ) and ✓

k

(µ) = #

k

(µ) will preserve global

convergence and guarantees step k is very successful without requiring queries to the expensive

objective F (µ) or construction of a new approximation model.

As written, Algorithms 1 and 2 are skeletons since details pertaining to the construction of

the approximation models m

k

(µ),  
k

(µ) and error indicators #
k

(µ), '
k

(µ), ✓
k

(µ) have been ab-

stracted away. This will serve as the point of departure for Chapters 5–6, which will construct

these approximation models and error indicators for the specific class of problems under consider-

ation. In particular, Chapter 5 will use projection-based reduced-order/hyperreduced models and

residual-based error bounds to define these trust region functions in the context of deterministic

PDE-constrained optimization. Chapter 6 will combine projection-based reduced-order models and

sparse grids to define the approximation model to e�ciently solve stochastic PDE-constrained opti-

mization problems. The error indicators will use residual-based error bounds to account for pointwise

error and dimension-adaptive sparse grids [67] to account for truncation error. The proposed meth-

ods will implicitly assume there are relatively few parameters compared to the size of the state vector

N

µ

⌧ N

u

(since reduction will solely be applied to the state space). Appendix C will discuss the

use of linesearch and subspace methods to extend the proposed methods to e�ciently handle many
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(x)

Figure 3.2: Logarithmic barrier function (3.27) corresponding to m

k

(x) = x

4�x

3 ( ), #
k

(x) = x

2,
�

k

= 1 with � = 0.1 ( ) and � = 0.0001 ( ).

optimization variables, i.e., N
µ

= O(N
u

).

3.1.2 Interior-Point Method for Trust Region Subproblem

The trust region subproblem employed in the proposed generalized trust region method is a general

nonlinear program and cannot be (approximately) solved with the plethora of highly e�cient and

specialized trust region subproblem solvers that have been developed [133, 48]. In this work, the

trust region subproblem is solved exactly (up to a tolerance on the first-order optimality conditions),

which is in opposition to most trust region methods that only seek a point that achieves a fraction

of the Cauchy decrease. Due to the assumed substantial cost separation between the evaluation

of F and m

k

, an exact trust region solver comes at a relatively small penalty in cost. In fact, it

may even be substantially more e�cient than finding an approximate minimizer if it can result in

even one fewer query to F . While any nonlinear optimization solver can be employed to solve the

trust region subproblem (3.4), an interior point method [143] is used since the trust region center is

strictly interior to the feasible set from condition (3.14).

Consider the logarithmic barrier function associated with the optimization problem (3.4)

�

�

k

(µ) = m

k

(µ)� � log [�
k

� #
k

(µ)] . (3.27)

This function, shown in Figure 3.2 for a specific choice of m
k

and #
k

, tends to +1 as µ approaches

the boundary of the feasible set. This ensures that an unconstrained optimization problem of the

form

minimize
µ2RNµ

�

�

k

(µ) (3.28)

will remain interior to the feasible set (provided the initial guess is a feasible point). The uncon-

strained optimization problem in (3.28) approaches the constrained optimization problem in (3.41)

as the barrier parameter goes to zero, i.e., � ! 0. Thus, the constrained optimization problem in
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(3.4) has been reduced to a sequence of unconstrained optimization problems (3.28) correspond-

ing to a sequence �
p

! 0. A more robust variant of the primal interior-point method discussed

is a primal-dual approach that avoids the di�culty of solving (3.28) when � approaches 0; how-

ever, only the primal approach will be considered for simplicity. Each unconstrained optimization

problem is solved using a quasi-Newton method with Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Hessian updates and a backtracking linesearch to satisfy the Armijo su�cient decrease condition.

Quasi-Newton methods look to improve an iterate µj

k

(the subscript k denotes the trust region, or

major, iteration and the superscript j denotes the subproblem, or minor, iteration) by search along

a direction, pj

k

, defined as the solution of

Bj

k

pj

k

= �r��
k

(µj

k

), (3.29)

where Bj

k

is a symmetric positive-definite approximation of the Hessian r2

�

�

k

(µj

k

). The BFGS

Hessian update defines Bj

k

from Bj�1

k

according to

Bj+1

k

= Bj

k

+
yj

k

yj

k

T

yj

k

T

sj
k

� Bj

k

sj
k

sj
k

T

Bj

k

sj
k

T

Bj

k

sj
k

(3.30)

where

sj
k

= µj+1

k

� µj

k

yj

k

= r��
k

(µj+1

k

)�r��
k

(µj

k

)

and the Hessian approximation is initialized as the identity B0

k

= I (implying the first search

direction p0

k

is the steepest descent direction). With the search direction computed according to

(3.29), the new subproblem iterate is computed as

µj+1

k

= µj

k

+ ↵pj

k

, (3.31)

where ↵ > 0 is selected such that the Armijo condition

�

�

k

(µj

k

+ ↵pj

k

)  ��
k

(µj

k

) + ↵cpj

k

Tr��
k

(µj

k

) (3.32)

is satisfied, where c > 0 is a constant usually taken as c = 10�4. The step length ↵ is determined

via a backtracking algorithm, i.e., ↵ = ⌧

n, where ⌧ 2 (0, 1) is the backtrack factor and n � 0 is the

smallest integer such that (3.32) is satisfied. The complete algorithm is summarized in Algorithm 3.

3.1.3 Numerical Experiment: Contrived

The generality and performance of the multifidelity trust region method proposed in this chapter is

demonstrated on the canonical Rosenbrock problem

minimize
µ2R2

F (µ) := 100(µ
2

� µ2

1

)2 + (1� µ
1

)2. (3.33)
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Algorithm 3 Interior Point BFGS Method with Backtracking Linesearch

1: Initialization: Given

µ0

k

= µ
k

, �, B
0

= I, 0 < c < 1, 0 < ⌧ < 1

2: Search direction computation: Define step direction, pj

k

, as the solution of

Bj

k

pj

k

= �r��
k

(µj

k

)

3: Linesearch: Define the step length as ↵ = ⌧

n where n is the smallest integer such that

�

�

k

(µj

k

+ ⌧

npj

k

)  ��
k

(µj

k

) + ⌧

n

cpj

k

Tr��
k

(µj

k

)

4: Update iterate: Given search direction pj

k

and step length ↵, update current iterate

µj+1

k

= µj

k

+ ↵pj

k

5: BFGS update: Define sj
k

and yj

k

as

sj
k

= µj+1

k

� µj

k

yj

k

= r��
k

(µj+1

k

)�r��
k

(µj

k

)

and Hessian approximation update as

Bj+1

k

= Bj

k

+
yj

k

yj

k

T

yj

k

T

sj
k

� Bj

k

sj
k

sj
k

T

Bj

k

sj
k

T

Bj

k

sj
k
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The approximation model and error indicators that will be used are not less expensive to evaluate

than the objective function F (µ), which is an underlying assumption of the proposed methods. The

purpose of this section is to study the behavior of the generalized trust region algorithm on a simple

problem; Chapters 5 and 6 will consider more interesting applications where the approximation

model and error indicators are substantially less expensive to evaluate than F (µ).

The model function will be taken as a quadratic approximation of F (µ) with controllable errors

introduced into the value and gradient at the expansion point. For this purpose define

G(µ; µ̄, ✏, �) := F (µ̄) + ✏+ (rF (µ̄) + �1)T (µ� µ̄) +
1

2
(µ� µ̄)Tr2

F (µ̄)(µ� µ̄), (3.34)

where the gradient and Hessian of F (µ) are

rF (µ) =

"
�400µ

1

(µ
2

� µ2

1

)� 2(1� µ
1

)

200(µ
2

� µ2

1

)

#

r2

F (µ) =

"
400(3µ2

1

� µ
2

) + 2 �400µ
1

�400µ
1

200

#
.

(3.35)

The gradient of G(µ; µ̄, ✏, �) is

rG(µ; µ̄, ✏, �) = rF (µ̄) + �1+r2

F (µ̄)(µ� µ̄). (3.36)

From the definition of G and its gradient, it is clear that ✏, � are the errors in the value and gradient,

respectively, at the expansion point µ̄ since the evaluation of G and rG at µ̄ gives

G(µ̄; µ̄, ✏, �) = F (µ̄) + ✏ rG(µ̄; µ̄, ✏, �) = rF (µ̄) + �1. (3.37)

The approximation model m
k

(µ) is taken as the (inexact) quadratic approximation of F (µ) at the

trust region center, the trust region constraint is taken based on the exact pointwise objective error,

and the gradient error indicator '
k

(µ) is taken to be the exact gradient error, i.e.,

m

k

(µ) := G(µ, µ
k

, ✏

k

, �

k

)

#

k

(µ) := |F (µ)�G(µ; µ
k

, ✏

k

, �

k

)| + |F (µ
k

)�G(µ
k

; µ
k

, ✏

k

, �

k

)|

'

k

(µ) := krF (µ)�rG(µ; µ
k

, ✏

k

, �

k

)k

(3.38)

where the error terms ✏
k

, �
k

must be chosen based on the requirements of the global convergence

theory. With these choices, the error bounds in (3.12)-(3.13) hold with ⇣ = ⇠ = 1. The value of

✏

k

and �
k

will be chosen to ensure the error conditions (3.14) and (3.15) hold. At the trust region

centers, the error indicators reduce to the following simple expressions

#

k

(µ
k

) = 2✏
k

'

k

(µ
k

) =
p
2�

k

(3.39)



CHAPTER 3. GENERALIZED MULTIFIDELITY TRUST REGION METHOD 66

�0.2 0.0 0.2 0.4 0.6 0.8 1.0
µ1

�1.0

�0.5

0.0

0.5

1.0

µ
2

Figure 3.3: Trajectory of Algorithm 1 as applied to the Rosenbrock problem (3.33). The contours
represent the true function F (µ), the red dots indicate trust region centers, and the blue line is the
trajectory of the trust region subproblem.

and the error conditions in (3.14)-(3.15) become

✏

k

 

#

2
�

k

�

k

 

'p
2
min{krm

k

(µ
k

)k , �
k

}
(3.40)

Since the right-hand side of the inequality for ✏
k

is independent of ✏
k

, admissible values are easily

determined and ✏
k

= 

#

�
k

/2 will be used throughout. The right-hand side of the inequality for �
k

depends on �
k

itself (through m

k

(µ
k

)) and, in general, an iterative algorithm must be used. A simple

backtracking algorithm is used where any initial value of �
k

is chosen and reduced by a predefined

factor until (3.40) is satisfied.

With the proposed definitions of m
k

(µ), #
k

(µ), and '
k

(µ) all ingredients necessary for the com-

plete description of Algorithm 1 have been prescribed. The trust region subproblem (3.4) is solved

using the BFGS interior-point method described in Section 3.1.2; the non-quadratic trust region

constraint eliminates the possibility of using standard trust region solvers such as Steihaug-Toint

CG. The trajectory of the optimization iterations—including the progress of the trust region centers

and the trajectory of each trust region subproblem—is shown in Figure 3.3. Figure 3.4 provides

additional insight to the Algorithm 1 by showing individual iterations, including the trust region

center, candidate step, and feasible region for the trust region subproblem. Notice the substantial

di↵erence between the shape of the trust regions in Figure 3.4 and traditional trust regions that are

spheres or ellipsoids. These error-aware trust region allows progress to be made toward the optimal

solution by searching regions of the parameter space where the model is su�ciently accurate.
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Figure 3.4: Trajectory of Algorithm 1 as applied to the Rosenbrock problem (3.33); iterations
proceed from left to right then top to bottom. The contours represent the true function F (µ), the
red dots indicate trust region centers µ

k

, the blue dots are the candidate for the next trust region
center µ̂

k

, and the green region indicates the feasible set for the trust region subproblem.
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Figure 3.5: Convergence history of the objective quantities using Algorithm 1: F (µ
k

) ( ), F (µ̂
k

)
( ), m

k

(µ
k

) ( ), m
k

(µ̂
k

) ( ). Steady progress is made toward the optimal solution, despite
the objective and model only agreeing at iteration 0.
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Figure 3.6: Convergence history of gradient quantities using Algorithm 1: krF (µ
k

)k ( ),
krF (µ̂

k

)k ( ), krm
k

(µ
k

)k ( ). The gradient of the true objective function decreases 6 orders
of magnitude.

Figures 3.5 and 3.6 show the convergence history of the objective and gradient quantities, re-

spectively. From Figure 3.5 it can be seen that the objective function F (µ) continually decreases as

the algorithm iterates, despite the fact that the model values m

k

(µ) do not agree well with F (µ) at

either the trust region centers µ
k

or candidates µ̂
k

. Figure 3.6 shows that the first-order optimality

condition decreases 6 orders of magnitude throughout the iterations. A more detailed report of the

convergence history is provided in Table 3.1.
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3.2 Nonlinearly Constrained Optimization

This section extends the unconstrained generalized trust region method introduced in Section 3.1.1

to handle nonlinear equality constraints. Consider the nonlinear equality-constrained optimization

problem

minimize
µ2RNµ

F (µ)

subject to c(µ) = 0.
(3.41)

This is the exact form of the reduced-space PDE-constrained optimization problem in (2.104) without

inequality constraints. The feasible set (Definition 3.4) is an important concept in constrained

optimization theory as it defines the set of all points that satisfy the constraints of (3.41).

Definition 3.4 (Feasible set). The set of points that satisfy the constraints of the optimization

problem in (3.41)

⌦ := {µ 2 RNµ | c(µ) = 0} (3.42)

is called the feasible set.

As in the unconstrained case, it is desirable to find the global minimum of (3.41), i.e., the point µ⇤

such that F (µ⇤)  F (µ) for all µ 2 ⌦; however, due to the inherent di�culty of global optimization

we settle for local minima, as defined in Definition 3.5.

Definition 3.5 (Constrained local minima). A point µ⇤ is a local minima of (3.41) if µ⇤ 2 ⌦ and

there is a neighborhood N of µ⇤ such that F (µ⇤)  F (µ) for all µ 2 N \ ⌦.

Before stating the first-order necessary optimality condition, two concepts must be introduced.

The first is the concept of constraint qualifications that provide conditions that must be satisfied for

the linearized feasible set to resemble the tangent cone [143]. In this work, we solely consider the

Linear Independence Constraint Qualifications (Definition 3.6) that requires linear independence of

the gradient of the constraints at a particular point.

Definition 3.6 (Linear Independence Constraint Qualification (LICQ)). The LICQ holds at a point

µ 2 RNµ if the rows of the constraint Jacobian,
@c

@µ
(µ) are linearly independent.

The second concept is the Lagrangian (Definition 3.7) that combines the objective and constraints

into a single function by introducing auxiliary variables known as Lagrange multipliers.

Definition 3.7 (Lagrangian). The Lagrangian corresponding to the optimization problem in (3.41)

is defined as

L(µ, ⌧ ) = F (µ)� ⌧T c(µ), (3.43)

where ⌧ 2 RNc is a vector of Lagrange multipliers.

Equipped with these concepts, the first-order necessary optimality conditions for µ⇤ to be a local

minima (in the sense of Definition 3.5) of (3.41) are stated in Theorem 3.3.
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Theorem 3.3 (First-order constrained optimality condition). Suppose µ⇤ is a local minima of

(3.41), that F and c
i

are continuously di↵erentiable, and LICQ holds at µ⇤. Then there is a

Lagrange multiplier vector �⇤ such that

r
µ

L(µ⇤
, �⇤) = 0

c(µ⇤) = 0

�⇤
i

c
i

(µ⇤) = 0 for i 2 {1, . . . , N
c

}.

(3.44)

The first condition requires stationarity of the Lagrangian at a local minima and the second

requires the feasibility. The last condition is usually referred to as complementarity. There are also

second-order necessary and su�cient conditions for µ⇤ to be a local minima of (3.41) that involve

the Hessian of the Lagrangian [143]. This will not be considered further as this work will primarily

be concerned with first-order optimality conditions.

3.2.1 Error-Aware Augmented Lagrangian Multifidelity Trust Region Method

This section extends the multifidelity trust region framework introduced in Section 3.1.1 to handle

equality-constrained problems in (3.41). The proposed approach converts the constrained optimiza-

tion problem in (3.41) to a sequence of unconstrained problems using the the concept of the aug-

mented Lagrangian. The unconstrained multifidelity trust region method proposed in Section 3.1.1

is used to solve each unconstrained problem in the sequence for an e�cient algorithm that leverages

inexpensive approximation models. The augmented Lagrangian corresponding to the optimization

problem in (3.41) is

L⌧ (µ, �) := L(µ, �) + ⌧c(µ)T c(µ) = F (µ)� �T c(µ) + ⌧c(µ)T c(µ), (3.45)

where ⌧ > 0 is the penalty parameter. A standard result in constrained optimization theory states

that, under certain assumptions (Theorem 3.4), there exists a constant ⌧̄ such that a local minima

of (3.41) is a local minima of L⌧ (µ, �⇤) for ⌧ � ⌧̄ , where �⇤ are the Lagrange multipliers at the

local minima.

Theorem 3.4. Let µ⇤ be a local minima of (3.41) with Lagrange multipliers �⇤. If the LICQ holds

at µ⇤ and the second-order su�cient-conditions hold at (µ⇤
, �⇤) (Theorem 12.6 of [143]), there

exists ⌧̄ such that µ⇤ is a local minima of L⌧ (µ, �⇤) for all ⌧ � ⌧̄ .

Proof. See Theorem 17.5 of [143].

Therefore, the optimization problem in (3.41) reduces to a sequence of unconstrained optimization

problems of the form

minimize
µ2RNµ

L⌧

p(µ, �̂
p

) (3.46)
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for a sequence ⌧
p

! ⌧ > ⌧̄ , where �̂
p

are Lagrange multiplier estimates, usually taken as

�̂
p

= �̂
p�1

� ⌧
p�1

c(µ⇤
p�1

), (3.47)

where µ⇤
p�1

is the solution of (3.46) at iteration p � 1. The augmented Lagrangian is employed

instead of, e.g., a quadratic penalty function, as equivalence between (3.41) and (3.46) is guaranteed

for a finite value of the penalty parameter.

The generalized multifidelity trust region method of Section 3.1.1 applies, without modification,

to each unconstrained optimization problem in (3.46), i.e., for a fixed ⌧
p

. In this case, the approx-

imation model, m
k

(µ), and constraint functions, #
k

(µ) and '
k

(µ), must be constructed such that

the conditions in (3.12)-(3.15), applied to the augmented Lagrangian in (3.45) hold, that is,

|L⌧

p(µ
k

, �̂
p

)� L⌧

p(µ, �̂
p

) +m

k

(µ)�m

k

(µ
k

)|  ⇣#
k

(µ) µ 2 R
k

���r
µ

L⌧

p(µ
k

, �̂
p

)�rm
k

(µ
k

)
���  ⇠'

k

(µ
k

)

#

k

(µ
k

)  
#

�
k

'

k

(µ
k

)  
'

min{krm
k

(µ
k

)k , �
k

}.

(3.48)

Furthermore, the model and constraint functions must satisfy assumptions (AM1)–(AM4). The trust

region subproblem in (3.4), based on this model and constraint, is solved using the interior-point

method outlined in Section 3.1.2.

Global convergence of this equality-constrained variant of the trust region method of Section 3.1.1

follows trivially from the global convergence of the generalized trust region method (Appendix A) and

Theorem 3.4 provided assumptions (AF1)–(AF2) hold for the augmented Lagrangian. Assumption

(AF1) holds since the objective F and constraint c are assumed twice-continuously di↵erentiable on

RNµ and assumption (AF2) holds since (3.45) is bounded below provided F is bounded below.

3.2.2 Numerical Experiment: Contrived

This section closes with the application of Algorithm 1, embedded in the augmented Lagrangian

framework of Section 3.2.1, to solve the following optimization problem with a single nonlinear

equality constraint

minimize
µ2R2

µ
1

+ µ
2

subject to µ2

1

+ µ2

2

� 2 = 0.
(3.49)

The augmented Lagrangian corresponding to this problem, for a fixed penalty ⌧ and Lagrange

multiplier estimate �, is

L⌧ (µ, �) = µ
1

+ µ
2

+ (µ2

1

+ µ2

2

� 2)
⇥
⌧(µ2

1

+ µ2

2

� 2)� �
⇤

(3.50)
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Figure 3.7: Trajectory of Algorithm 1 as applied to the constrained problem (3.49). The contours
represent the true function F (µ), the red dots indicate trust region centers, and the blue line is the
trajectory of the trust region subproblem.

and the resulting sequence of unconstrained optimization problems are

minimize
µ2R2

L⌧

j (µ, �
j

), (3.51)

which will be solved using Algorithm 1. The model m
k

(µ), objective decrease error indicator #
k

(µ),

and gradient error indicator '
k

(µ) are identical to those in Section 3.1.3 with F (µ) replaced with

L⌧

j (µ, �
j

). The objective and gradient errors ✏
k

and �
k

are similarly chosen using (3.40).

With these definitions of m
k

(µ), #
k

(µ), and '

k

(µ) all ingredients necessary for the complete

description of Algorithm 1 are set. The trust region subproblem, for fixed ⌧

j

and �

j

, is solved

using the BFGS interior-point method described in Section 3.1.2. The trajectory of the optimiza-

tion iterations—including the progress of the trust region centers and the trajectory of each trust

region subproblem—are shown in Figure 3.7. These iterations are aggregated over three augmented

Lagrangian iterations corresponding to ⌧
0

= 10�4, ⌧
1

= 10�5, and ⌧

2

= 10�6, with �

j

updated

according to (3.47) and initialized with �

0

= 0. Figure 3.8 provides additional insight to the Al-

gorithm 1 by showing (selected) individual iterations, including the trust region center, candidate

step, and feasible region for the trust region subproblem. Again, notice the substantial di↵erence

between the shape of the trust regions in Figure 3.8 with traditional trust regions that are spheres

or ellipsoids. From both of these figures, it is clear the iterations converge to a feasible point, as

expected from the augmented Lagrangian framework.

Figures 3.9 and 3.10 show the convergence history of the objective and gradient quantities,

respectively, aggregated over all three augmented Lagrangian iterations. A dashed vertical line

separates augmented Lagrangian iterations. From Figure 3.9 it can be seen that the objective

function L⌧

j (µ, �
j

) continually decreases within an augmented Lagrangian iteration, despite the



CHAPTER 3. GENERALIZED MULTIFIDELITY TRUST REGION METHOD 74

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5
µ1

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

µ
2

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5
µ1

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

µ
2

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5
µ1

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

µ
2

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5
µ1

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

µ
2

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5
µ1

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

µ
2

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5
µ1

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

µ
2

Figure 3.8: Trajectory of Algorithm 1 as applied to the constrained problem (3.49) embedded in
the augmented Lagrangian framework. The contours represent the true function F (µ), the red dots
indicate trust region centers µ

k

, the blue dots are the candidate for the next trust region center µ̂
k

,
and the green region indicates the feasible set for the trust region subproblem.

fact that the model values m

k

(µ) do not agree with L⌧

j (µ, �
j

) at either the trust region centers

µ
k

or candidates µ̂
k

when the algorithm is far from convergence. Figure 3.10 shows that the first-

order optimality condition decreases 3� 4 orders of magnitude throughout these iterations. A more

detailed report of the convergence history is provided in Table 3.2.
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Figure 3.9: Convergence history of the augmented Lagrangian objective quantities using Algorithm 1:
L⌧

j (µ
k

) ( ), L⌧

j (µ̂
k

) ( ), m
k

(µ
k

) ( ), m
k

(µ̂
k

) ( ). The three augmented Lagrangian
iterations are separated by a vertical dashed line with the following penalty parameters: ⌧

0

= 10�4

(iterations 0� 9), ⌧
1

= 10�5 (iterations 10� 19), ⌧
2

= 10�6 (iterations 20� 29).
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Figure 3.10: Convergence history of the augmented Lagrangian gradient quantities using Algo-
rithm 1: krL⌧

j (µ
k

)k ( ), krL⌧

j (µ̂
k

)k ( ), krm
k

(µ
k

)k ( ). The three augmented La-
grangian iterations are separated by a vertical dashed line with the following penalty parameters:
⌧

0

= 10�4 (iterations 0 � 9), ⌧
1

= 10�5 (iterations 10 � 19), ⌧
2

= 10�6 (iterations 20 � 29). For
each augmented Lagrangian iteration, the gradient of the true augmented Lagrangian (for fixed ⌧

j

)
decreases 3� 4 orders of magnitude.
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Chapter 4

Projection-Based Model Reduction

The trust region method introduced in the previous chapter is general in that any approximation

model equipped with error bounds (3.12) and (3.13) can be employed. Projection-based model

reduction has been shown to be a promising method to dramatically reduce the cost—in terms of

computational time and resources—of PDE simulations, while retaining a high degree of fidelity

[31, 198]. In this approach, the solution of the partial di↵erential equation is sought in a well-

chosen, low-dimensional (possibly a�ne) trial subspace by solving a reduced representation of the

governing equations, usually a projection onto a test subspace. It has been shown to yield Reduced-

Order Models (ROMs) that are O(105) smaller (in terms of number of degrees of freedom) and faster

to solve than the original discretized PDE [31, 198], which will be called the High-Dimensional Model

(HDM). This makes reduced-order models a promising candidate for the trust region approximation

model from the previous chapter.

This chapter provides background necessary to use projection-based reduced-order models as

the approximation model in the error-aware trust region method of Chapter 3. The discussion will

include the derivation of the primal, sensitivity, and adjoint reduced-order model and computable

error bounds. While some of this discussion is a review, there are novel contributions regarding

the formulation of a minimum-residual reduced-order model for sensitivity and adjoint equations

that guarantee the reduced quantities optimally approximate the HDM counterparts. When the

governing equations are nonlinear, a critical bottleneck exists in the evaluation of the ROM that will

destroy nearly all resource reduction potential. To eliminate this bottleneck, hyperreduction methods

[17, 175, 115, 41, 31, 59] have been developed that introduce an additional level of approximation.

Another contribution of this chapter is the extension of the minimum-residual formulation of the

primal, sensitivity, and adjoint reduced-order model to a specific hyperreduction method known as

collocation.

77
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4.1 Global Reduced-Order Models

For simplicity, this section will consider a static, deterministic partial di↵erential equation at the

discrete level

r(u, µ) = 0, (4.1)

where u 2 RNu is the state vector, µ 2 RNµ is the parameter vector, and r : RNu ⇥ RNµ ! RNu

is the discrete PDE. Most of the developments will extend to the time-dependent case where r is

the governing equation and u is the state vector at a single time step. The fundamental ansatz of

(global) projection-based model reduction is that the state vector u can be well-approximated in a

single low-dimensional subspace

u = �u
r

, (4.2)

where � 2 RNu⇥ku is the reduced-order basis (basis for the trial subspace), u
r

2 Rku are the

reduced coordinates of u in the basis �, and k

u

⌧ N

u

. It is also common to consider an a�ne

expansion in (4.2); however, this generalization will not significantly contribute to the following

developments and is omitted for clarity. Subsequent sections will use this ansatz to arrive at the

primal, sensitivity, and adjoint form of the reduced-order model. A central focus will be the concept

of minimum-residual reduced-order models—defined such that its solution coincides with the first-

order optimality condition of residual minimization over the trial subspace in some norm—as they

possess desirable properties such as monotonicity and interpolation.

4.1.1 Primal Formulation

The general form of the projection-based reduced-order model is obtained by substituting the ansatz

(4.2) into the governing equation (4.1) and projecting the resulting overdetermined nonlinear system

of equations onto a test subspace spanned by the columns of the basis  2 RNu⇥ku

r
r

(u
r

, µ) :=  Tr(�u
r

, µ) = 0, (4.3)

where r
r

: Rku ⇥ RNµ ! Rku is a nonlinear system of equations with k

u

equations and unknowns.

Define u
r

(µ; �,  ) implicitly as the solution of r
r

( · , µ) = 0—the Implicit Function Theorem

(Theorem 2.1) guarantees the existence of such a function and its smoothness with respect to µ. In

the remainder, the notation u
r

(µ; �,  ) will be simplified to u
r

(µ) when there is no risk of confusion

regarding the choice of test and trial basis. The reduced coordinates must be reconstructed in the

full space according to �u
r

prior to the evaluation of a quantity of interest, which leads to the

definition of the reduced quantity of interest f
r

: Rku ⇥ RNµ ! R as

f

r

(u
r

, µ; �) := f(�u
r

, µ). (4.4)

The reduced quantity of interest becomes purely a function of µ when the implicit definition

u
r

(µ; �,  ) is used in the above equation, i.e., when the reduced QoI is only evaluated at solutions
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of the reduced-order model (4.3),

F

r

(µ; �,  ) := f(�u
r

(µ; �,  ), µ). (4.5)

The implicit function F

r

( · ; �,  ) : RNµ ! R is the reduced-order model approximation of the

quantity of interest F : RNµ ! R, defined as F (µ) := f(u(µ), µ), where u(µ) is the solution of

r( · , µ) = 0. The notation for the reduced quantity of interest in (4.4) and (4.5) will be simplified

to f

r

(u
r

, µ) and F

r

(µ), respectively, when there is no risk confusion.

In the general case, the test basis may be non-constant, i.e.,  =  (u, µ). Two common choices

for the test basis are

 = � and  =
@r

@u
(�u

r

, µ)�, (4.6)

which correspond to a Galerkin and Least-Squares Petrov-Galerkin [28, 31] projection, respectively.

At this point, there have been no restrictions placed on either the test or trial bases—aside from the

implicit requirement that they are valid bases, i.e., their columns are linearly independent—nor has

any relationship between these bases been specified. Next, the concept of minimum-residual reduced-

order models will be introduced that equips the reduced-order models with desirable properties:

(1) monotonicity—the quality of the solution can only improve (in some well-defined metric) as the

trial space is hierarchically refined and (2) interpolation—the reduced-order model will recover the

HDM solution if it lies in the trial space.

Definition 4.1 (Minimum-Residual Property). A reduced-order model possesses the minimum-

residual property if the solution satisfies the first-order optimality conditions of the following residual

minimization problem

minimize
u

r

2Rku

1

2
kr(�u

r

, µ)k2⇥ (4.7)

for some symmetric positive-definite ⇥ 2 RNu⇥Nu .

Proposition 4.1. Let (�,  , ⇥) define a minimum-residual reduced-order model whose solution

coincides with the global minimum of (4.7). Then, the following properties hold for any µ 2 RNµ :

• (Optimality) For any u 2 col(�),

kr(�u
r

(µ; �,  ), µ)k⇥  kr(u, µ)k⇥ (4.8)

• (Monotonicity) Let (�0
,  0) define a projection-based reduced-order model such that col(�0) ✓

col(�), then

kr(�u
r

(µ; �,  ), µ)k⇥ 
��r(�0u

r

(µ; �0
,  0), µ)

��
⇥

(4.9)

• (Interpolation) If u(µ) 2 col(�), then

r(�u
r

(µ; �,  ), µ) = 0 and u(µ) = �u
r

(µ; �,  ) (4.10)
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Proof. Optimality follows trivially from the fact that u
r

(µ; �,  ) is the global minima of the opti-

mization problem in (4.7). A simple application of the optimality property to u = �0u
r

(µ; �0
,  0) 2

col(�0) ✓ col(�) leads to monotonicity. Finally, if the exact solution of r( · , µ) = 0 is contained in

the columnspace of �, i.e., u(µ) 2 col(�), the optimality property implies

kr(�u
r

(µ; �,  ), µ)k⇥  kr(u(µ), µ)k⇥ = 0. (4.11)

This result, along with the assumed uniqueness of solutions of r( · , µ) = 0 (Assumption 2.2), leads

to the interpolation property in (4.10).

Remark. The results in Proposition 4.1 only hold if the solution of the minimum-residual reduced-

order model coincides with the global solution of the optimization problem in (4.7). In general this

is only guaranteed if the optimization problem is convex, which will be the case if the governing

equation is a�ne in its first argument, i.e., r(u, µ) = A(µ)u + b(µ), where A(µ) 2 RNu⇥Nu and

b(µ) 2 RNu . When the optimization problem in (4.7) is non-convex, the stationary point that will be

found by the minimum-residual reduced-order model will not necessarily be the global minima of (4.7).

A heuristic that, in practice, is usually su�cient to lead to the results in Proposition 4.1 (optimality,

monotonicity, and interpolation) is to initialize the reduced-order model solver with a quality starting

point. Due to the required training phase in model reduction (Section 4.3), a reasonable starting point

can typically be obtained via interpolation of the training data [198].

From Appendix B, the approximation of the reduced quantity of interest is equipped with a

residual-based error bound (Lemma B.4) that takes the form

|F (µ)� F

r

(µ)|   kr(�u
r

(µ), µ)k  0 kr(�u
r

(µ), µ)k⇥ (4.12)

for some constants , 0 > 0, where the second inequality follows from norm equivalence in finite di-

mensions. The residual-based error bound illuminates one motivation behind the minimum-residual

formulation: it minimizes the error bound over the columnspace of �.

A general relationship between projection-based reduced-order models and minimum-residual

reduced-order models (Definition 4.1) is established by matching terms in the first-order optimality

condition of (4.7), i.e., 
@r

@u
(�u

r

, µ)�

�
T

⇥r(�u
r

, µ) = 0 (4.13)

with the form of the projection-based reduced-order model in (4.3). From these two equations, the

relationship

 (u, µ) = ⇥
@r

@u
(u, µ)� (4.14)

is su�cient for a general projection-based reduced-order model in (4.3) to possess the minimum-

residual property.

The LSPG reduced-order model in (4.6), i.e.,  (u, µ) =
@r

@u
(u, µ)�, satisfies the condition in

(4.14) with ⇥ = I, where I is the N
u

identity matrix, and therefore possesses the minimum-residual
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property. For problems with symmetric positive-definite Jacobian matrices

@r

@u
(u, µ) � 0 8u 2 RNu

, µ 2 RNµ

the Galerkin reduced-order model in (4.6), i.e.,  = �, possesses the minimum-residual property

in the metric defined by the Jacobian inverse transpose evaluated at the (reconstructed) solution of

the Galerkin reduced-order model (�u
r

(µ; �, �)), i.e.,

⇥ =
@r

@u
(�u

r

(µ; �, �), µ)�T

. (4.15)

This is a valid metric since: (1) the Jacobian is evaluated at a specific state and (2) the Jacobian

is symmetric positive-definite at any state (by assumption) and therefore its inverse transpose is

symmetric positive-definite. This metric reduces the first-order optimality conditions (4.13) of the

residual minimization problem in (4.7) to: find y 2 Rku such that


@r

@u
(�y, µ)�

�
T

@r

@u
(�u

r

(µ; �, �), µ)�Tr(�y, µ) = 0

for a fixed µ 2 RNµ . It is easily verified that the solution of the Galerkin reduced-order model

satisfies the above equation, i.e., with y = u
r

(µ; �, �). Therefore Galerkin reduced-order models

possess the minimum-residual property in the metric in (4.15) for problems with symmetric positive-

definite Jacobians.

Remark. To this point, minimum-residual reduced-order models have been interpreted as a specific

projection of the governing equations

r(u, µ) = 0.

Given the existence and uniqueness assumption (Assumption 2.2) regarding solutions of the above

equation, it can equivalently be formulated as the solution of the minimum-residual optimization

problem

minimize
u2RNu

1

2
kr(u, µ)k2⇥ , (4.16)

where ⇥ is a symmetric, positive-definite matrix, with first-order optimality condition

@r

@u
(u, µ)T⇥r(u, µ) = 0. (4.17)

From this equation and (4.13), it is clear that minimum-residual reduced-order models are equiva-

lently derived as a Galerkin projection, with � as the test and trial basis, of the governing equations

in minimum-residual form (4.17).
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4.1.2 Exact and Minimum-Residual Sensitivity Formulation

The intention of this work is to use the reduced-order models of the previous section in a gradient-

based, reduced-space PDE-constrained optimization setting, in an attempt to reduce the overall

computational cost. This requires a discussion regarding gradients of the reduced quantities of

interest. Both the sensitivity and adjoint approaches will be detailed for this purpose. Following

the procedure outlined in Section 2.3.3, the total derivative of (4.5) is expanded as

rF
r

(µ; �,  ) =
@f

@µ
(�u

r

(µ; �,  ), µ) +
@f

@u
(�u

r

(µ; �,  ), µ)�
@u

r

@µ
(µ; �,  ). (4.18)

The reduced sensitivities
@u

r

@µ
(µ; �,  )1 are derived by considering the total variation of the

reduced-order model in (4.3) with respect to perturbations in µ. In the general case where  

is state- and parameter-dependent, the reduced sensitivities are defined as the solution of the linear

equations

2

4
NuX

j=1

r
j

@

⇣
 Te

j

⌘

@u
�+ T

@r

@u
�

3

5 @ur

@µ
= �

2

4
NuX

j=1

r
j

@

⇣
 Te

j

⌘

@µ
+ T

@r

@µ

3

5 (4.19)

where all terms are evaluated at the reconstructed primal solution, �u
r

(µ; �,  ) of the reduced-

order model (4.3). In the special case where the primal reduced-order model is exact, i.e.,

r(�u
r

(µ; �,  ), µ) = 0, or the test basis is constant, the expression in (4.19) reduces to


 T

@r

@u
�

�
@u

r

@µ
= � T

@r

@µ
. (4.20)

A Galerkin projection employs a constant test basis  = � and the equation for the reduced

sensitivity in (4.19) or (4.20) reduces to


�T

@r

@u
�

�
@u

r

@µ
= ��T

@r

@µ
. (4.21)

A LSPG projection employs a non-constant test basis =
@r

@u
� and the derivatives of the test basis

in (4.19) cannot be ignored in the general case where the primal solution is not exact. In this case,

the reduced sensitivities are the solution of the following equation
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4
NuX
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r
j

�T

@
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@u@u
�+�T
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�
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@µ
= �
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NuX

j=1

r
j

�T

@

2r
j

@u@µ
+�T

@r

@u

T

@r

@µ

3

5
. (4.22)

1This notation is simplified from rFr(µ; �,  ) and
@ur

@µ
(µ; �,  ) to rFr(µ) and

@ur

@µ
(µ), respectively, when

there is no risk of confusion.
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Despite the many advantages of minimum-residual reduced-order models (Proposition 4.1), a major

disadvantage is that they complicate sensitivity analysis due to the required partial derivatives of the

test basis in (4.19). This is particularly true in the case of LSPG where the first-order sensitivities,
@u

r

@µ
, require second-order information about the partial di↵erential equation—information that

is rarely available is large-scale PDE implementations. For this reason, the theory of minimum-

residual primal reduced-order models is extended to the sensitivity equations in an attempt to avoid

terms involving derivatives of the test basis, while generating reduced sensitivities that optimally

reconstruct the HDM sensitivities. The main drawback of this approach is the computed sensitivities

will not be consistent with the reduced-order model to which they correspond since they will not

coincide with the solution of (4.19).

Before embarking on the discussion of minimum-residual sensitivity analysis, recall the definition

of the sensitivity residual

r@(u, w, µ) =
@r

@µ
(u, µ) +

@r

@u
(u, µ)w, (4.23)

and the generalization of the gradient of the quantity of interest

g@(u, w, µ) =
@f

@µ
(u, µ) +

@f

@u
(u, µ)w (4.24)

introduced in Section 2.3.3. With this notation, the gradient of the reduced quantity of interest

takes the form

rF
r

(µ) = g@

✓
�u

r

(µ), �
@u

r

@µ
(µ), µ

◆
. (4.25)

Instead of considering the reconstructed reduced sensitivity, �
@u

r

@µ
, as an approximation for the

HDM sensitivity
@u

@µ
, an approximation of the form

@u

@µ
= �@

d
@u

r

@µ
(4.26)

will be considered where �@ 2 RNu⇥ku is a reduced-order basis (linearly independent columns) for

the sensitivities and
d
@u

r

@µ
2 Rku⇥Nµ are the reduced coordinates. The reduced coordinates will be

defined as the argument that minimizes the sensitivity residual

d
@u

r

@µ
(µ; �@

, ⇥@

, u) = argmin
w

r

2Rku⇥Nµ

1

2

���r@(u, �@w
r

, µ)
���
2

⇥@

, (4.27)

where u 2 RNu is any linearization point, usually the reconstructed primal solution, i.e., u =

�u
r

(µ; �,  ) and ⇥@ � 0 is the metric defining the norm. The first-order optimality condition of
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the linear least-squares problem in (4.27) leads to the normal equations

✓
@r

@u
(u, µ)�@

◆
T

⇥@

✓
@r

@u
(u, µ)�@

◆ d
@u

r

@µ
= �

✓
@r

@u
(u, µ)�@

◆
T

⇥@

@r

@µ
(u, µ). (4.28)

The following proposition parallels Proposition 4.1 for the minimum-residual sensitivity approxima-

tion and provides conditions that result in the reduced sensitivities, �@

d
@u

r

@µ
, exactly reconstructing

the HDM sensitivities,
@u

@µ
.

Proposition 4.2. Let (�@ ,⇥@) define a minimum-residual sensitivity reduced-order model. Then,

the following properties hold for any µ 2 RNµ :

• (Optimality) For any u 2 RNu and w 2 col(�@)

�����r
@

k

 
u, �@

d
@u

r

@µ
(µ; �@

, ⇥@

, u)e
k

, µ

!�����
⇥@


��r@

k

(u, w, µ)
��
⇥@

(4.29)

for k = 1, . . . , N
µ

, where r@
k

(u, w · e
k

, µ) := r@(u, weT
k

, µ)e
k

and e
k

is the kth canonical

unit vector.

• (Monotonicity) Let (�@

0
,⇥@

0
) define a minimum-residual sensitivity reduced-order model such

that col(�@

0
) ✓ col(�@), then

��r@
k

(u, w, µ)
��
⇥@


��r@

k

(u, w0
, µ)

��
⇥@

, (4.30)

where w = �@

d
@u

r

@µ
(µ; �@

,⇥@

, u)e
k

and w0 = �@

0 d@u
r

@µ
(µ; �@

0
,⇥@

0
, u)e

k

, for any u 2 RNu .

• (Interpolation) If
@u

@µ
k

(µ) 2 col(�@) for k 2 {1, . . . , N
µ

}, then

r@
k

 
u(µ), �@

d
@u

r

@µ
(µ; �@

,⇥@

, u(µ))e
k

, µ

!
= 0

@u

@µ
k

(µ) = �@

d
@u

r

@µ
(µ; �@

, ⇥@

, u(µ))e
k

.

(4.31)

Proof. Optimality follows trivially from the fact that �@

d
@u

r

@µ
(µ; �@

, ⇥@

, u) is the (unique) minima

of the optimization problem in (4.27). Monotonicity follows directly from the optimality property

since w0 2 col(�@

0
) ✓ col(�@). Finally, if the exact solution of r@

k

(u(µ), · , µ) = 0 is contained in

the columnspace of �@ , i.e.,
@u

@µ
k

(µ) 2 col(�@), the optimality property implies

�����r
@

k

 
u(µ), �@

d
@u

r

@µ
(µ; �@

, ⇥@

, u(µ))e
k

, µ

!�����
⇥@


����r

@

k

✓
u(µ),

@u

@µ
k

(µ), µ

◆����
⇥@

= 0. (4.32)
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The interpolation property in (4.31) follows from this and the fact that for a given u 2 RNu and

µ 2 RNµ , the solution of r@
k

(u, · , µ) = 0 is unique (due to invertibility of the Jacobian and linear

independence of the columns of �@).

The proposed minimum-residual sensitivity approximation is used to reconstruct an approxima-

tion of the gradient of the quantity of interest as

rF (µ) ⇡ drF
r

(µ; �,  , �@

, ⇥@) := g@

 
u, �@

d
@u

r

@µ
(µ; �@

, ⇥@

, u), µ

!
, (4.33)

where u = �u
r

(µ; �,  ) is the reconstructed primal solution2. From Appendix B, the approxima-

tion of the gradient of the reduced QoI is equipped with a residual-based error bound (Lemma B.4)

that takes the form

���rF (µ)� drF
r

(µ; �,  , �@

, ⇥@)
���   kr(u, µ)k+ ⌧

�����r
@

 
u, �@

d
@u

r

@µ

⇣
µ; �@

, ⇥@

, u
⌘
, µ

!�����

 0 kr(u, µ)k⇥ + ⌧

0
�����r

@

 
u, �@

d
@u

r

@µ

⇣
µ; �@

, ⇥@

, u
⌘
, µ

!�����
⇥@

(4.34)

for some constants , 0, ⌧, ⌧ 0 > 0, where u = �u
r

(µ; �,  ) and the second inequality follows from

norm equivalence in finite dimensions. The residual-based error bound illuminates one motivation

behind the minimum-residual primal and sensitivity formulations: the minimum-residual primal

reduced-order model minimizes the first term in (4.34) over the columnspace of � and the minimum-

residual sensitivity reduced-order model minimizes the second term over the columnspace of �@ .

To this point, two di↵erent approximations of the high-dimensional model sensitivities
@u

@µ
(µ)

have been introduced: �
@u

r

@µ
and �@

d
@u

r

@µ
. Each leads to a di↵erent approximation of the gradient

of the quantity of interest: rF
r

(µ) and drF
r

(µ). Proposition 4.3 states su�cient conditions under

which these two approximations are equal. Specifically, it requires the test basis for the primal ROM

( ), the sensitivity optimality metric (⇥@), and sensitivity basis (�@) be related according to (4.35).

Furthermore, these conditions also imply the reduced coordinates
@u

r

@µ
and

d
@u

r

@µ
themselves are equal.

Proposition 4.3 is significant since it provides conditions under which the easily computed minimum-

residual sensitivities (since they do not require second derivatives of r) reduce to the desired reduced-

order model sensitivities (since they guarantee consistency of the gradients of reduced quantities of

interest).

Proposition 4.3. Consider a primal reduced-order model defined by trial and test bases � and  ,

respectively, and a minimum-residual sensitivity reduced-order model defined by basis �@ and metric

⇥@ . Suppose that either: (1) the primal solution of the reduced-order model exactly reconstructs the

2The notation drFr(µ) will be used in place of drFr(µ; �,  , �@ , ⇥@) when there is no risk of confusion.
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HDM solution, i.e.,

u(µ) = �u
r

(µ; �,  )

or (2) the test basis  is constant. Then, for any u 2 RNu , the relationships

�@ = �

 (u, µ) = ⇥@

@r

@u
(u, µ)�@

(4.35)

guarantee the sensitivity of the primal reduced-order model (�,  ) coincides with the solution of the

minimum-residual sensitivity reduced-order model (�@

, ⇥@) and the corresponding gradient approx-

imations match
@u

r

@µ
(µ; �,  ) =

d
@u

r

@µ
(µ; �@

, ⇥@

, �u
r

(µ; �,  ))

rF
r

(µ; �,  ) = drF
r

(µ; �,  , �@

, ⇥@).

(4.36)

Proof. Let �u
r

= �u
r

(µ; �,  ) denote the reconstructed primal solution of the projection-based

reduced-order model. If either the primal solution is exact or the test basis is constant, the general

form of the reduced-order model sensitivity equations in (4.19) reduce to the equations in (4.20),

where all terms are evaluated at the primal solution, i.e.,


 (�u

r

, µ)T
@r

@u
(�u

r

, µ)�

�
@u

r

@µ
= � (�u

r

, µ)T
@r

@µ
(�u

r

, µ). (4.37)

Conversely, the normal form of the minimum-residual sensitivity reduced-order model in (4.28)

reduces to 
 (�u

r

, µ)T
@r

@u
(�u

r

, µ)�

� d
@u

r

@µ
= � (�u

r

, µ)T
@r

@µ
(�u

r

, µ), (4.38)

when the relationships in (4.35) are enforced. Thus, under conditions (4.35), the governing equations

for
@u

r

@µ
and

d
@u

r

@µ
are identical and the (unique) solutions must be equal, which establishes the first

result in (4.36). The second result in (4.36) follows from the simple relation

rF
r

(µ; �,  ) = g@

✓
�u

r

(µ; �,  ), �
@u

r

@µ
(µ; �,  ), µ

◆

= g@

 
�u

r

(µ; �,  ), �@

d
@u

r

@µ
(µ; �@

, ⇥@

, �u
r

(µ; �,  )), µ

!

= drF
r

(µ;�,  , �@

, ⇥@),

(4.39)

where the first and last equality use the definition of g@ and the second equality uses the identity

between the true and minimum-residual reduced sensitivities established in the first part.

To close this section, the specific form of the minimum-residual sensitivity equations in (4.19)

are discussed for the special cases of Galerkin and LSPG projections (4.6). For problems with

symmetric positive-definite Jacobians, the Galerkin sensitivity equations in (4.21) exactly match the
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minimum-residual sensitivity equations with  = � = �@ and sensitivity metric

⇥@ =
@r

@u
(�u

r

(µ; �, �))�T

. (4.40)

Additionally, these choices satisfy (4.35), which further supports the claim. Thus, for such problems,

the true Galerkin sensitivities possess the minimum residual property (and therefore optimality,

monotonicity, and interpolation as defined in Proposition 4.2) and are easy to compute since they

do not rely on second derivatives of r. For the case of a LSPG projection ( (u, µ) =
@u

@µ
(u, µ)�),

the choices �@ = � and ⇥@ = I reduce the minimum-residual sensitivity equations to

�T

@r

@u

T

@r

@u
�
d
@u

r

@µ
= �T

@r

@u

T

@r

@µ
(4.41)

where all nonlinear terms are evaluated at the reconstructed primal solution �u
r

(µ; �,  ). The

above equation is identical to the LSPG sensitivity equations when the primal solution is exact and

thus the true and minimum-residual sensitivities agree. This is rea�rmed since the choices satisfy

(4.35).

4.1.3 Exact and Minimum-Residual Adjoint Formulation

For optimization problems that involve more optimization variables than constraints, it is desirable

to employ the adjoint method to compute gradients of quantities of interest. The derivation of

the adjoint equations for the reduced-order model can apply any of the three procedures outline in

Section 2.3.4 to the governing equation in (4.3), i.e., r
r

(u
r

, µ) = 0, and reduced quantity of interest

in (4.4), i.e., f
r

(�u
r

, µ). For brevity, only the optimization approach is detailed. Consider the

auxiliary optimization problem

minimize
u

r

2Rku
f(�u

r

, µ̂)

subject to  Tr(�u
r

, µ̂) = 0
(4.42)

for a fixed µ̂ and the corresponding Lagrangian

L
r

(u
r

, �
r

) = f(�u
r

, µ̂)� �T

r

 Tr(�u
r

, µ̂). (4.43)

By comparing this expression for the Lagrangian with that in (2.98), it is clear that the HDM

Lagrange multipliers are reconstructed from the reduced Lagrange multipliers as

� =  �
r

. (4.44)
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The stationarity of the Lagrangian with respect to u
r

leads to the reduced adjoint equations
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@f

@u

T

(4.45)

where all terms are evaluated at the reconstructed primal solution, �u
r

(µ; �,  ).

For any µ 2 RNµ and bases �,  , the solution of the above equation is denoted �
r

(µ; �,  ).

The gradient of the quantity of interest is then reconstructed as

rF
r

(µ) =
@f

@µ
(�u

r

(µ; �,  ), µ)� �
r

(µ; �,  )T
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NuX
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j

@
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@µ
+ T
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3

5

(�u

r

(µ;�, ),µ)

.

(4.46)

In the special case where the primal reduced-order model is exact, i.e., r(�u
r

(µ; �,  ), µ) = 0, or

the test basis is constant, the expression in (4.45) reduces to


 T

@r

@u
�

�
T

�
r

= �T

@f

@u

T

, (4.47)

and the gradient of the QoI becomes

rF
r

(µ) =
@f

@µ
(�u

r

(µ; �,  ), µ)� �
r

(µ; �,  )T T

@r

@µ
(�u

r

(µ; �,  ), µ). (4.48)

In the special case where the primal reduced-order model employs a Galerkin projection ( = �),

the test basis is state- and parameter-independent and the adjoint equations in (4.45) or (4.47)

become 
�T

@r

@u
�

�
T

�
r

= �T

@f

@u

T

(4.49)

and the gradient of the QoI is

rF
r

(µ) =
@f

@µ
(�u

r

(µ; �, �), µ)� �
r

(µ; �, �)T�T

@r

@µ
(�u

r

(µ; �, �), µ). (4.50)

In the special case of a LSPG projection, the adjoint equations in (4.45) become
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(4.51)

and the QoI gradient is

rF
r

(µ) =
@f

@µ
(�u

r

(µ; �,  ), µ)��
r

(µ; �,  )T
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NuX
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.

(4.52)
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For cases where the test basis is non-constant, the adjoint equations and QoI gradient are di�-

cult to compute due to the presence of derivatives of the test basis, which usually involves second

derivatives of the discrete PDE. These terms are rarely available in large-scale PDE implementations

and expensive to compute when available. Furthermore, the adjoint equations for the reduced-order

model are not developed such that the HDM adjoint variable will be optimally reconstructed and,

therefore, the gradient of the reduced QoI may not be a good approximation of the gradient of

the true QoI. For these reasons, minimum-residual adjoint equations will be formulated such that

the reconstructed reduced adjoint variable minimizes the HDM adjoint residual in some norm. For

generality, approximate the HDM adjoint variable in a reduced-order basis �� 2 RNu⇥ku , i.e.,

� = ���̂
r

. (4.53)

In general, the adjoint basis may depend on the primal solution and parameter, i.e., ��(u, µ). The

reduced coordinates �̂
r

2 Rku are defined as the solution of the linear residual minimization problem

(linear least-squares)

minimize
1

2

���r�(�u
r

, ���̂
r

, µ)
���
2

⇥�
. (4.54)

where u 2 RNu is any linearization point, usually the primal ROM solution. Expanding (4.54) with

the definition of r� in (2.101) leads to the following definition of �̂
r

�̂
r

(µ; ��

, ⇥�

, u) = argmin
z

r

2Rku

1

2

�����
@f

@u
(u, µ)T +

@r

@u
(u, µ)T��z

r

����
2

⇥�

, (4.55)

for any u 2 RNu . The definition of �̂
r

in (4.55) is equivalent to the solution of the normal equations
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T
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!
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!
�̂
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=

 
@r

@u

T

��

!
T

⇥�

@f

@u

T

(4.56)

where the dependence on the linearization point (u) and parameter (µ) have been dropped.

As with the primal and sensitivity minimum-residual reduced-order models, the minimum-

residual adjoint reduced-order models are guaranteed to be monotonic and interpolatory as defined

in Proposition 4.4. This result is relevant since it provides conditions under which the minimum-

residual adjoint reduced-order model solution monotonically approaches the HDM adjoint solution

and the requirement for these solutions to exactly match.

Proposition 4.4. Let (��,⇥�) define a minimum-residual adjoint reduced-order model. Then the

following properties hold for any µ 2 RNµ

• (Optimality) For any u 2 RNu and z 2 col(��)

���r�
⇣
u, ���̂

r

(µ; ��

, ⇥�

, u), µ
⌘���
⇥�

��r� (u, z, µ)

��
⇥� (4.57)

• (Monotonicity) Let (��

0
,⇥�

0
) define a minimum-residual adjoint reduced-order model such
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that col(��

0
) ✓ col(��), then

��r� (u, z, µ)
��
⇥� 

��r� (u, z0
, µ)

��
⇥� , (4.58)

where z = ���̂
r

(µ; ��

, ⇥�

, u) and z0 = ��

0
�̂
r

(µ; ��

0
, ⇥�

0
, u), for any u 2 RNµ .

• (Interpolatory) If �(µ) 2 col(��), then

r�
⇣
u(µ), ���̂

r

(µ; ��

, ⇥�

, u(µ)), µ
⌘
= 0

�(µ) = ���̂
r

(µ; ��

, ⇥�

, u(µ)).
(4.59)

Proof. Optimality follows trivially from the fact that ���̂(µ; ��

, ⇥�

, u) is the (unique) minima

of the optimization problem in (4.54). Monotonicity follows directly from the optimality property

since z0 2 col(��

0
) ✓ col(��). Finally, if the exact solution of r�(u(µ), · , µ) = 0 is contained in

the columnspace of ��, i.e., �(µ) 2 col(��), the optimality property implies

���r�
⇣
u(µ), ���̂

r

(µ; ��

, ⇥�

, u(µ)), µ
⌘���
⇥�

��r� (u(µ), �(µ), µ)

��
⇥� = 0. (4.60)

The interpolation property in (4.59) follows from this and the fact that for a given u 2 RNu and

µ 2 RNµ , the solution of r�(u, · , µ) = 0 is unique (due to invertibility of the Jacobian and linear

independence of the columns of ��).

Since �̂
r

is chosen to optimally reconstruct the HDM adjoint variable � in the sense of the

⇥�-norm of the adjoint residual, the gradient of the QoI will be computed as

rF (µ) ⇡ drF
r

(µ; �,  , ��

, ⇥�) := g�
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u, ���̂
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,u), µ
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=
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, u)T��

T @r

@µ
(u, µ).

(4.61)

where u = �u
r

(µ; �,  ). From Appendix B, the approximation of the gradient of the reduced

quantity of interest is equipped with a residual-based error bound (Lemma B.4) that takes the form

���rF (µ)� drF
r

(µ; �,  , ��

, ⇥�)
���   kr(u, µ)k+ ⌧

���r�
⇣
u, ���̂

r

⇣
µ; ��

, ⇥�

, u
⌘
, µ

⌘���

 0 kr(u, µ)k⇥ + ⌧

0
���r�

⇣
u, ���̂

r

(µ; ��

, ⇥�

, u), µ
⌘���
⇥�

(4.62)

for some constants , 0, ⌧, ⌧ 0 > 0, where u = �u
r

(µ; �,  ) and the second inequality follows

from norm equivalence in finite dimensions. The residual-based error bound illuminates one moti-

vation behind the minimum-residual primal and adjoint formulations: the minimum-residual primal

reduced-order model minimizes the first term in (4.62) over the columnspace of � and the minimum-

residual adjoint reduced-order model minimizes the second term over the columnspace of ��.



CHAPTER 4. PROJECTION-BASED MODEL REDUCTION 91

In an exact parallel with the previous section, Proposition 4.5 provides conditions under which the

two aforementioned approximations of the HDM gradient rF (µ), i.e., the approximation based on

the reduced-order model adjoint rF
r

(µ) and that based on the minimum-residual adjoint reduced-

order model drF
r

(µ), exactly match. The main condition is the requirement (4.63) on the relation-

ship between the trial basis (�), adjoint basis (��), and adjoint optimality metric (⇥�). These

conditions also ensure the reduced coordinates �
r

and �̂
r

match. These results are relevant as

they provide conditions under which the easily computed minimum-residual adjoint solutions (since

the computation does not require second-order derivatives of r) reduce to the desired reduced-order

model sensitivities (that guarantee consistency of the gradients of the reduced quantities of interest).

Proposition 4.5. Consider a primal reduced-order model defined by trial and test bases � and  ,

respectively, and a minimum-residual adjoint reduced-order model defined by basis �� and metric

⇥�. Suppose that either: (1) the primal solution of the reduced-order model exactly reconstructs the

HDM solution, i.e.,

u(µ) = �u
r

(µ; �,  ).

or (2) the test basis  is constant. Then, for any u 2 RNu , the relationships

��(u, µ) =  (u, µ) =


⇥�

@r

@u
(u, µ)T

��1

� (4.63)

guarantee the adjoint solution of the primal reduced-order model (�,  ) matches the minimum-

residual adjoint reduced-order model (��

, ⇥�)

�
r

(µ; �,  ) = �̂
r

(µ; ��

, ⇥�

, �u
r

(µ; �,  ))

rF
r

(µ; �,  ) = drF
r

(µ; �,  , ��

, ⇥�)
(4.64)

Proof. Let �u
r

= �u
r

(µ; �,  ) denote the reconstructed primal solution of the projection-based

reduced-order model. If either the primal solution is exact or the test basis is constant, the general

form of the reduced-order model adjoint equations in (4.45) reduce to the equations in (4.47), where

all terms are evaluated at the primal solution, i.e.,


 (�u

r

, µ)T
@r

@u
(�u

r

, µ)�

�
T

�
r

= �T

@f

@u
(�u

r

, µ)T . (4.65)

Conversely, the normal form of the minimum-residual adjoint reduced-order model in (4.56) reduces

to 
 (�u

r

, µ)T
@r

@u
(�u

r

, µ)�

�
T

�̂
r

= �T

@f

@u
(�u

r

, µ)T (4.66)

when the relationships in (4.63) are enforced. Thus, under the aforementioned conditions, the

governing equations for �
r

and �̂
r

are identical and the (unique) solutions must be equal, which
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establishes the first result in (4.64). The second result in (4.64) follows from the simple relation

rF
r

(µ; �,  ) = g� (�u
r

(µ; �,  ),  �
r

(µ; �,  ), µ)

= g�

⇣
�u

r

(µ; �,  ), ���̂
r

(µ; ��

, ⇥�

, �u
r

(µ; �,  )), µ
⌘

= drF
r

(µ;�,  , ��

, ⇥�),

(4.67)

where the first and last equality use the definition of g� and the second equality uses the identity

between the true and minimum-residual reduced adjoints established in the first part.

The section closes with a discussion of the minimum-residual adjoint equations for the special

cases of Galerkin and LSPG projections (4.6). For problems with symmetric positive-definite Jaco-

bians, the Galerkin adjoint equations in (4.49) exactly match the minimum-residual adjoint equations

in (4.55) with  = �� = � and adjoint metric

⇥� =
@r

@u
(�u

r

(µ; �, �))�T

. (4.68)

Additionally, these choices satisfy (4.63), which further supports the claim. Thus, for such problems,

the true Galerkin adjoints possess the minimum residual property and are easy to compute since they

do not rely on second derivatives of r. For the case of a LSPG projection ( (u, µ) =
@r

@u
(u, µ)�),

the choices �� =  and

⇥� =

"
@r

@u

T

@r

@u

#�1

(�u

r

(µ;�, ),µ)

(4.69)

lead to the minimum-residual adjoint equations

�T

@r

@u

T

@r

@u
�u = �T

@f

@u
(4.70)

where all nonlinear terms are evaluated at �u
r

(µ; �,  ). The above equation is identical to the

LSPG adjoint equations when the primal solution is exact and thus the true and minimum-residual

adjoints agree. This is rea�rmed since the above choices satisfy (4.63).

4.2 Global Hyperreduced Models

Despite the small size of the nonlinear system defining the reduced-order model

 Tr(�u
r

, µ) = 0,

in terms of the number of equations and unknowns (k
u

), it may still be expensive to solve. The

major expense emanates from the large-scale operations required to evaluate the reduced residual
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and Jacobian (neglecting higher derivatives if  is not constant)

 Tr(�u
r

, µ)  T

@r

@u
(�u

r

, µ)�, (4.71)

i.e., the reconstruction of the full state from the reduced coordinates u = �u
r

and projection of the

full residual and Jacobian into the reduced space. Such bottlenecks do not arise in the case where r is

polynomial in the state and parameter as terms can be precomputed o✏ine such that no large-scale

operations are required online; see Section 4.2.1 for additional details. To overcome such bottlenecks

when r is nonlinear in state or parameter, a slew of hyperreduction3 techniques have been proposed

that introduce an additional layer of approximation on top of that in (4.3). Among the most popular

hyperreduction techniques are (1) polynomialization methods, such as Trajectory Piece-Wise Linear

(TPWL) approximation [165], where the governing nonlinear equations are replaced by a weighted

sum of the equations linearized about preselected points in parameter space and (2) gappy methods

[56, 17, 115, 41, 31, 59] where only a subset of the large-scale equations and degrees of freedom are

used in the computation of (4.71)—in the context of PDEs this amounts to only using a subset of

the mesh to assemble the reduced residual and Jacobian. This document will only consider gappy

methods since they maintain a strong connection to the underlying physics model and enable the

reduced residual and Jacobian to be evaluated without incurring operations that scale with the size

of the full mesh.

4.2.1 Precomputation for Polynomial Nonlinearities

In the special case where the nonlinearity in the state and parameter is polynomial, the contraction

of the each monomial term with the reduced basis can be precomputed. As a result, each query

to the reduced residual and Jacobian will not involve operations that scale with N

u

. Consider the

Taylor expansion of the governing equation of degree m in the state and degree n in the parameter

r(u, µ) =
mX

j=0

nX

k=0

1

j!k!

@

j+kr

@u

p

1

· · · @u
p

j

@µ

q

1

· · · @µ
q

k

����
(ˆu, ˆµ)

(u� û)
p

1

· · · (u� û)
p

j

(µ� µ̂)
q

1

· · · (µ� µ̂)
q

k

(4.72)

where û 2 RNu and µ̂ 2 RNµ are the expansion points. If the governing equation is at most degree

m in the state and n in the parameter, this expansion is exact for any expansion points. Otherwise,

it is an approximation and its quality will be heavily dependent on û and µ̂. The remainder of this

section will primarily be concerned with the case where the governing equation is polynomial and

the expansion points will be taken as û = 0
Nu and µ̂ = 0

Nµ for simplicity. Define the following

j + k + 1-order tensor for j = 1, . . . ,m and k = 1, . . . , n as the monomials arising in the above

3a term coined in [175]
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expansion

Djk(u, µ) =
@

j+kr

@u · · · @u| {z }
j terms

@µ · · · @µ| {z }
k terms

��������
(u,µ)

. (4.73)

When arguments are omitted in the above definition, they are assumed to be zero, i.e., Djk =

Djk(0
Nu , 0Nµ). With this definition, the expansion of the governing equation becomes

r(u, µ)
i

=
mX

j=0

nX

k=0

1

j!k!
D

jk

ip

1

···p
j

q

1

···q
k

u

p

1

· · ·u
p

j

µ

q

1

· · ·µ
q

k

. (4.74)

Introduce the model reduction ansatz for both the state and parameter :

u = �y µ = ⌥⌘ (4.75)

where � 2 RNu⇥ku and ⌥ 2 RNµ⇥kµ are the reduced bases for the state and parameter spaces,

y 2 Rku and ⌘ 2 Rkµ are the corresponding reduced coordinates, and k

u

⌧ N

u

and k

µ

⌧ N

µ

.

Substitution of these ansatz into the polynomial expansion of the governing equations in (4.72) and

subsequent projection onto the columnspace of � (a Galerkin projection) leads to

[r
r

(y, ⌘)]
t

=
mX

j=0

nX

k=0

1

j!k!

⇥
D

jk

r

⇤
tr

1

···r
j

s

1

···s
k

y

r

1

· · · y
r

j

⌘

s

1

· · · ⌘
s

k

(4.76)

where the reduced monomial terms that have been contracted with the reduced bases are

⇥
D

jk

r

⇤
tr

1

···r
j

s

1

···s
k

= D

jk

ip

1

···p
j

q

1

···q
k

�
it

�
p

1

r

1

· · ·�
p

j

r

j

⌥
q

1

s

1

· · ·⌥
q

k

s

k

. (4.77)

From (4.76), the evaluation of the reduced residual r
r

(y, ⌘) and Jacobian
@r

r

@y
(y, ⌘) are completely

independent of the potentially large dimensions N

u

and N

µ

but scale poorly with the reduced

dimensions k

u

and k

µ

. For example, the evaluation of the reduced residual requires O(km+1

u

k

n

µ

)

operations, which makes this feasible for only small polynomial orders m and n and reduced basis

sizes k
u

and k

µ

. Two common examples of nonlinear partial di↵erential equations that possess poly-

nomial nonlinearities in the state and parameter are: the incompressible Navier-Stokes equations

(quadratic in the state) and the geometrically nonlinear structure with a St. Venant-Kirchho↵ ma-

terial law (cubic in the state and linear in the material parameters). While these types of problems

arise in a number of important applications, the problems considered in this work will not possess

polynomial nonlinearities. Therefore, these methods will not be considered further and attention is

turned to the more general gappy methods.
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4.2.2 Mask and Sample Mesh

The discussion of gappy methods in the context of partial di↵erential equations begins with the

critical notion of a mask and sample mesh. Gappy methods are characterized by the distinguishing

feature that they only consider a subset of the governing equations, that is, only entries r
i

are

needed, where i 2M ⇢ {1, . . . , N
u

}. This subset M is called the mask. Let P 2 RNu⇥|M| be the

subset of the columns of the identity matrix that includes e
i

only if i 2M. Then, the mask of the

governing residual r can be compactly represented as P Tr. When r represents a discretized PDE,

the evaluation of r
i

will require the solution u
j

for all j 2 S
i

⇢ {1, . . . , N
u

}, where the S
i

depends

on the discretization scheme and the PDE under consideration. Define the sample mesh as the set

S =
[

i2M
S
i

and let P̄ 2 RNu⇥|S| be the subset of the columns of the identity matrix that include e
i

only if i 2 S.
Then, the restriction of the state vector u to the sample mesh is compactly written as P̄ Tu. All of

the gappy-based hyperreduction methods considered in this document rely on the computation of

the masked reduced residual and Jacobian

P Tr(P̄ P̄ T�u
r

, µ) P T

@r

@u
(P̄ P̄ T�u

r

, µ)P̄ P̄ T� (4.78)

as they are much less expensive to compute than the terms in (4.71) if |M| ⌧ N

u

. While the

notation in (4.78) will prove convenient in later sections, it does not necessarily reveal the e�ciency

of gappy methods. An e�cient implementation will compute P Tr and P T

@r

@u
P̄ directly from

P̄ T�u
r

without reconstructing a N

u

-vector padded with zeros as the notation P̄ P̄ T�u
r

suggests.

Furthermore, the restriction of the reduced-order basis to the mask, P T�, can be precomputed.

These implementation details enable the terms in (4.78) to be computed e�ciently online, i.e.,

without incurring operations that scale with the full mesh O(N
u

).

For brevity in the developments to follow, the following notation is introduced for the recon-

structed state vector restricted to the sample mesh and reduced residual restricted to the mask

u
h

= P̄ P̄ T�u
r

r
h

(u
h

, µ) = P Tr(u
h

, µ). (4.79)

Then, the masked Jacobians with respect to the state and parameter are

@r
h

@u
h

(u
h

, µ) = P T

@r

@u
(u

h

, µ)P̄ P̄ T�
@r

h

@µ
(u

h

, µ) = P T

@r

@µ
(u

h

, µ). (4.80)

Armed with this notation, the governing equations for gappy-based hyperreduction methods take

the general form

A(u
h

, µ)Tr
h

(u
h

, µ) = 0, (4.81)

where it is assumed that A can be computed e�ciently online or precomputed o✏ine. Regardless
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of the hyperreduced approach considered, the quantity of interest is defined according to (4.5), i.e.,

F

r

(µ) = f(�u
r

(µ), µ)

where u
r

(µ) is the solution of the hyperreduced model. In many cases, the entire reconstructed state

�u
r

is not required to evaluate f , which commonly arises when f corresponds to a surface integral,

i.e., only entries corresponding to nodes on the surface are required. In these cases, only a subset of

the reconstructed vector P̃ T�u
r

are required and F

r

can be computed e�ciently. This implemen-

tation optimization will not be considered in the remainder as it complicates the exposition. The

industry-scale example of the shape optimization of a full aircraft configuration in Section 5.5.4 will

leverage this precise optimization since its optimization functionals involve forces integrated along

the surface. The next section provides specific examples of gappy-based hyperreduction method that

can be written in the general form (4.81).

4.2.3 Examples

The simplest approach to gappy-based hyperreduction is to simply ignore information that is not

included in the mask. This approach is usually known as collocation and the general form of the

projection-based reduced-order model is

(P T )Tr
h

(u
h

, µ) = 0, (4.82)

which fits into the general form in (4.81) with A(u, µ) = P T (u, µ). While this approach is naive

in the sense that it makes no attempt to account for missing information, it is simple and robust,

provided a su�ciently large sample mesh is used.

In contrast to the naive approach, a number of methods exist that attempt to account for

the missing information using ideas setforth in [56], which include (Discrete) Empirical Interpola-

tion Method ((D)EIM) [17, 41] and Gauss-Newton with Approximated Tensors (GNAT) [31]. The

(D)EIM approach assumes the residual lies in the low-dimensional subspace defined by the span of

a separate basis �
r

4, i.e.,

r(�u
r

, µ) = �
r

h(u
r

, µ), (4.83)

where h : Rku⇥RNµ ! Rku are the reduced coordinates of the residual in the basis �. The reduced

coordinates are defined such that the representation in (4.83) exactly matches the true residual on

the mask

P T�
r

h(�u
r

, µ) = P Tr(P̄ P̄ T�u
r

, µ), (4.84)

which leads to the following expression for the residual reduced coordinates h

h(�u
r

, µ) = (P T�
r

)�1r
h

(u
r

, µ) (4.85)

4Usually the residual is separated into its linear and nonlinear components and (D)EIM is only applied to the
nonlinear portion.
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where the definition of r
h

in (4.80) was used. Combining (4.83) and (4.85) into the form of the

projection-based reduced-order model in (4.3), the (D)EIM governing equations are

⇣
�T

r

 
⌘
T �

P T�
r

��1

r
h

(u
h

, µ) = 0. (4.86)

(D)EIM fits into the general form of gappy-based hyperreduced models in (4.81) with A(u, µ) =⇣
�T

r

 
⌘
T �

P T�
r

��1

.

The GNAT method is a minor generalization of (D)EIM that also approximates the residual in

a separate low-dimensional subspace spanned by the basis �
r

2 RNu⇥kr (k
r

⌧ N

u

)

r(�u
r

, µ) = �
r

h(u
r

, µ), (4.87)

and the reduced coordinates h : Rku⇥RNµ ! Rkr are defined such that the representation in (4.87)

matches, in a least-squares sense, the true residual on the mask

h(u
r

, µ) = argmin
z2Rkr

��P T�
r

z � r
h

(u
h

, µ)
��
2

. (4.88)

The GNAT governing equations follow from combining (4.87) and (4.88) into the form of the

projection-based reduced-order model in (4.3)

⇣
�T

r

 
⌘
T ⇥

P T�
r

⇤†
r
h

(u
h

, µ) = 0. (4.89)

The GNAT equations fit into the general form of gappy-based hyperreduction models in (4.81) with

A =
⇣
�T

r

 
⌘
T ⇥

P T�
r

⇤†
.

From the above construction, a number of advantages and disadvantages of each approach emerge.

As previously mentioned, the (D)EIM and GNAT methods have the desirable property of attempting

to account for information missing from the mask by approximating the nonlinear residual in a low-

dimensional subspace, while collocation simply ignores missing information. However, due to the

nonlinearity of the residual r(u, µ), it cannot be guaranteed (or even expected) to lie in a low-

dimensional subspace, even if the state vector u does. In fact, several works [31, 33] have shown

that, even to reproduce training data, the residual approximation in (4.87) requires k
r

� k

u

for the

resulting hyperreduced model to be su�ciently accurate. In practice, the (D)EIM and GNAT ansatz

in (4.83) and (4.87) cause the corresponding methods to exhibit classical over-fitting behavior, i.e.,

superb accuracy when reproducing training data and low accuracy at predictive points, particularly

when applied to real engineering applications [198]. A notable distinction between these methods is

that collocation only requires the trial basis (�), test basis ( ), and mask (P ), while (D)EIM and

GNAT require the construction of a separate residual basis (�
r

) that involves substantial additional

o✏ine training—usually requiring the collection and compression of residual snapshots [31]. It has

been observed [198] that residual snapshots are not necessarily amenable to compression, which
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results large number of basis vectors (k
r

� 1) and ultimately hurts the performance of the reduced-

order model.

Given this discussion, only the collocation hyperreduction method will be considered in the

remainder. This is predominantly to avoid the overfitting behavior of the other approaches since

the hyperreduced model will be heavily used in predictive settings in subsequent chapters. The

remainder of this chapter will discuss a formulation of the primal, sensitivity, and adjoint collocation-

based hyperreduced model that results in optimal approximations, in the sense of minimizing the

residual in some norm on the mask.

4.2.4 Minimum-Residual Primal Formulation

The form of the test basis  in the gappy-accelerated projection-based reduced-order models in

(4.82), (4.86), (4.89) has remainder arbitrary to this point. Given the desirable properties of

minimum-residual reduced-order models detailed in Sections 4.1.1–4.1.3, the test basis is defined

in accordance with a parallel concept in the collocation-based hyperreduction setting—the masked

minimum-residual property. This property (Definition 4.2) requires the solution of the hyperreduced

model to minimize the residual over the mask in some norm. For the remainder of this document, the

solution of the general form of the collocation-based hyperreduced model in (4.81) will be denoted

u
h

(µ; �,  , P ), i.e.,
�
P T 

�
T

r
h

(u
h

(µ; �,  , P ), µ) = 0.

Furthermore, the mask-reconstructed state vector u
h

is identified with its corresponding reduced

coordinates u
r

from (4.79), i.e., u
h

(µ; �,  , P ) = P̄ P̄ T�u
r

(µ; �,  , P ). The sample mesh P̄ is

not included in the argument list since it is uniquely determined from the mask P and the structure

of the governing equation r. When there is no risk of confusion regarding the choice of mask, test

basis, and trial basis, the arguments will be dropped.

Definition 4.2 (Masked Minimum-Residual Property). A hyperreduced model of the form (4.81)

possesses the masked minimum-residual property if the solution satisfies the first-order optimality

conditions of the following masked residual minimization problem

minimize
u

r

2Rku

1

2

��P Tr(P̄ P̄ T�u
r

, µ)
��2
⇥

(4.90)

for some symmetric positive-definite ⇥ 2 R|M|⇥|M|.

Masked minimum-residual hyperreduced models possess a similar monotonicity property as that

defined in Proposition 4.1 for minimum-residual projection-based reduced-order models. The inter-

polation property only holds if the solution of the minimum-residual hyperreduced model is unique

(guaranteed if the mask is full, i.e., M = {1, . . . , N
u

} by Assumption 2.2). These properties are

stated precisely in Proposition 4.6.

Proposition 4.6. Let (�,  , ⇥, P ) define masked minimum-residual hyperreduced model whose
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solution coincides with the global minimum of (4.90). Then, the following properties hold for any

µ 2 RNµ :

• (Optimality) For any u 2 RNu such that P̄ Tu 2 col(P̄ T�),

��P Tr(P̄ P̄ T�u
r

(µ; �,  , P ), µ)
��
⇥

��P Tr(P̄ P̄ Tu,µ)

��
⇥
. (4.91)

• (Monotonicity) Let (�0
,  0

, P ) define a hyperreduced model such that col(P̄ T�0) ✓ col(P̄ T�),

then

��P Tr(P̄ P̄ T�u
r

(µ; �,  , P ), µ)
��
⇥

��P Tr(P̄ P̄ T�0u

r

(µ; �0
,  0

, P ), µ)
��
⇥
. (4.92)

• (Interpolatory) If P̄ Tu(µ) 2 col(P̄ T�), then

P Tr(P̄ P̄ T�u
r

(µ; �,  , P ), µ) = 0. (4.93)

Proof. Optimality follows from the fact that u
r

(µ; �,  , P ) is the global minima of the optimization

problem in (4.90): for P̄ Tu 2 col(P̄ T�), there exists y 2 Rku such that P̄ Tu = P̄ T�y and since

u
r

is the global minima of (4.90), we have

��P Tr(P̄ P̄ T�u
r

(µ; �,  , P ), µ)
��
⇥

��P Tr(P̄ P̄ T�y,µ)

��
⇥
. (4.94)

A simple application of the optimality property to P̄ T�0u
r

(µ; �0
,  0) 2 col(P̄ T�0) ✓ col(P̄ T�)

leads to monotonicity. Finally, if the solution of P Tr( · , µ) = 0 is contained in the columnspace of

P̄ T�, i.e., P̄ Tu(µ) 2 col(P̄ T�), the optimality property implies

��P Tr(P̄ P̄ T�u
r

(µ; �,  ), µ)
��
⇥

��P Tr(P̄ P̄ Tu(µ), µ)

��
⇥

= 0, (4.95)

which is precisely the interpolation property in (4.93).

The first-order optimality condition of (4.90) is

@r
h

@u
h

(u
h

, µ)T⇥r
h

(u
h

, µ) = 0 (4.96)

and, therefore, the masked test basis must satisfy

P T (u
h

, µ) = ⇥
@r

h

@u
h

(u
h

, µ) (4.97)

for the collocation-based projection-based hyperreduced model (4.82) to possess the masked minimum-

residual property. The special case of a LSPG projection satisfies (4.97) with

⇥ = I P T (u
h

, µ) =
@r

h

@u
h

(u
h

, µ). (4.98)



CHAPTER 4. PROJECTION-BASED MODEL REDUCTION 100

where I is the |M| ⇥ |M| identity matrix and therefore possess the masked minimum-residual

property. The special case of a Galerkin projection (P T = P T�) is more cumbersome to interpret

as a special case of the optimality conditions in (4.97) in the hyperreduced setting. Unlike the pure

projection setting of Section 4.1.1, the reduced Jacobian matrix
@r

h

@u
h

is not square, in general, and

cannot define a valid norm. From (4.97), for a Galerkin projection to possess the masked minimum-

residual property, ⇥ must be selected such that the following constrained linear system of equations

(linear in ⇥) is satisfied

⇥
@r

h

@u
h

= P T� subject to ⇥ � 0. (4.99)

In general, there is no guarantee this constrained system of equations has a solution. The next

section derives the sensitivity equations corresponding to the collocation-based hyperreduced models

introduced in this section and develops a minimum-residual variant.

4.2.5 Exact and Minimum-Residual Sensitivity Formulation

The sensitivity analysis for the hyperreduced model parallels the exposition for the reduced-order

models in Section 4.1.2. The total derivative of the quantity of interest is expanded as

rF
r

(µ) =
@f

@µ
(�u

r

(µ; �,  , P ), µ) +
@f

@u
(�u

r

(µ; �,  , P ), µ)�
@u

r

@µ
(µ; �,  , P ) (4.100)

where u
r

(µ; �,  , P ) are the reduced coordinates corresponding to the solution of the hyperreduced

model in (4.82) and
@u

r

@µ
(µ; �,  , P ) is the corresponding sensitivity. The reduced sensitivities are

derived by di↵erentiating the governing hyperreduced model in (4.82). In the general case where

P T is state- and parameter-dependent, the reduced sensitivities are defined as the solution of the

linear system of equations

2

4
|M|X

j=1

(P Tr)
j

@

�
(P T )Te

j

�

@u
P̄ P̄ T�+ (P T )T

@r
h

@u
h

3

5 @ur

@µ
=

�

2

4
|M|X

j=1

(P Tr)
j

@

�
(P T )Te

j

�

@µ
+ (P T )T

@r
h

@µ

3

5

(4.101)

where all terms are evaluated at the primal solution u
h

(µ; �,  , P ). In the special case where the

masked primal solution is exact on the mask, i.e., r
h

(u
h

(µ), µ) = 0, or the masked test basis is

constant, the expression in (4.101) reduces to


(P T )T

@r
h

@u
h

�
@u

r

@µ
= �(P T )T

@r
h

@µ
. (4.102)
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A Galerkin projection uses a constant test basis P T = P T� and the hyperreduced sensitivity

equations takes the form 
(P T�)T

@r
h

@u
h

�
@u

r

@µ
= �(P T�)T

@r
h

@µ
. (4.103)

A LSPG projection employs the non-constant test basis P T (u, µ) =
@r

h

@u
h

(u, µ) and derivatives

of the test basis cannot be ignored. The resulting hyperreduced sensitivity equations are

2

4
|M|X

j=1

(P Tr)
j

(P̄ T�)T
✓
P̄ T

@

2r
j

@u@u
P̄

◆
(P̄ T�) +

@r
h

@u
h

T

@r
h

@u
h

3

5 @ur

@µ
=

�

2

4
|M|X

j=1

(P Tr)
j

(P̄ T�)T
✓
P̄ T

@

2r
j

@u@µ

◆
+
@r

h

@u
h

T

@r
h

@µ

3

5

(4.104)

The di�culty associated with computing derivatives of the test basis, as well as the merits of

minimum-residual formulations discussed in Section 4.1, motivate the introduction of a collocation-

based equivalent of the minimum-residual sensitivity reduced-order model of Section 4.1.2. For

generality, consider the low-dimensional approximation of the high-dimensional model sensitivity

@u

@µ
= �@

d
@u

r

@µ
, (4.105)

where �@ 2 RNu⇥ku is the reduced-order basis for the sensitivities and
d
@u

r

@µ
are the corresponding

reduced coordinates. The reduced coordinates are defined as the argument that minimizes the

sensitivity residual on the mask, i.e.,

d
@u

r

@µ
(µ; �@

, ⇥@

, P , u) = argmin
w

r

2Rku⇥Nµ

1

2

���P Tr@(u, P̄ P̄ T�@w
r

, µ)
���
2

⇥@

(4.106)

where u 2 RNu is any linearization point, usually the reconstructed primal solution, i.e., u =

P̄ P̄ T�u
r

(µ; �,  , P ) and ⇥@ � 0 is the metric defining the norm. The first-order optimality

condition of the linear least-squares problem in (4.106) leads to the normal equations

✓
P T

@r

@u
P̄ P̄ T�@

◆
T

⇥@

✓
P T

@r

@u
P̄ P̄ T�@

◆ d
@u

r

@µ
= �

✓
P T

@r

@u
P̄ P̄ T�@

◆
T

⇥@P T

@r

@µ
. (4.107)

where all terms are evaluated at the linearization point. A variant of the monotonicity and inter-

polation properties of Proposition 4.2 hold for masked minimum-residual sensitivity hyperreduced

model. In this case, monotonicity is guaranteed with respect to a fixed metric and mask and in-

terpolation requires a su�ciently large mask such that P Tr(u, µ) = 0 =) r(u, µ) = 0. These

results are stated and proved in Proposition 4.7.

Proposition 4.7. Let (�@ ,⇥@ , P ) define a masked minimum-residual sensitivity reduced-order
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model. Then the following properties hold for any µ 2 RNµ

• (Optimality) For any u 2 RNu , w 2 RNu , and P̄ Tw 2 col(P̄ T�@), then

�����P
Tr@

k

 
u, P̄ P̄ T�@

d
@u

r

@µ
(µ; �@

,⇥@

, P , u)e
k

, µ

!�����
⇥@


��P Tr@

k

�
u, P̄ P̄ Tw, µ

���
⇥@

(4.108)

for k = 1, . . . , N
µ

, where r@
k

(u, w · e
k

, µ) := r@(u, weT , µ)e
k

and e
k

is the kth canonical

unit vector.

• (Monotonicity) Let (�@

0
,⇥@

0
, P ) define a masked minimum-residual sensitivity reduced-order

model such that col(�@

0
) ✓ col(�@), then

��P Tr@
k

(u, w, µ)
��
⇥@


��P Tr@

k

(u, w0
, µ)

��
⇥@

, (4.109)

where w = �@

d
@u

r

@µ
(µ; �@

,⇥@

, P , u)e
k

and w0 = �@

0 d@u
r

@µ
(µ; �@

0
,⇥@

0
, P , u)e

k

, for k =

1, . . . , N
µ

and any u 2 RNµ .

• (Interpolation) If P̄ T

@u

@µ
k

(µ) 2 col(P̄ T�@), then

P Tr@
k

 
u, P̄ P̄ T�@

d
@u

r

@µ
(µ; �@

,⇥@

, P , u)e
k

, µ

!
= 0. (4.110)

Proof. Optimality follows from the fact that
d
@u

r

@µ
(µ; �@

, ⇥@

, P , u) is the (unique) minima of the

optimization problem in (4.106). A simple application of the optimality property to

P̄ T�@

0 d@u
r

@µ
(µ; �@

0
,⇥@

0
, P , u) 2 col(P̄ T�@

0
) ✓ col(P̄ T�@)

leads to monotonicity. Finally, if a solution of P Tr@(P̄ P̄ Tu(µ), · , µ) = 0 is contained in the

columnspace of P̄ T�@ , i.e., P̄ T

@u

@µ
(µ) 2 col(P̄ T�@), the optimality property implies

�����P
Tr@

 
û(µ), P̄ P̄ T�@

d
@u

r

@µ
(µ; �@

, ⇥@

, P , û(µ)), µ

!�����
⇥@


����P

Tr@
✓
û(µ),

@û

@µ
(µ), µ

◆����
⇥@

= 0,

(4.111)

where û(µ) = P̄ P̄ Tu(µ) and
@û

@µ
(µ) = P̄ P̄ T

@u

@µ
(µ), which is precisely the interpolation property

in (4.110).

In addition to monotonicity and interpolation, conditions exist (Proposition 4.8) that guarantee

the two types of sensitivities introduced in this section, i.e., the sensitivities of the hyperreduced

model and the masked minimum-residual hyperreduced sensitivities, agree. These conditions also
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guarantee that the reconstruction of these sensitivities in the full space yield the same approximation

of the high-dimensional model sensitivities. Among these conditions is a required relationship (4.112)

between the trial (�) and test basis ( ) for the primal hyperreduced model, the sensitivity metric

(⇥), and the sensitivity basis (�@). The result of Proposition 4.8 is significant since it provides

conditions under which the easily computed masked minimum-residual hyperreduced sensitivities

(independent of second derivatives of r) match the desired hyperreduction sensitivities (guarantee

consistency of gradient computations).

Proposition 4.8. Consider a primal hyperreduced model defined by trial and test bases � and  ,

respectively, and mask P and a minimum-residual sensitivity hyperreduced model defined by basis

�@ , mask P , and metric ⇥@ . Suppose that either: (1) the primal solution of the hyperreduced model

exactly reconstructs the HDM solution on the sample mesh, i.e.,

P̄ Tu(µ) = P̄ T�u
r

(µ; �,  )

or (2) the masked test basis P T is constant. Then, for any u 2 RNu , the relationships

P T�@ = P T�

P T (u, µ) = ⇥@P T

@r

@u
(u, µ)P̄ P̄ T�@

(4.112)

guarantee the sensitivity of the primal hyperreduced model (�,  , P ) coincides with the solution of

the minimum-residual sensitivity hyperreduced model (�@

, ⇥@

, P )

@u
r

@µ
(µ; �,  , P ) =

d
@u

r

@µ
(µ; �@

, ⇥@

, P , �u
r

(µ; �,  , P )). (4.113)

Proof. Let P̄ T�u
r

= P̄ T�u
r

(µ; �,  , P ) denote the reconstructed primal solution of the projection-

based reduced-order model, restricted to the primal mesh. If either the primal solution is exact

(P Tr(P̄ P̄ T�u
r

, µ) = 0) or the test basis is constant, the general form of the reduced-order model

sensitivity equations in (4.101) reduces to the equation in (4.102), where all terms are evaluated at

the primal solution, i.e.,

�
P T (P̄ P̄ T�u

r

, µ)
�
T

@r
h

@u
h

(P̄ P̄ T�u
r

, µ)

�
@u

r

@µ
= �

�
P T (P̄ P̄ T�u

r

, µ)
�
T

@r
h

@µ
(P̄ P̄ T�u

r

, µ).

(4.114)

Conversely, the normal form of the minimum-residual sensitivity reduced-order model in (4.107)

reduces to

�
P T (P̄ P̄ T�u

r

, µ)
�
T

@r
h

@u
h

(P̄ P̄ T�u
r

, µ)

� d
@u

r

@µ
= �

�
P T (P̄ P̄ T�u

r

, µ)
�
T

@r
h

@µ
(P̄ P̄ T�u

r

, µ).

(4.115)

when the relationships in (4.112) are enforced. Thus, under the aforementioned conditions, the



CHAPTER 4. PROJECTION-BASED MODEL REDUCTION 104

governing equations for
@u

r

@µ
and

d
@u

r

@µ
are identical and the (unique) solutions must be equal, which

establishes (4.113).

4.2.6 Adjoint Formulation

The adjoint equations for the collocation-based hyperreduced model are derived using the optimiza-

tion procedure, outlined in Section 2.3.4, applied to the governing equation (P T )Tr
h

(P̄ P̄ T�u
r

, µ) =

0 and reduced quantity of interest f(�u
r

, µ). Consider the auxiliary optimization problem

minimize
u

r

2Rku
f(�u

r

, µ̂)

subject to (P T )Tr
h

(u
h

, µ̂) = 0
(4.116)

for a fixed µ̂ and the corresponding Lagrangian

L
r

(u
r

, �
r

) = f(�u
r

, µ̂)� �T

r

(P T )Tr
h

(P̄ P̄ T�u
r

, µ̂). (4.117)

by comparing this expression for the Lagrangian with that in (2.98), it is clear that the masked

HDM Lagrange multipliers are reconstructed from the reduced Lagrange multipliers as

� =  �
r

. (4.118)

The stationarity of the Lagrangian with respect to u
r

leads to the reduced adjoint equations

2

4
|M|X

j=1

(P Tr)
j

@

�
(P T )Te

j

�

@u
P̄ P̄ T�+ (P T )T

@r
h

@u
h

3

5�
r

= �T

@f

@u

T

(4.119)

where all terms are evaluated at the reconstructed primal solution, P̄ P̄ T�u
r

(µ; �,  , P ). For any

µ 2 RNµ , bases �,  , and mask P , the solution of the above equation is denoted �
r

(µ; �,  , P ).

The gradient of the quantity of interest is reconstructed as

rF
r

(µ) =
@f

@µ
(�u

r

(µ; �,  , P ), µ)�

�
r

(µ; �,  , P )T

2
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|M|X

j=1

(P Tr)
j

@

⇣
 Te

j

⌘

@µ
+ (P T )T

@r
h

@µ

3

5

(u

h

,µ)

(4.120)

where u
h

= P̄ P̄ T�u
r

(µ; �,  , P ), µ). In the special case where the primal solution is exact on

the mask, in the sense that r
h

(u
h

, µ) = 0, or the masked test basis is constant, the adjoint equations

in (4.119) reduce to 
(P T )T

@r
h

@u
h

�
T

�
r

= �T

@f

@u

T

(4.121)



CHAPTER 4. PROJECTION-BASED MODEL REDUCTION 105

and the gradient of the QoI becomes

rF
r

(µ) =
@f

@µ
(�u

r

(µ; �,  , P ), µ)� �
r

(µ; �,  , P )T

(P T )T

@r
h

@µ

�

(u

h

,µ)

(4.122)

In general, the term �T

@f

@u

T

requires O(N
u

) works and memory to evaluate. However, in many

applications f corresponds to an integral over a surface or small portion of the domain and therefore

@f/@u is sparse. Then this terms is exactly equal to �T

@f

@u

T

= (P̂ T�)T P̂ T

@f

@u

T

, where P̂ is the

subset of columns of the identity matrix that exactly restricts @f/@u to its nonzero entries and can

be computed without requiring large-scale operations. This is an important implementation detail;

however, for simplicity, the additional notation will not be continued.

In the special case where the primal hyperreduced model employs a Galerkin projection (P T =

P T�), the test basis is state- and parameter-independent and the adjoint equations in (4.119) or

(4.121) become 
(P T�)T

@r
h

@u
h

�
T

�
r

= �T

@f

@u

T

(4.123)

and the gradient of the QoI is

rF
r

(µ) =
@f

@µ
(�u

r

(µ; �, �, P ), µ)� �
r

(µ; �, �, P )T

(P T�)T
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h

@µ

�

(u

h

,µ)

(4.124)

In the special case of a LSPG projection, the adjoint equations in (4.119) become
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(4.125)

and the gradient of the QoI is

rF
r

(µ) =
@f

@µ
(�u

r

(µ; �,  , P ), µ)�

�
r

(µ; �,  , P )T

2

4
|M|X

j=1
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◆
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3
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,µ)
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(4.126)

The introduction and derivation of the masked minimum-residual hyperreduced adjoint model

will be deferred to future work. There are special considerations that rise when considering the

minimization problem

minimize
z

r

2Rku

���P Tr�(u, ��z
r

, µ)
���
⇥�

= minimize
z

r

2Rku

������P
T

@f

@u

T

+ P T

@r

@u
(u, µ)T��z

r

�����
⇥�

(4.127)

since the term P T

@r

@u
(u, µ)T��z

r

requires a separate restriction matrix P̂ (subset of the columns
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of the identity matrix) for the following identity to hold

P T

@r

@u
(u, µ)T�� = P T

@r

@u
(u, µ)T P̂ P̂ T�� (4.128)

and lead to operations independent of the large dimension N

u

. This is the exact type of imple-

mentation optimization discussed in Section 4.2.2 that lead to the e�cient computations with the

masked reduced Jacobian (no transpose)

P T

@r

@u
(u, µ)� = P T

@r

@u
(u, µ)P̄ P̄ T�. (4.129)

4.3 Construction of Reduced-Order Basis and Residual Mask

The present exposition on projection-based reduced-order models has focused on the formulation of

the governing equations that guarantee desirable properties for a fixed trial basis � and mask P ;

however, there has been no mention of the origin of these quantities, a process usually called training.

The specific training strategy will vary for the various applications encountered in Chapters 5–

6 and an in-depth discussion will be deferred to the appropriate chapter. This section details

commonalities between the training methods employed in those chapters to facilitate the discussion.

Additionally, a general discussion is provided on training concepts used to enforce conditions required

for Propositions 4.1, 4.2, 4.4 to hold.

A ubiquitous theme in all reduced-order model training algorithms considered in this document is

the method of snapshots [183]. This is the idea of building the reduced-order basis � from solutions,

or snapshots, of the high-dimensional model. In addition to building the basis from fully converged

solutions (individual time steps for unsteady problems [183] or steady states for steady problems),

unconverged nonlinear iterations [198], unconverged linear system iterates [198], sensitivities [87, 86,

32, 85, 52, 210, 198], and adjoint solutions [57, 74] have also been used. These various snapshots

are combined into the columns of a snapshot matrix with N

s

columns. This approach ensures the

reduced-order basis includes relevant, information-rich basis vectors that incorporate physics from

the underlying PDE and, in many cases, even a small reduced-order basis can result in an accurate

reduced-order model.

When the number of snapshots becomes large, it is desirable to apply a compression method

to retain most of the original information contained in the snapshots. Among the most popular

methods is the Proper Orthogonal Decomposition (POD), Algorithm 4, also known as the truncated

Singular Value Decomposition (SVD), Karhunen-Loève (KL) decomposition, and Principal Compo-

nent Analysis (PCA). POD possess the desirable property of ordering the potential basis vectors

according to energy, or importance with regard to reconstructing the snapshot matrix. Therefore the

reduced-order basis is taken as the first k
u

vectors, where k

u

is chosen based on the singular value

decay or naively according to a desired basis size. The latter approach is described in Algorithm 4

and the operation of applying POD to build a reduced-order basis � from the snapshot matrix X
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will be denoted � = POD(X).

Algorithm 4 Proper Orthogonal Decomposition

� = POD(X)

Input: Snapshot matrix X 2 RNu⇥k

s and reduced-order basis size k

u

Output: Reduced-order basis �
1: Compute the thin SVD of X: X = U⌃V T , where U =

⇥
u
1

u
2

· · · u
k

s

⇤

2: � =
⇥
u
1

u
2

· · · u
ku

⇤

POD is well-known to be susceptible to bias when there is substantial variation in the scale of

the columns of the snapshot matrix. This will occur, for example, when a heterogeneous collection

of snapshots are used, i.e., states and sensitivities, since the units of the columns will not be consis-

tent. The result is sub-optimal compression that favors snapshots with the largest size. Following

the work in [210], this is remedied by partitioning the heterogeneous snapshot matrix X into homo-

geneous snapshot matrices Y and Z according to X = [Y , Z]. Each homogeneous snapshot matrix

is optimally compressed using POD and the results are combined via concatenation to yield the

reduced-order basis, i.e., � = [POD(Y ), POD(Z)]. This algorithm, denoted � = PODH(Y , Z), is sum-

marized in Algorithm 5 and includes a final step that employs a QR factorization to orthogonalize the

basis. An alternate approach, known as Compact Proper Orthogonal Decomposition [32], to remove

the potential bias of POD, specifically when states and sensitivity snapshot are used, weights the

sensitivity snapshots according to the magnitude of parameter perturbations. The former approach

based on compression of homogeneous submatrices is preferred in this work due to its generality

in handling any types of snapshots, flexibility in handling more than two types of snapshots, and

optimality in compressing individual snapshot types (since the compression is POD-based).

Algorithm 5 Proper Orthogonal Decomposition for Heterogeneous Data

� = PODH(Y , Z)

Input: Heterogeneous snapshot matrix, X =
⇥
Y Z

⇤
and truncation sizes k

y

and k

z

Output: Reduced-order basis �
1: Compute the thin SVD of Y : Y = U

Y

⌃
Y

V T

Y

2: Compute the thin SVD of Z: Z = U
Z

⌃
Z

V T

Z

3: Form matrix of dominant singular vectors
4: W =

⇥
(u

Y

)
1

· · · (u
Y

)
k

y

(u
Z

)
1

· · · (u
Z

)
k

z

⇤

5: Orthogonalize columns of W via QR factorization, �R = W

Another desirable property that POD does not possess is the exact preservation of a particular

subset snapshots in the span of the reduced basis. The interpolation property of minimum-residual

reduced-order models motivates such a property. For some µ 2 RNµ , suppose X = [u(µ), X
2

]

where u(µ) is the exact solution of the high-dimensional model and X
2

contains other snapshots.

If u(µ) 2 span(�), the resulting (minimum-residual) reduced-order model will exactly recover this

solution (Proposition 4.1). This property will prove particularly important in Chapters 5–6, where

a certain level of accuracy is required at trust region centers. However, if POD is applied to X,
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u(µ) 62 span(�), in general, even if u(µ) 2 span(X). To enhance POD to exactly preserve a

subsets of the snapshots in the reduced subspace, consider the decomposition of the snapshots as

X = [X
1

, X
2

], where X
1

contains the snapshots to be preserved. POD compression is applied

only to the snapshot matrix X
2

and the reduced-order basis is defined as � = [X
1

, POD(X
2

)]. This

algorithm, denoted � = PODSP(X
1

, X
2

), is summarized in Algorithm 6 and includes a final step

that employs a QR factorization to orthogonalize the basis.

Algorithm 6 Proper Orthogonal Decomposition with Span Preservation

� = PODSP(X
1

, X
2

)

Input: Snapshot matrix X 2 RNu⇥k

s where X =
⇥
X

1

X
2

⇤
and truncation size k

x

Output: Reduced-order basis � such that span X
1

⇢ span �
1: Compute the thin SVD of X

2

: X
2

= U⌃V T , where U =
⇥
u
1

u
2

· · · u
k

s

⇤

2: W =
⇥
X

1

u
1

· · · u
k

x

⇤

3: Orthogonalize columns of W via QR factorization, �R = W

In many cases, heterogeneous snapshots are encountered and certain subsets of each homoge-

neous snapshot collection must be preserved in the span of the basis. For example, the minimum-

residual sensitivity reduced-order models of Section 4.1.2 exactly recover the exact sensitivities at

a parameter configuration µ 2 RNµ if u(µ) 2 span(�) and
@u

@µ
(µ) 2 span(�). In this situa-

tion, it is desirable to utilize both state and sensitivity snapshots and preserve the exact state and

sensitivity corresponding to parameter configuration µ. This will have important implications in

the context of the trust region method introduced in Chapter 5 that requires a certain level of

accuracy, in both the objective and gradient, at trust region centers. In such situations, it is de-

sirable to combine the basic enhancements to POD introduced in Algorithms 5 and 6. For this

purpose, decompose the heterogeneous snapshot matrix X into homogeneous snapshot matrices

Y and Z. Further decompose these snapshot matrices according to the subset that must be pre-

served in the reduced subspace, i.e., Y = [Y
1

, Y
2

] and Z = [Z
1

, Z
2

] where the columns of Y
1

and

Z
1

must be contained in the span of �. This yields the decomposition of the original snapshot

matrix as X = [Y
1

, Y
2

, Z
1

, Z
2

] and the basis is defined via POD-based compression to Y
2

and

Z
2

only, i.e., � = [Y
1

, Z
1

, POD(Y
2

), POD(Z
2

)] = [Y
1

, Z
1

, PODH(Y
2

, Z
2

)]. This algorithm, denoted

� = PODHSP(Y
1

, Y
2

, Z
1

, Z
2

), is summarized in Algorithm 7 and includes a final step that employs

a QR factorization to orthogonalize the basis.

At the core of POD, and all the variants introduced in this section, lies a singular value decom-

position, which remains among the most expensive matrix factorizations. In many large-scale PDE

applications, particularly time-dependent applications, the snapshot matrix that is passed to POD

for compression may have O(108) rows and O(103) columns, which requires a substantial amount of

computational resources and will be extremely time- and memory-intensive. To reduce the burden

of the large-scale SVD computation, a low-rank approximation of the singular value decomposition

[81] will be employed for the large-scale CFD problems encountered in Section 5.5.4. The random-

ized, low-rank SVD, summarized in Algorithm 8, computes the standard SVD of original matrix
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Algorithm 7 Proper Orthogonal Decomposition for Heterogeneous Data with Span Preservation

� = PODHSP(Y
1

, Y
2

, Z
1

, Z
2

)

Input: Heterogeneous snapshot matrix X =
⇥
Y Z

⇤
, where Y =

⇥
Y
1

Y
2

⇤
and Z =

⇥
Z

1

Z
2

⇤
,

and truncation sizes, k
y

and k

z

Output: Reduced-order basis � such that span Y
1

⇢ span � and span Z
1

⇢ span �
1: Compute the thin SVD of Y

2

: Y
2

= U
Y

⌃
Y

V T

Y

2: Compute the thin SVD of Z
2

: Z
2

= U
Z

⌃
Z

V T

Z

3: Form matrix of dominant singular vectors

W =
⇥
Y
1

Z
1

(u
Y

)
1

· · · (u
Y

)
k

y

(u
Z

)
1

· · · (u
Z

)
k

z

⇤

4: Orthogonalize columns of W via QR factorization, �R = W

projected into a low-dimensional subspace that is constructed through random linear combinations

of the matrix. Since a SVD computation scales linearly with the number of rows and quadratically

in the number of columns, a substantial performance improvement comes with performing the SVD

in the reduced space.

Another bottleneck encountered with all variants of POD is that even low-rank modifications to

the underlying snapshots, in general, requires re-computing the SVD from scratch. This is significant

since appending new snapshots to the snapshot matrix or re-centering the snapshot matrix cannot

necessarily re-use the previous singular factors. A series of papers by Brand [25, 26] changed this

landscape as they introduced a series of algorithms for low-rank updates to the SVD. This algorithm,

summarized in Algorithm 9 for the case of appending new snapshots to the snapshot matrix and

Algorithm 10 for the case for re-centering the snapshot matrix, enables the singular factors of the

original SVD to be re-used to compute the SVD of the low-rank update to the snapshot matrix. The

cost is mostly independent of operations that scale with the size of the original snapshot matrix.

Algorithm 8 Low-Rank Probabilistic SVD Approximation

U , ⌃, V = ProbSVD(X, k, q)

Input: A 2 Rm⇥n (usually n⌧ m), approximation rank k, and number of power iterations q
Output: Approximate SVD of A ⇡ U⌃VT

1: Generate n⇥ 2k Gaussian test matrix ⌦
2: Form Y = (AAT )qA⌦
3: Compute QR factorization of Y: Y = QR
4: Form B = QTA
5: Compute SVD of B = Ũ⌃VT

6: Set U = QŨ

This completes the discussion of the algorithms that will prove useful in defining the trial basis

� from snapshot data. Chapters 5–6 will provide specific training methods that collect snapshots

according to the requirements of the trust region-based optimization algorithm. This section closes

with a brief note on the construction of the mask P when collocation-based hyperreduction is

employed. The sample mesh P̄ will not be discussed since it is determined uniquely from the mask,
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Algorithm 9 Brand’s Algorithm for low-rank SVD updates: appending vector

Ū , ⌃̄, V̄ = BrandAppendSVD(U , ⌃, V , Y )

Input: Data matrix X 2 Rm⇥n of rank r, thin SVD of data matrix X = U⌃V T , and full-rank
matrix of vectors Y 2 Rm⇥k.

Output: SVD of updated data matrix:
⇥
X Y

⇤
= Ū⌃̄V̄ T

1: Compute M = UTY 2 Rr⇥k

2: Compute P̄ = Y �UM 2 Rm⇥k

3: Compute QR decomposition of P̄ = PR
A

, where P 2 Rm⇥k, R
A

2 Rk⇥k

4: Form K =


⌃ M
0 R

A

�
2 R(r+k)⇥(r+k)

5: Compute SVD of K = CSDT , where C,S,D 2 R(r+k)⇥(r+k)

6:

Ū =
⇥
U P

⇤
C ⌃̄ = S V̄ =


V 0
0 I

�
D

Algorithm 10 Brand’s Algorithm for low-rank SVD updates: translating columns

Ū , ⌃̄, V̄ = BrandTranslateSVD(U , ⌃, V , a)

Input: Data matrix X 2 Rm⇥n of rank r, thin SVD of data matrix X = U⌃V T , and desired
translation vector, a 2 Rm

Output: SVD of updated data matrix: X + a1T = Ū⌃̄V̄ T

1: Compute n = V T1, q = 1� V n, q = kqk
2

, and Q = 1

q

q

2: Compute m = UTa 2 Rr

3: Compute p = a�Um 2 Rm

4: Define r̂ 2 R and v 2 RN such that: p = r̂v where kvk
2

= 1

5: Form K =


⌃+mnT

qm
r̂n r̂q

�
2 R(r+1)⇥(r+1)

6: Compute SVD of K = CSDT , where C,S,D 2 R(r+1)⇥(r+1)

7:

Ū =
⇥
U v

⇤
C ⌃̄ = S V̄ =

⇥
V Q

⇤
D
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as discussed in Section 4.2.2. The mask is constructed according to the DEIM algorithm introduced

in [41] and generalized in [31, 198]. The variant introduced in [198] will be employed in this work

due to its proven robustness in handling vector-valued PDE solutions where the variables in each

component have di↵erent scales and the flexibility a↵orded by injecting expert knowledge, which

proved crucial in large-scale CFD applications [198].

4.4 Summary

With all of the ingredients for e�cient and optimal projection-based model reduction introduced in

Sections 4.1–4.3, this section provides an overview of the overall framework and makes important

connections between the various components that will be leveraged in Chapters 5–6. The general

form of projection-based reduced-order models was introduced in (4.3)

find u
r

2 Rku such that  Tr(�u
r

, µ) = 0. (4.130)

It is uniquely defined by a trial basis � and test basis  , which may be chosen arbitrarily and

independently, in general. In order to ensure the reduced-order model possesses the minimum-

residual property, the test and trial basis must be related to one another and the optimality metric

⇥ according to (4.14), i.e.,

 (u, µ) = ⇥
@r

@u
(u, µ)�. (4.131)

The minimum-residual property is a desirable since it guarantees the approximation generated by

the reduced-order model monotonically improves (in terms of the residual norm in some metric)

as the trial basis is expanded and exactly reconstructs training data. These properties are known

as monotonicity and interpolation (Proposition 4.1). The interpolation property requires u(µ) 2
col(�), where u(µ) is the solution of r( · , µ) = 0, which will be guaranteed using the span-preserving

variant of POD (PODSP in Algorithm 6). However, it will not be e�cient or even practical to

require the reduced-order model be interpolatory at every µ 2 RNµ . Instead, n interpolation points

{µ
1

, . . . , µ
n

} are selected and a snapshot matrix is constructed as

X =
h
u(µ

1

) · · · u(µ
n

)
i
. (4.132)

Additionally, let X 0 be any collection of primal snapshot to be used to construct the trial basis

whose columns will not necessarily be preserved in the span of the trial space. The trial basis is

then constructed as

� = PODSP(X, X 0). (4.133)

In Chapter 5, X will consist of the high-dimensional snapshot at the trust region center, i.e., u(µ
k

),

since conditions (3.14) and (3.15) require a prescribed level of accuracy at the center.

With the primal reduced-order model constructed, the sensitivity or adjoint methods introduced
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in Sections 4.1.2–4.1.3 can be used to derive the gradients of any reduced quantities of interest. How-

ever, it was shown that for general minimum-residual reduced-order models, these computations will

require second derivatives of the governing residual r, which are expensive to compute and rarely

available in large-scale PDE implementations. An alternative that will break discrete consistency,

i.e., the computed gradient of the reduced quantity of interest will not match the true gradient of

the quantity, is to employ minimum-residual reduced-order models directly for the high-dimensional

sensitivity and adjoint equations. Despite breaking discrete consistency, these quantities are com-

putable since they do not require second derivatives of r and also possess the minimum-residual

properties of monotonicity and interpolation.

The minimum-residual sensitivities, defined in (4.28), are uniquely defined through the specifi-

cation of a sensitivity basis �@ and optimality metric ⇥@ , i.e.,

find
d
@u

r

@µ
2 Rku⇥Nµ such that

✓
@r

@u
�@

◆
T

⇥@

✓
@r

@u
�@

◆ d
@u

r

@µ
= �

✓
@r

@u
�@

◆
T

⇥@

@r

@µ
(4.134)

where all terms are evaluated at the (reconstructed) solution of the primal reduced-order model

�u
r

(µ; �,  ). Proposition 4.3 guarantees these two choices for the reduced sensitivities match

when the primal solution is exact or the test basis is constant, provided the relationships in (4.35)

hold, i.e.,

�@ = �

 (u, µ) = ⇥@

@r

@u
(u, µ)�@

,

(4.135)

which will be enforced in the remainder. As with the primal ROM, the minimum-residual property is

desirable since it ensures the reduced sensitivity model is monotonic and interpolatory. Interpolation

requires
@u

@µ
(µ) 2 col(�), where

@u

@µ
(µ) is the solution of r@(u(µ), · , µ) = 0 and the requirement

�@ = � has been imposed. This condition, along with the requirement for interpolation of the

primal solution (u(µ) 2 col(�)), will be enforced using the heterogeneous span-preserving variant

of POD. Define the sensitivity snapshot matrix

Y =


@u

@µ
(µ

1

) · · · @u

@µ
(µ

n

),

�
(4.136)

where {µ
1

, . . . ,µ
n

} are the interpolation points previously defined, and let Y 0 be any other collection

of sensitivity snapshots. Then, the trial basis is defined according to

� = PODHSP(X, X 0
, Y , Y 0). (4.137)

This guarantees the primal and sensitivity reduced-order models will be interpolatory if they both

possess the minimum-residual property since u(µ
i

) 2 col(�) and
@u

@µ
(µ

i

) 2 col(�). In Chapter 5, X

and Y will consist of the high-dimensional primal and sensitivity snapshots at the trust region center,

i.e., u(µ
k

) and
@u

@µ
(µ

k

), since conditions (3.14) and (3.15) require a prescribed level of accuracy at
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the center.

The minimum-residual adjoint reduced-order model, defined in (4.56), is uniquely defined through

the specification of an adjoint basis �� and optimality metric ⇥�, i.e.,

find �̂
r

2 Rku such that

 
@r

@u

T

��

!
T

⇥�

 
@r

@u

T

��

!
�̂
r

=

 
@r

@u

T

��

!
T

⇥�

@f

@u

T

(4.138)

where all terms are evaluated at the (reconstructed) solution of the primal reduced-order model

�u
r

(µ; �,  ). Proposition 4.5 guarantees these two choices for the reduced adjoints match when

the primal solution is exact or the test basis is constant, provided the relationships in (4.63) hold,

i.e.,

�� =  =


⇥�

@r

@u
(u, µ)T

��1

� (4.139)

which will be enforced in the remainder. As with the primal ROM, the minimum-residual property

is desirable since it ensures the reduced adjoint model is monotonic and interpolatory. Interpolation

requires �(µ) 2 col( ) where �(µ) is the solution of r�(u(µ), · , µ) = 0 and the requirement

�� =  has been imposed. Due to the relationship between  , ��, �, and ⇥� imposed in (4.63)

from Proposition 4.5, the following equivalence holds

�(µ) 2 col( ) () ⇥�

@r

@u
(u(µ), µ)T�(µ) 2 col(�) (4.140)

This condition, along with the requirement for interpolation of the primal solution (u(µ) 2 col(�)),

will be enforced using the heterogeneous span-preserving variant of POD to construct the trial basis

�. Define the (modified) adjoint snapshot matrix

Z =


⇥�

@r

@u
(u(µ

1

), µ
1

)T�(µ
1

) · · · ⇥�

@r

@u
(u(µ

n

), µ
n

)T�(µ
n

)

�
(4.141)

where {µ
1

, . . . ,µ
n

} are the interpolation points previously defined, and let Z 0 be any other collection

of (modified) adjoint snapshots. Then, the trial basis is defined according to

� = PODHSP(X, X 0
, Z, Z 0). (4.142)

This guarantees the primal and adjoint reduced-order models will be interpolatory if they both

possess the minimum-residual property since u(µ
i

) 2 col(�) and �(µ
i

) 2 col( ). In Chapter 5, X

and Y will consist of the high-dimensional primal and adjoint snapshots at the trust region center,

i.e., u(µ
k

) and �(µ
k

), since conditions (3.14) and (3.15) require a prescribed level of accuracy at

the center.

There may be cases where it is desirable for the reduced-order model to be monotonic and

interpolatory in the primal, sensitivity, and adjoint states. The logical extension of the previous de-

velopment employs a minimum-residual reduced-order model for the primal, sensitivity, and adjoint
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and defines the trial basis according to

� = PODHSP(X, X 0
, Y , Y 0

, Z, Z 0) (4.143)

where the above is the obvious extension in Algorithm 7 to three types of snapshots.

Before closing this section, the abstract discussion regarding minimum-residual reduced-order

models is made concrete by considering the special case of a Galerkin and LSPG projection. Reduced-

order models based on a Galerkin projection take the test basis to be the same as the trial basis

 (u, µ) = �

for any u 2 RNu and µ 2 RNµ , rendering the test basis constant and immediately qualifying such

reduced-order models for the results of Propositions 4.3 and 4.5. Galerkin reduced-order models

possess the minimum-residual property in the metric

⇥ =
@r

@u
(�u

r

(µ; �, �), µ)�T

, (4.144)

provided the PDE Jacobian is symmetric, positive definite. Given this relation between test and

trial basis and requirement that the PDE Jacobian is SPD, the minimum-residual sensitivity and

adjoint reduced-order models follow from the choices

�@ = �� = � ⇥@ = ⇥� =
@r

@u
(�u

r

(µ; �, �), µ)�T (4.145)

This relations also ensure (4.35) and (4.63) of Propositions 4.3 and 4.5 are satisfied, which implies

the true Galerkin sensitivities and adjoint match the minimum-residual counterparts. In contrast,

reduced-order models based on the Least-Squares Petrov-Galerkin projection take the test basis

according to

 (u, µ) =
@r

@u
(u, µ)� (4.146)

for any u 2 RNu and µ 2 RNµ , resulting in a non-constant test basis and the results of Proposi-

tions 4.3 and 4.5 will only hold when the primal solution of the reduced-order model is exact, i.e.,

u(µ) = �u
r

(µ; �,  ). The LSPG reduced-order model possesses the minimum-residual property

by construction in the metric ⇥ = I and therefore applies in the most general case, i.e., without

requiring SPD Jacobians. Given this relationship between the test and trial basis and the following

requirements from Propositions 4.3 and 4.5

�@ = � �� =  , (4.147)

the minimum-residual sensitivity and adjoint reduced-order models for the LSPG projection follow
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from the choices

⇥@ = I ⇥� =

"
@r

@u

T

@r

@u

#�1

(�u

r

(µ;�, ),µ)

. (4.148)

The above relationship satisfy all conditions in Propositions 4.3 and 4.5, thereby ensuring the true

and minimum-residual sensitivities and adjoints agree when the primal solution is exact.

Most of the developments detailed in this section extend to the case where collocation-based

hyperreduced models are used in place of the pure projection-based reduced-order models. In par-

ticular, the relationship between the various bases and optimality metrics, when imposed only on

the hyperreduction mask, lead to a weaker form of the minimum-residual property, i.e., the masked

minimum-residual property (Definition 4.2). This ultimately leads to a weaker form of monotonicity

and interpolation that only holds under stricter assumptions on solutions of the discrete PDE. In this

work, the mask P is constructed solely from the primal reduced-order basis � and problem-specific

information following the approach in [198].



Chapter 5

Optimization via Model Reduction

and Residual-Based Trust Regions

With the globally convergent, multifidelity trust region method introduced in Chapter 3 and projection-

based reduced-order models introduced in Chapter 4, these technologies are combined to yield an

e�cient algorithm for deterministic PDE-constrained optimization. The approximation model will

be taken as the quantity of interest evaluated at the reconstructed reduced-order model solution and

residual-based error bounds (Appendix B) will define the objective and gradient error bounds that

are required for global convergence of the multifidelity trust region method. In addition to exploiting

inexpensive reduced-order (hyperreduced) models in the trust region subproblem, the flexible mul-

tifidelity trust region framework of Section 3.1.1 allows for several other opportunities for e�ciency.

First, the objective accuracy condition (3.14), restated here for convenience,

#

k

(µ
k

)  
#

�
k



#

2 (0, 1),

implies the reduced-order model does not need to be exact at the trust region centers. This is

exploited by using partially converged solutions to build the reduced-order basis. Similarly, the

gradient accuracy condition (3.15)

'

k

(µ
k

)  
'

min{krm
k

(µ
k

)k , �
k

} 

'

> 0

allows for the use of partially converged sensitivity or adjoint snapshots. Partially converged pri-

mal and dual solutions can substantially reduce the burden of collecting snapshots, particularly in

large-scale applications encountered in computational fluid dynamics that require slowly converging

nonlinear solvers such as pseudo-transient continuation [104, 105] for robust convergence behavior.

Partially converged primal solutions are also used to e�ciently evaluate the performance of a trust

region subproblem using the concepts outlined in Section 3.1.1. Sections 5.2 and 5.3 detail the use

116
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of partially converged solutions for these purposes. While most of this chapter focuses on approxi-

mation models based on projection-based reduced-order models without hyperreduction, Section 5.4

discusses the extension to collocation-based hyperreduced models. Finally, Section 5.5 provides sev-

eral numerical examples from various computational mechanics disciplines, including the large-scale

industrial demonstration of shape optimization of a full aircraft configuration, to study the proposed

approach.

5.1 Residual-Based Trust Region Method

Consider the fully discrete partial di↵erential equation r(u, µ) = 0, where u 2 RNu is the state

vector and µ 2 RNµ are the design or control parameters and f : RNu ⇥ RNµ ! R is a quantity of

interest to be optimized. The reduced-space approach to PDE-constrained optimization (Section 2.3)

considers the optimization problem

minimize
µ2RNµ

F (µ), (5.1)

where F (µ) = f(u(µ), µ) and u(µ) is the solution of r( · , µ) = 0. Due to the large expense associ-

ated with the evaluation of F (µ) and rF (µ), the multifidelity trust region method and projection-

based model reduction techniques are combined to e�ciently solve (5.1). The multifidelity trust

region method of Chapter 3 was completely specified in terms of the approximation model m
k

(µ),

the objective error indicator #
k

(µ) that satisfies (3.12), the gradient error indicator '
k

(µ) that sat-

isfies (3.13), and the inexact objective model  
k

(µ) and error indicator ✓
k

(µ) that satisfy (3.21).

Therefore the focus of this section is the specification of these functions using projection-based

reduced-order (hyperreduced) models and error indicators from Chapter 4 and Appendix B, respec-

tively. From the overview of the multifidelity trust region method provided in Section 3.1.1, there

are two other critical pieces required to fully prescribe the method such that global convergence is

guaranteed: a trust region subproblem solver that ensures the fraction of Cauchy decrease (A.9)

is obtained and a refinement mechanism for m

k

(µ),  
k

(µ) and the associated error indicators to

ensure the error conditions (3.14), (3.15), (3.22) are met. Due to the significant cost separation

between reduced-order (hyperreduced) models and the high-dimensional model, the trust region

subproblem is solved exactly to guarantee the FCD is satisfied. The error conditions will be met

through construction of the reduced-order basis, which will be detailed in Section 5.1.2.

5.1.1 Multifidelity Trust Region Ingredients

At the kth iteration, the approximation model based on projection-based reduced-order models takes

the form

m

k

(µ) = f(�
k

u
r

(µ; �
k

,  
k

), µ), (5.2)

where �
k

is the reduced-order basis used at the kth iteration of the trust region method—details

pertaining to the construction of �
k

will be deferred to Section 5.1.2 as they will be intimately

linked to the error conditions in (3.14), (3.15) and therefore the global convergence theory—and
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u
r

(µ; �
k

,  
k

) is the solution of the reduced-order model

 T

k

r(�
k

u
r

, µ) = 0

with test basis  
k

. The test basis is chosen according to (4.14) to ensure the reduced-order model

possesses the minimum-residual property, which in turn ensures it is monotonic and interpolatory.

The gradient of the model in (5.2) will be computed using the exact reduced sensitivity or adjoint

method if the test basis is constant. This ensures the gradients can be computed without requiring

second derivatives of r and will be consistent with the corresponding function. The minimum-

residual variants will be used if the test basis is not constant; however, the requirements between

the sensitivity/adjoint basis and optimality metric in (4.35) and (4.63) will be enforced to ensure

the minimum-residual gradients match the true gradients at any point where the primal reduced-

order model solution is exact. In Section 5.1.2, the reduced-order basis �
k

will be constructed such

that the primal and sensitivity/adjoint reduced-order model is exact at the trust region center µ
k

.

Following this discussion, the construction of the trial basis �
k

and selection of minimum-residual

optimality metrics is su�cient to completely define the remaining ingredients of the reduced-order

model, i.e., the test basis  
k

, sensitivity basis �@

k

= �
k

, and adjoint basis ��

k

=  
k

.

There are two natural choices for the trust region constraint function. The first is the standard

Euclidean distance

#

k

(µ) := kµ� µ
k

k

which leads to a traditional trust region algorithm and recovers a method similar to the original Trust

Region Proper Orthogonal Decomposition (TRPOD) method [10]. As discussed in Section 3.1.1, this

choice automatically satisfies requirements in (3.12) and (3.14), provided a gradient error indicator

'

k

(µ) is chosen that satisfies (3.13) and (3.15). Another choice for the trust region constraint that

was proposed in the author’s previous research [210], and earlier in [208] in the context of linear

PDEs, is the norm of the residual evaluated at the reconstructed ROM solution

#

k

(µ) := kr(�
k

u
r

(µ
k

; �
k

,  
k

), µ
k

)k⇥
k

+ kr(�
k

u
r

(µ; �
k

,  
k

), µ)k⇥
k

, (5.3)

which leads to an error-aware trust region. With this choice of #
k

(µ), the bound in (3.12) is verified

as follows

|F (µ
k

)� F (µ) +m

k

(µ)�m

k

(µ
k

)|  |F (µ
k

)�m

k

(µ
k

)| + |F (µ)�m

k

(µ)|

 ⇣ (kr(u, µ
k

)k+ kr(u, µ)k)

 ⇣̂
�
kr(u, µ

k

)k⇥
k

+ kr(u, µ)k⇥
k

�

= ⇣̂#

k

(µ),

where u = �
k

u
r

(µ
k

; �
k

,  
k

), ⇣ > 0 is an arbitrary constant, and ⇣̂ =
���⇥�1/2

k

��� ⇣ is a related

constant. The second inequality uses Lemma B.4 that bounds errors in quantities of interest by
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the primal residual norm and the third inequality invokes the identity kxk =
���⇥�1/2

k

x
���
⇥

k

and the

triangle inequality (or simply norm equivalence). The function used for the gradient error indicator

is also a residual-based quantity, but the specific form depends on whether the sensitivity or adjoint

method is employed in the gradient computation.

Remark. Some of the optimality metrics—⇥, ⇥@ , ⇥�— introduced in this document are parameter-

dependent. This is not an issue in Chapter 4 since the residual minimization problem was only posed

over the state space for a fixed parameter. In the context of PDE-constrained optimization, the met-

ric must be valid over the entire state and parameter space. Therefore, all parameter-dependent

metrics are fixed at the trust region center µ
k

. For a Galerkin projection, the optimality metrics

become

⇥
k

=
@r

@u
(�

k

u
r

(µ
k

; �
k

, �
k

), µ
k

)�T

⇥@

k

=
@r

@u
(�

k

u
r

(µ
k

; �
k

, �
k

), µ
k

)�T

⇥�

k

=
@r

@u
(�

k

u
r

(µ
k

; �
k

, �
k

), µ
k

)�T

.

For a LSPG projection, the optimality metrics become

⇥
k

= I

⇥@

k

= I

⇥�

k

=

"
@r

@u

T

@r

@u

#�1

(�
k

u

r

(µ

k

;�
k

, 
k

),µ

k

)

.

In this work, the minimum-residual sensitivity and adjoint models are used to compute (approx-

imate) gradients of the projection-based reduced-order model that comprises the approximation

model. For the sensitivity method, the approximate gradient, denoted [rm
k

(µ), is computed ac-

cording to

[rm
k

(µ) = g@

 
u, �@

k

d
@u

r

@µ
(µ; �@

k

, ⇥@

k

, u), µ

!
, (5.4)

where
d
@u

r

@µ
is the solution of the minimum-residual sensitivity reduced-order model in (4.28). For

the adjoint method, the approximate gradient is computed according to

[rm
k

(µ) = g�(u, ��

k

�̂(µ; ��

k

, ⇥�

k

, u), µ). (5.5)

where �̂
r

is the solution of the minimum-residual adjoint reduced-order model in (4.56). In both of

the above expressions, u = �
k

u
r

(µ; �
k

,  
k

) is the solution of the primal reduced-order model. The

relationships in (4.35) and (4.63) between �,  , �@ , ��, ⇥@

k

, and ⇥�

k

are employed to guarantee,

by Propositions 4.3 and 4.5, that [rm
k

(µ) = rm
k

(µ) whenever  
k

is constant, i.e., a Galerkin

projection, or the primal solution is exact. Unfortunately, unless one of these criteria is satisfied

[rm
k

(µ) 6= rm
k

(µ), which may cause convergence issues for the trust region subproblem. To ensure
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these subproblems terminate, a maximum number of iterations is imposed on the solver, which may

slightly slow convergence of the overall trust region method. Once the optimization algorithm reaches

the vicinity of a local minima (of F (µ)), the reduced-order model is su�ciently accurate at (and

near) the new trust region center and the primal reduced-order model solution will be su�ciently

accurate that the two gradients closely match.

For sensitivity-based gradient computations, the gradient error indicator is

'

k

(µ) := ↵

1

kr(u, µ)k⇥
k

+ ↵

2

�����r
@

 
u, �@

k

d
@u

r

@µ
(µ; �@

k

, ⇥@

k

, u), µ

!�����
⇥@

k

(5.6)

where u = �
k

u
r

(µ; �
k

,  
k

) is the reconstructed primal solution and
d
@u

r

@µ
is the solution of the

minimum-residual reduced sensitivity equations (4.28). The primal trial basis �
k

is also used as

the sensitivity basis �@

k

to ensure the minimum-residual sensitivities agree with the true reduced-

order model sensitivities when the primal solution is exact or  
k

is constant (Proposition 4.3). For

adjoint-based gradient computations, the gradient error indicator is

'

k

(µ) := ↵

1

kr(u, µ)k⇥
k

+ ↵

2

���r�
⇣
u, ��

k

�̂
r

(µ; ��

k

, ⇥�

k

, u), µ
⌘���
⇥�

k

(5.7)

where u = �
k

u
r

(µ; �
k

,  
k

) is the reconstructed primal solution and �̂
r

is the solution of the

minimum-residual reduced adjoint equations (4.56). The primal test basis  
k

is used as the adjoint

basis ��

k

to ensure the minimum-residual adjoints agree with the true reduced-order model adjoints

when the primal solution is exact or  
k

is constant (Proposition 4.5). In (5.6) and (5.7), ↵
1

, ↵

2

> 0

are user-defined constants intended to balance the contribution of the primal and dual residuals.

From Lemma B.7 and B.8, there exists a constant ⇠ > 0 such that

���rF (µ
k

)� [rm
k

(µ
k

)
���  ⇠'

k

(µ
k

), (5.8)

holds regardless of the values of ↵
1

and ↵
2

(provided they are positive) for both the sensitivity and

adjoint form of the gradient error indicator. An error bound of this form is a critical ingredient in

the global convergence theory of the proposed trust region method, as well as in related methods

[93, 108].

Remark. The objective decrease condition (3.14) introduced in the proposed generalized trust region

method is considerably weaker than the conditions required for previous methods. The work by

Alexander introduced a trust region framework to manage the use of general approximation models to

solve constrained and unconstrained optimization problems with expensive optimization functionals

[4, 6, 5]. The trust region model management framework required the approximation model possess

first-order consistency at trust region centers

m

k

(µ
k

) = F (µ
k

) rm
k

(µ
k

) = rF (µ
k

). (5.9)
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The Trust Region Proper Orthogonal Decomposition (TRPOD) method introduced in [10] and studied

extensively thereafter [57, 170, 186], removed the zeroth-order condition entirely and weakened the

first-order condition by replacing it with the Carter condition (see discussion to follow). Unlike the

present work, TRPOD strictly employed a tradition trust region constraint of the form kµ� µ
k

k 
�

k

. The work in [208] generalized the TRPOD method to an error-aware trust region that required

a pointwise error bound on the objective at the trust region center (3.8), which is a considerably

stronger requirement than the objective decrease condition (3.14), as discussed in Chapter 3.

Remark. The gradient condition (3.15) leveraged in the proposed generalized trust region method

was originally proposed in [93] and extensively used in [108, 109, 92, 166]. It is substantially more

flexible than the Carter condition [35]

krF (µ
k

)�rm
k

(µ
k

)k  ⌘ krm
k

(µ
k

)k ⌘ 2 (0, 1) (5.10)

that was used in the original TRPOD method [10] and a related method proposed that uses generalized

trust regions [208]. Global convergence is predicated on construction of a model that satisfies this

bound with any value of ⌘ that satisfies 0 < ⌘ < 1. Since global convergence relies critically on

value of ⌘ being in this range, it does not permit the use of error indicators since they are only

bounds when multiplied by an arbitrary constant. Therefore, rF (µ
k

) must be computed along with

rm
k

(µ
k

) corresponding to an increasingly refined basis until (5.10) is met.

An opportunity for e�ciency a↵orded by the flexible trust region framework introduced in Sec-

tion 3.1.1 is the use of an approximation model to compute the ratio of actual-to-predicted ratio,

⇢

k

. The true expression for ⇢
k

can be replaced with

⇢

k

=
 (µ

k

)�  (µ̂
k

)

m

k

(µ
k

)�m

k

(µ̂
k

)
(5.11)

where  
k

: RNµ ! R is an approximation model that satisfies
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)� F (µ̂
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(µ̂
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)�  
k
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)|  �✓
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(µ̂
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), r
k

},
(5.12)

without destroying global convergence of the overall algorithm. In (5.12), � > 0 is an arbitrary

constant, r
k

! 0 is a forcing sequence, ⌘ < min{⌘
1

, 1 � ⌘
2

}, and 0 < ⌘

1

< ⌘

2

< 1 and ! 2 (0, 1)

are algorithmic constant. The error bound in (5.12) is identical to the required relationship between

m

k

(µ) and #
k

(µ) in (3.12). Thus, a natural and e�cient choice is

 

k

(µ) = m

k

(µ) and ✓

k

(µ) = #

k

(µ), (5.13)

which implies
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= 1. (5.14)
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Therefore, if the error condition

#
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k

(µ̂
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!

k
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)  ⌘min{m
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(µ
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)�m
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(µ̂
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), r
k

} (5.15)

is satisfied for the reduced-order basis used during the kth iteration, the step can automatically

be accepted and trust region radius increased without referring to the high-dimensional model. If

this condition is not satisfied, the exact expression for ratio of actual-to-predicted reduction (3.9) is

used, i.e.,  
k

(µ) = F (µ) and ✓
k

(µ) = 0. Section 5.3 introduces another choice for  
k

and ✓
k

that

leverages partially converged solutions for enhanced e�ciency.

The choice of objective and gradient error indicators in (5.3) and (5.6), (5.7) provides a strong

connection to the minimum-residual theory of Chapter 4 since the norms are taken to exactly coincide

with the optimality metrics defining the minimum-residual reduced-order model. As a result, the

optimality property and monotonicity hold (Propositions 4.1, 4.2, 4.4). Optimality implies that

#

k
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k

)  2 kr(�
k

x, µ
k

)k⇥
k

(5.16)

for any x 2 Rku . A similar statement holds for '
k

(µ)
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for any y, z 2 Rku and w 2 Rku⇥Nµ . Notice that this bound requires the sensitivity and adjoint

residual to be defined (linearized) about the primal reduced-order model solution, i.e., �
k

uk

r

(µ).

Monotonicity means that hierarchically refining �
k

can only reduce #(µ), provided⇥ is independent

of �
k

. The same statement does not hold for '
k

(µ) since monotonicity, as defined in Proposition 4.2,

4.4 requires linearization about a fixed primal solution and hierarchically refining either �@

k

or ��

k

.

Given the relation between �
k

, �@

k

, and ��

k

in (4.35) and (4.63), it is impossible to refine �@

k

or

��

k

without also modifying �
k

and therefore changing the primal reduced-order model solution (the

linearization point). For these reasons, the choice of #
k

(µ) and '
k

(µ) in (5.3) and (5.6), (5.7) are

highly desirable. On the other hand, these norms may be di�cult to compute if the metric requires

computation of the Jacobian of r or its inverse, which will be the case for Galerkin reduced-order

models. In such cases, it is desirable to simply use the I-norm to define all terms in #

k

(µ) and

'

k

(µ), i.e.,
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since the norms are trivial to evaluate given the corresponding residual. Fortunately for the case
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of LSPG-based reduced-order models, the primal and sensitivity optimality metrics are taken as

identity (Sections 4.1.1 and 4.1.2) and the definitions of #
k

(µ) and '
k

(µ) in (5.3)-(5.7) and (5.18)

agree. However, even when LSPG is used, the adjoint optimality metric is not the identity matrix

(Section 4.1.3). Furthermore, note that the interpolation property of minimum-residual reduced-

order models does not depend on the metric used in the residual norm, due to the equivalence

of norms in finite dimensions, i.e., for the definition of #
k

(µ) in (5.3) or (5.18), #
k

(µ) = 0 if

u(µ) 2 col(�
k

), and similarly for '
k

(µ). This implies that the choice of #
k

(µ) and '

k

(µ) still

possesses this critical property that will be used in the next section. Finally, due to the equivalence

of norms in finite dimensions, the bounds in (3.12) and (3.13) will still hold (with di↵erent constants)

and therefore the choice of #
k

(µ) and '
k

(µ) in (5.18) will not destroy global convergence.

5.1.2 Basis Construction via Proper Orthogonal Decomposition and the

Method of Snapshots

The use of reduced-order models in the context of optimization has predominantly employed an

o✏ine-online procedure [17, 149, 173] where expensive operations involving the HDM are performed

in the o✏ine phase to build the reduced-order basis �, i.e., train the reduced-order model, and

the inexpensive reduced-order model is employed in the online optimization phase. A number of

drawbacks to this approach exist, the most critical ones being that global convergence can only

be established for relatively simple partial di↵erential equations and it is di�cult to train a robust

ROM in a high-dimensional parameter space. TRPOD [10] was among the first methods to break

the o✏ine-online barrier and guarantee global convergence in a general setting. In TRPOD and the

many variants to follow [57, 1, 186], the reduced-order basis is constructed during the optimization

procedure such that conditions on the objective and gradient accuracy at trust region centers are

met, thereby avoiding the issue of sampling in possibly high-dimensional parameter spaces. This is

also the approach taken here.

For the remainder of this chapter, only the residual-based constraint function is considered. From

the previous section, the choice of the reduced-order model approximation m

k

(µ) and residual-based

error indicators #
k

(µ) and '
k

(µ) satisfy the error bounds in (3.12), (3.13), regardless of the choice

of reduced-order basis. However, the accuracy criterion in (3.14) and (3.15)
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depend critically on the choice of reduced-order basis.

At each iteration k, the reduced-order bases �
k

, �@

k

, ��

k

are constructed to ensure

u(µ
k

) 2 col(�
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)
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@µ
(µ
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) 2 col(�@

k

) �(µ
k

) 2 col(��

k

). (5.20)
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The interpolation property of minimum-residual reduced-order models ensures the reconstructed so-

lutions exactly recover the high-dimensional counterparts. In turn, this ensures #
k

(µ
k

) = '

k

(µ
k

) = 0

and therefore the error conditions (3.14), (3.15) are trivially satisfied and global convergence is

guaranteed. As discussed in the previous section, the sensitivity and adjoint bases are chosen in

accordance with Proposition 4.3 and 4.5, i.e., �@

k

= �
k

and ��

k

=  
k

, and the requirements in

(5.20) reduce to
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The condition between the test basis 
k

and adjoint optimality metric⇥� required in Proposition 4.5

reduces (5.21) to
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(5.22)

Remark. In the case of a Galerkin projection (for problems with SPD Jacobians) with adjoint

optimality metric ⇥� =
@r

@u
(�u

r

(µ; �, �))�T , the adjoint snapshots reduce to

⇥�(u(µ), µ)
@r

@u
(u(µ), µ)T�(µ) = �(µ).

In the case of a LSPG projection with adjoint optimality metric ⇥� =

"
@r

@u

T

@r

@u

#�1

(�u

r

(µ;�, ),µ)

,

the adjoint snapshots reduce to

⇥�(u(µ), µ)
@r

@u
(u(µ), µ)T�(µ) =

@r

@u
(u(µ), µ)�1�(µ).

The above requirements reveal the nature of the snapshots that should be used in the construction

of the trial basis �
k

. In practice, sensitivities and adjoints are rarely required simultaneously.

Usually the sensitivity method is employed when the number of constraints is larger than the number

of optimization variables and vice versa for the adjoint method. To generalize the notation such

that the sensitivity method and adjoint method can be considered simultaneously, define v(µ) as the

sensitivity or adjoint state, depending on which method is used to compute gradients of quantities

of interest, i.e.,

v(µ) =

8
><

>:

@u

@µ
(µ) sensitivity method

�(µ) adjoint method
(5.23)
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and let v̂(µ) denote the corresponding snapshot, i.e.,

v̂(µ) =

8
><

>:

@u

@µ
(µ) sensitivity method

⇥�(u(µ), µ)
@r

@u
(u(µ), µ)T�(µ) adjoint method.

(5.24)

With this notation, the requirements in (5.22) are weakened to

u(µ
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) 2 col(�
k

) v̂(µ
k

) 2 col(�
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) (5.25)

while still guaranteeing #
k

(µ
k

) = '

k

(µ
k

) = 0 where it is understood that '
k

(µ) corresponds to (5.6)

if the sensitivity method is employed and (5.7) for the adjoint method. The conditions in (3.14)

and (3.15) will be guaranteed using the heterogeneous span-preserving variant of POD (Section 4.3).

Define snapshot matrices at iteration k consisting of u(µ) and v̂(µ) at the trust region centers of

all previous iterations, i.e.,

U
k

=
h
u(µ

0

) · · · u(µ
k�1

)
i

V̂
k

=
h
v̂(µ

0

) · · · v̂(µ
k�1

)
i
.

(5.26)

and define the reduced-order basis as

�
k

= PODHSP(u(µ
k

), U
k

, v̂(µ
k

), V̂
k

). (5.27)

where PODHSP is defined in Algorithm 7. By construction, the conditions in (3.14) and (3.15) are

satisfied since u(µ
k

) and v̂(µ
k

) are preserved in the columnspace of �
k

, which implies #
k

(µ
k

) =

'

k

(µ
k

) = 0 and global convergence is guaranteed. Even though the in the information in U
k

and

V
k

is not necessarily useful in satisfying the trust region error conditions, i.e., the information in

u(µ
k

) and v(µ
k

) is su�cient to do so, it provides the reduced-order model with additional fidelity,

which is useful in improving its robustness away from µ
k

.

Remark. There may be instances where the reduced-order basis defined at iteration k�1 is su�cient

to satisfy the error conditions (3.14), (3.15) at iteration k, i.e.,

#

k�1

(µ
k

)  
#

�
k

'

k�1

(µ
k

)  
'

min{krm
k�1

(µ
k

)k , �
k

}.
(5.28)

This is likely to occur when the initial trust region radius �
0

is chosen too small. In this situation,

there is no need to update the reduced-order basis and the same model and error indicators are used,

i.e.,

m

k

(µ) := m

k�1

(µ) #

k

(µ) := #

k�1

(µ) '

k

(µ) := '

k�1

(µ). (5.29)

This choice saves queries to the expensive high-dimensional model and still guarantees global con-

vergence when (5.28) is satisfied.
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As written, the above approach to compute �
k

requires the singular value decomposition of the

snapshot matrices U
k

and V
k

that have an increasing number of columns. This quickly becomes

prohibitively expensive since the cost of the SVD scales quadratically in the number of columns [75].

However, the snapshot matrices satisfy the simple relation

U
k

=
h
U

k�1

u(µ
k�1

)
i

V̂
k

=
h
V̂

k�1

v̂(µ
k�1

)
i
,

(5.30)

and therefore the thin SVD updates in Algorithm 9 can be used to compute the SVD of U
k

from the

SVD ofU
k�1

. Only the QR decomposition of the compressed snapshot matrices must be recomputed

at each iteration.

Remark. For time-dependent problems, exact preservation of u(µ
k

) in the column space of �
k

may

be unrealistic since u(µ
k

) corresponds to an entire time history. In this case, POD (Algorithm 4)

can be applied to u(µ
k

) and v̂(µ
k

) with the level of compression set such that (3.14) and (3.15) are

satisfied. Then the basis can be defined as

�
k

= PODHSP(POD(u(µ
k

)), U
k

, POD(v̂(µ
k

)), V̂
k

).

This is similar to the original TRPOD method [10] that constructs the reduced basis according to

�
k

= POD(u(µ
k

)) or the extension presented in [57] that also constructs a reduced-order model for

the adjoint that constructs the basis according to �v

k

= POD(v(µ
k

)).

To close this section, global convergence of Algorithm 11 is established based on Theorem A.1.

Suppose Assumptions (AF1)–(AF2) and (AM1)–(AM4) (Appendix A) hold and let {µ
k

} denote

the sequence of iterations produced by Algorithm 11. To apply Theorem A.1 and conclude that

this algorithm is globally convergent, the choice of m
k

(µ), #
k

(µ), '
k

(µ) in (5.2), (5.3), (5.6)-(5.7)

must satisfy the error bounds in (3.12), (3.13) and the conditions in (3.14), (3.15). The objective

and gradient error bounds are established based on the residual-based error bounds detailed in

Appendix B. The construction of the reduced-order basis �
k

in (5.27) combined with the fact

that  
k

is defined according to (4.14) to ensure the reduced-order model possesses the minimum-

residual property guarantees the objective (3.14) and gradient (3.15) error conditions. Therefore,

by Theorem A.1, the sequences of iterates produced by Algorithm 11 satisfies

lim inf
k!1

krF (µ
k

)k = 0. (5.31)



CHAPTER 5. DETERMINISTIC PDE-CONSTRAINED OPTIMIZATION WITH ROMS 127

Algorithm 11 Residual-based trust region method based on reduced-order models

1: Initialization: Given

µ
0

, U�1

= ;, V̂�1

= ;, �
0

, 0 < � < 1, �
max

> 0, 0 < ⌘

1

< ⌘

2

< 1,

0 < 

#

< 1, 0 < 

'

, 0 < ! < 1, {r
k

}1
k=0

such that r
k

! 0

2: Model and constraint update: If previous model and constraint are su�cient for convergence

#

k�1

(µ
k

)  
#

�
k

'

k�1

(µ
k

)  
'

min{krm
k�1

(µ
k

)k , �
k

},

re-use for the current iteration: m
k

(µ) := m

k�1

(µ) and #
k

(µ) := #

k�1

(µ). Otherwise, evaluate
primal and sensitivity or adjoint solution of high-dimensional model

u
k

:= u(µ
k

) v̂
k

:=
@u

@µ
(µ

k

) or ⇥�

k

(u(µ
k

), µ
k

)
@r

@u
(u(µ

k

), µ
k

)T�(µ
k

)

and compute reduced-order basis via span-preserving variant of POD (Algorithm 7)

�
k

= PODHSP(u
k

, U
k

, v̂
k

, V̂
k

),

define model and constraint as

m

k

(µ) = f(�
k

u
r

(µ; �
k

,  
k

), µ)

#

k

(µ) = kr(�
k

u
r

(µ
k

; �
k

,  
k

), µ
k

)k⇥
k

+ kr(�
k

u
r

(µ; �
k

,  
k

), µ)k⇥
k

,

and update snapshot matrices

U
k+1

 
⇥
U

k�1

u
k

⇤
V̂

k+1

 
⇥
V̂

k�1

v̂
k

⇤
.

3: Step computation: Solve (exactly) the trust region subproblem

min
µ2RNµ

m

k

(µ) subject to #

k

(µ)  �
k

for a candidate, µ̂
k

, using interior-point method of Section 3.1.2.

4: Actual-to-predicted reduction: Compute actual-to-predicted reduction ratio

⇢

k

=

8
><

>:

1 if #

k

(µ̂
k

)!  ⌘min{m
k

(µ
k

)�m

k

(µ̂
k

), r
k

}
F (µ

k

)� F (µ̂
k

)

m

k

(µ
k

)�m

k

(µ̂
k

)
otherwise

where ⌘ < min{⌘
1

, 1� ⌘
2

}
5: Step acceptance:

if ⇢

k

� ⌘
1

then µ
k+1

= µ̂
k

else µ
k+1

= µ
k

end if

6: Trust region update:

if ⇢

k

 ⌘
1

then �
k+1

2 (0, �#
k

(µ̂
k

)] end if

if ⇢

k

2 (⌘
1

, ⌘

2

) then �
k+1

2 [�#
k

(µ̂
k

),�
k

] end if

if ⇢

k

� ⌘
2

then �
k+1

2 [�
k

,�
max

] end if
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5.2 Snapshots from Partially Converged Solutions

In many large-scale applications, particularly those arising in turbulent computational fluid dynam-

ics, it is di�cult and expensive to compute a steady-state solution, and the corresponding sensitivity

and adjoint solutions, to tight tolerances. In these cases, the generation of snapshots in Line 2 of

Algorithm 11 will dominate the cost of the trust region method. To speed up this step and leverage

the flexibility a↵orded by the trust region method of Section 3.1.1, partially converged solutions are

used as snapshots.

Let u(µ; ⌧
u

) denote a partially converged primal solution of tolerance ⌧
u

, defined as any point

that satisfies

kr( · , µ)k⇥  ⌧u. (5.32)

While the fully converged solution u(µ) is assumed to be unique (Assumption 2.2), there are many

points satisfying (5.32) for a given ⌧
u

> 0. A simple method to find a point that satisfies (5.32) is to

use the chosen nonlinear solver (Newton-Raphson, Gauss-Newton, pseudo-transient continuation)

with (5.32) used as the convergence criteria1. Similarly, let v(µ; ⌧
u

, ⌧

v

) be a partially converged

sensitivity or adjoint solution of tolerance ⌧
v

about a partially converged primal solution of tolerance

⌧

u

, defined as any point satisfying

krv(u(µ; ⌧
u

), · , µ)k⇥v  ⌧
v

(5.33)

where rv is the sensitivity or adjoint residual, depending on which method is used to compute

reduced-space gradients2. Furthermore, these definition are extended to define the partially con-

verged snapshot v̂(µ; ⌧
u

, ⌧

v

) as

v̂(µ; ⌧
u

, ⌧

v

) =

8
<

:
v(µ; ⌧

u

, ⌧

v

) sensitivity method

⇥�(u(µ; ⌧
u

), µ)
@r

@u
(u(µ; ⌧

u

), µ)Tv(µ; ⌧
u

, ⌧

v

) adjoint method.
(5.34)

With these definitions, the snapshot matrices of partially converged solutions are defined as

U
k

=
h
u(µ

0

; ⌧0
u

) · · · u(µ
k�1

, ⌧

k�1

u

)
i

V̂
k

=
h
v̂(µ

0

; ⌧0
u

, ⌧

0

v

) · · · v̂(µ
k�1

, ⌧

k�1

u

, ⌧

k�1

v

)
i (5.35)

and the reduced-order basis is constructed from these snapshots using the heterogeneous span-

preserving variant of POD (Algorithm 7)

�
k

= PODHSP(u(µ
k

; ⌧k
u

), U
k

, v̂(µ
k

; ⌧k
u

, ⌧

k

v

), V̂
k

), (5.36)

1This is not a restrictive requirement since residual-based convergence criteria are usually, if not always, used for
nonlinear solvers. However, using a norm other than the 2-norm is non-standard.

2This assumes an iterative solvers is used to solve the linear sensitivity or adjoint system since a direct solver will
always return the solution to machine precision.
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where ⌧k
u

and ⌧

k

v

are iteration-dependent tolerances. This definition of �
k

guarantees that the

partially converged primal and sensitivity/adjoint solutions are contained in the reduced subspace

to the exact accuracy at which they were computed, i.e.,

u(µ
k

; ⌧k
u

) 2 col(�
k

) v̂(µ
k

; ⌧k
u

, ⌧

k

v

) 2 col(�
k

), (5.37)

which in turn implies

@u

@µ
(µ

k

; ⌧k
u

, ⌧

k

v

) 2 col(�
k

) or �(µ
k

; ⌧k
u

, ⌧

k

v

) 2 col( 
k

), (5.38)

assuming the conditions in Propositions 4.3 or 4.5 are satisfied. If a minimum-residual primal

reduced-order model with optimality metric ⇥ is used, the optimality property gives

kr(�
k

u
r

(µ
k

; �
k

,  
k

)k⇥ 
��r(u(µ

k

; ⌧k
u

), µ
k

)
��
⇥
 ⌧k

u

(5.39)

The first inequality holds from the optimality property (Proposition 4.1) since u(µ
k

; ⌧k
u

) 2 col(�
k

)

and the second inequality holds from the definition of the partially converged solution in (5.32). For

the residual-based error indicators (5.3), (5.6), and (5.7), this implies

#

k

(µ
k

)  2⌧k
u

'

k

(µ
k

)  ↵
1

⌧

k

u

+ ↵

2

⌧

k

v

,

(5.40)

provided minimum-residual reduced-order models are used. Therefore the objective error condition

(3.14) is satisfied if

⌧

k

u

 (1/2)
#

�
k

(5.41)

holds and the gradient error condition (3.15) is satisfied if

↵

1

⌧

k

u

 
'

min{krm
k

(µ
k

)k , �
k

}

↵

2

⌧

k

v

 
'

min{krm
k

(µ
k

)k , �
k

}
(5.42)

holds. These bounds are combined to yield the following requirement on ⌧k
u

and ⌧k
v

⌧

k

u

 (1/↵
1

)
'

min{krm
k

(µ
k

)k , �
k

}

⌧

k

v

 (1/↵
2

)
'

min{krm
k

(µ
k

)k , �
k

},
(5.43)

where  = min{1, ↵
1



#

/(2
'

)}. Since this condition ensures (3.12)-(3.15), global convergence of the

resulting trust region method is guaranteed. The relationship in (5.43), and the results that follow,

only hold in the ⇥-norm (Proposition 4.1) so the I-norm form of the residual-based error indicators

in (5.18) cannot be used, unless ⇥ = I (LSPG).

Remark. The value of ⌧k
u

and ⌧k
v

depend on krm
k

(µ
k

)k, which in turn depends on the values of



CHAPTER 5. DETERMINISTIC PDE-CONSTRAINED OPTIMIZATION WITH ROMS 130

⌧

k

u

and ⌧

k

v

used to define snapshots for �
k

. Therefore, the values of ⌧k
u

and ⌧

k

v

cannot be simply

determined from (5.43). Instead, an iterative method is employed that begins initially selects large

values ⌧k
u

and ⌧

k

v

and systematically reduces them, i.e., via backtracking, until the conditions in

(3.14), (3.15) are satisfied. This will lead to an e�cient algorithm since the partially converged

primal and dual solutions for a given ⌧k
u

and ⌧k
v

can be used to warm-start the nonlinear solvers for

any smaller values for these tolerances. An alternate approach replaces the gradient condition in

(3.15) with

'

k

(µ
k

)  
'

min{
��rm

k�1

(µ
k�1

)
��
, �

k

}. (5.44)

It can be verified that this will preserve the convergence result in Theorem A.1 of Appendix A. This

replaces the the gradient condition in (5.43) with

⌧

k

u

 1

2↵
1



'

min{
��rm

k�1

(µ
k�1

)
��
, �

k

}

⌧

k

v

 1

2↵
2



'

min{
��rm

k�1

(µ
k�1

)
��
, �

k

}.
(5.45)

This alternate gradient condition preserves global convergence and allows for the direct computation

of ⌧k
u

and ⌧k
v

since all terms on the right-hand side of the inequality are independent of ⌧k
u

and ⌧k
v

.

Remark. The case with the traditional trust region constraint, #
k

(µ) = kµ� µ
k

k, satisfies #
k

(µ
k

) =

0 trivially and therefore the lighter restrictions on ⌧k
u

and ⌧k
v

in (5.42) can be used in place of those

in (5.43).

5.3 E�cient Trust Region Assessment with Partially Con-

verged Solutions

Another opportunity for e�ciency a↵orded by the flexible trust region framework introduced in

Section 3.1.1, that has not been fully leveraged in the residual-based reduced-order model trust

region method of this chapter, is the use of an approximation model to compute the ratio of actual-to-

predicted ratio, ⇢
k

. Section 3.1.1 outlined the use of this flexibility to e↵ectively skip the computation

of the actual-to-predicted reduction ratio by taking

 

k

(µ) = m

k

(µ) and ✓

k

(µ) = #

k

(µ)

whenever #
k

(µ̂
k

)!  ⌘min{m
k

(µ
k

) � m

k

(µ̂
k

), r
k

}. In this situation, the approximation to the

actual-to-predicted reduction ratio is always unity and the step is accepted and the radius increased.

This is implies the trust region assessment step is e↵ectively free since it does not require a query

to F (µ) and is guaranteed to preserve global convergence since it conforms to (3.21), (3.22). In

Section 5.1, the true value of ⇢
k

is computed (3.9) when #

k

(µ̂
k

) fails to satisfy the above bound.

This section seeks to improve on this using the approximate form of ⇢
k

in (3.20) where  
k

(µ)

leverages partially converged solutions.
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In the event that the error condition in (3.22) is not satisfied, the choice  
k

(µ) = m

k

(µ) is

not su�cient to ensure convergence. Instead, partially converged solutions are used as they can

substantially less expensive to compute than fully converged ones and can be tailored to exactly

meet the error criteria in (3.22). Consider the objective model  
k

(µ) defined by the quantity of

interest evaluated at a partially converged steady state and the corresponding residual-based error

indicator
 

k

(µ) = f(u(u; ⌧̂k
u

), µ)

✓

k

(µ) =
��r(u(µ

k

; ⌧̂k
u

), µ
k

)
��
⇥
+
��r(u(µ; ⌧̂k

u

), µ)
��
⇥
.

(5.46)

Unlike in the previous section where partially converged solutions are used as snapshots, the⇥-norm

above can be freely replaced with the I-norm for simplicity (and computational e�ciency), provided

partially converged solutions are defined with respect to the I-norm. Either norm can be used in

this case since the optimality property of minimum-residual ROMs (Proposition 4.1) is not required

as it was in the previous section. However, it is desirable to use the same norm in both cases since

the computation of u(µ̂
k

; ⌧̂k
u

), required to compute  
k

(µ̂
k

), will provide a better warm-start for the

snapshot computation u(µ
k

; ⌧k+1

u

) at iteration k + 1.

With these choices, the bound in (3.21) holds from an identical argument to that in (5.43). From

the definition of u(µ; ⌧̂k
u

) in Section 5.2, the following relation holds

✓

k

(µ̂
k

)  2⌧̂k
u

. (5.47)

Therefore, the accuracy condition in (3.22) holds provided

⌧̂

k

u

 1

2
[⌘min{m

k

(µ
k

)�m

k

(µ̂
k

), r
k

}]1/! (5.48)

and global convergence is ensured. In addition to being a less expensive option than fully converged

evaluations of F (µ), this method fits seamlessly with the use of partially converged solutions in the

snapshot computations of the previous section. When an iteration is accepted, i.e., µ
k+1

= µ̂
k

, the

partially converged solution u(µ
k+1

, ⌧̂

k

u

) = u(µ̂
k

, ⌧̂

k

u

) can be used to warm-start the computation

of u(µ
k+1

, ⌧

k+1

u

) that is required to compute snapshots for iteration k+1. In fact, if ⌧̂k
u

 ⌧k+1

u

the

computation can be skipped entirely since u(µ̂
k

, ⌧̂

k

u

) already satisfies

r(u(µ̂
k

, ⌧̂

k

u

), µ
k+1

)  ⌧k+1

u

. (5.49)

The complete algorithm that uses partially converged solutions as snapshots in the model update

and in the computation of the actual-to-predicted reduction ratio is provided in Algorithm 12. To

establish global convergence of this algorithm based on Theorem A.1, suppose Assumptions (AF1)–

(AF2) and (AM1)–(AM4) (Appendix A) hold and let {µ
k

} denote the sequence of iterates produced

by Algorithm 12. Section 5.1.1 already established that the choice of m
k

(µ), #
k

(µ), '
k

(µ) satisfy

the error bounds in (3.14), (3.15). The construction of the reduced-order basis �
k

in (5.27) and the

requirements placed on the partially converged solutions in (5.43), combined with the fact that  
k



CHAPTER 5. DETERMINISTIC PDE-CONSTRAINED OPTIMIZATION WITH ROMS 132

is defined according to (4.14) to ensure the reduced-order model possesses the minimum-residual

property guarantees the objective (3.14) and gradient (3.15) error conditions hold. Finally,  
k

(µ)

and ✓

k

(µ) in (5.46) must satisfy the error bound (3.21) and condition (3.22) to preserve global

convergence when the approximate actual-to-predicted ratio is used to assess the trust region step.

The residual-based error bounds established in Lemma B.4, B.7, B.8 ensures the error bound holds.

The requirements on the partially converged solution in (5.47)-(5.48) ensure the error condition (3.22)

holds. Therefore, by Theorem A.1, the sequences of iterates produced by Algorithm 12 satisfies

lim inf
k!1

krF (µ
k

)k = 0. (5.50)
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Algorithm 12 Residual-based trust region method based on reduced-order models and partially
converged solutions

1: Initialization: Given

µ
0

, U�1

= ;, V̂�1

= ;, �
0

, 0 < � < 1, �
max

> 0, 0 < ⌘

1

< ⌘

2

< 1,

0 < 

#

< 1, 0 < 

'

, 0 < ! < 1, {r
k

}1
k=0

such that r
k

! 0

2: Model and constraint update: If previous model and constraint are su�cient for convergence

#

k�1

(µ
k

)  
#

�
k

'

k�1

(µ
k

)  
'

min{krm
k�1

(µ
k

)k , �
k

},

re-use for the current iteration: m
k

(µ) := m

k�1

(µ) and #
k

(µ) := #

k�1

(µ). Otherwise, evaluate
primal and sensitivity or adjoint solution of high-dimensional model to tolerances ⌧k

u

and ⌧

k

v

,
respectively,

u
k

:= u(µ
k

; ⌧k
u

)

v̂
k

:=
@u

@µ
(µ

k

; ⌧k
u

, ⌧

k

v

) or ⇥�(u(µ
k

; ⌧k
u

), µ
k

)
@r

@u
(u(µ

k

; ⌧k
u

), µ
k

)T�(µ
k

; ⌧k
u

, ⌧

k

v

)

with tolerances given by

⌧

k

u

 1

2↵
1



'

min{krm
k

(µ
k

)k , �
k

}  = min{1, ↵
1



#

/(2
'

)}

⌧

k

v

 1

2↵
2



'

min{krm
k

(µ
k

)k , �
k

},

and compute reduced-order basis via span-preserving variant of POD (Algorithm 7)

�
k

= PODHSP(u
k

, U
k

, v̂
k

, V̂
k

),

define model and constraint as

m

k

(µ) = f(�
k

u
r

(µ; �
k

,  
k

), µ)

#

k

(µ) = kr(�
k

u
r

(µ
k

; �
k

,  
k

), µ
k

)k⇥ + kr(�
k

u
r

(µ; �
k

,  
k

), µ)k⇥ ,

and update snapshot matrices

U
k+1

 
⇥
U

k�1

u
k

⇤
V̂

k+1

 
⇥
V̂

k�1

v̂
k

⇤
.

3: Step computation: identical to Line 3 in Algorithm 11

4: Computed-to-predicted reduction: Compute computed-to-predicted reduction ratio

⇢

k

=

8
><

>:

1 if #

k

(µ̂
k

)!  ⌧̂k
u

 

k

(µ
k

)�  
k

(µ̂
k

)

m

k

(µ
k

)�m

k

(µ̂
k

)
otherwise

 

k

(µ) := f(u(µ; ⌧̂k
u

), µ) ⌧̂

k

u

=
1

2
[⌘min{m

k

(µ
k

)�m

k

(µ̂
k

), r
k

}]1/! ⌘ < min{⌘
1

, 1� ⌘
2

}

5: Step acceptance: identical to Line 5 in Algorithm 11

6: Trust region update: identical to Line 6 in Algorithm 11
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5.4 Extension to Hyperreduced Models

To this point, projection-based reduced-order models have solely been considered as the trust region

approximation model. However, as discussed in Chapter 4, this will not be su�cient to realize non-

trivial speedups for nonlinear problems. For such problems, the computational complexity associated

with the evaluation of the reduced residual and Jacobian scales with the size of the original HDM

since they require reconstruction of the full state vector from the reduced coordinates, assembly over

the entire mesh, and subsequent projection onto the columnspace of the test basis. For this reason,

the developments in this chapter are extended to use collocation-based hyperreduced models as the

approximation model.

The approximation model takes the same form as in the previous sections, i.e.,

m

k

(µ) = f(�
k

u
r

(µ; �
k

,  
k

, P
k

), µ), (5.51)

with the exception that the reduced coordinates uk

r

(µ) are defined as the solution of the collocation-

based hyperreduced model

(P T

k
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)TP T

k

r(P̄
k

P̄ T

k

�
k

u
r

(µ; �
k

,  
k

, P
k

), µ) = 0. (5.52)

The gradient rm
k

(µ) is computed according to the adjoint or sensitivity method presented in

Sections 4.2.5–4.2.6 or approximated using the minimum-residual variants. For the sake of e�ciency,

the residual-based trust region constraint #
k

(µ) in (5.3) is replaced with the masked residual

#

k

(µ) =
��P T

k

r(P̄
k

P̄ T

k

�
k

uk

r

(µ), µ)
�� (5.53)

and the gradient error indicator '
k

(µ) is similarly replaced with its masked counterpart, i.e.,

'
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(5.54)

Only the sensitivity method is considered since details pertaining to the hyperreduced minimum-

residual adjoint method is deferred to future work.

For general nonlinear systems of equations r(u, µ) = 0, these choices of error indicators #
k

(µ)

and '
k

(µ) do not lead to the required bounds in (3.12) and (3.13) and global convergence cannot

be rigorously established. However, due to the concept of a stencil in the discretization of partial

di↵erential equations, i.e., the fact that the ith entry of r depends on the jth entry of u for all j 2 S
i

(defined in Section 4.2.2), it is reasonable to expect such bounds to hold (with larger constants ⇣

and ⇠), provided the mask is su�ciently large.

The details pertaining to the construction of �
k

from fully (Section 5.1.2) or partially (Sec-

tions 5.2) converged solutions carries over to the case of collocation-based hyperreduced models;
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however, the bounds on the error indicators can no longer be guaranteed due to the introduction of

the mask in the reduced-order model. Once the trial basis is constructed, the mask P
k

is constructed

according to the algorithm detailed in [198] that relies solely on �
k

and possibly problem-specific

information. The approximation of the ratio of actual-to-predicted reduction that uses  
k

(µ) and

✓

k

(µ) based on partially converged solutions is not specific to the case of projection-based reduced-

order models and therefore trivially carries over to the hyperreduced case. The complete trust region

algorithm based on collocation-based hyperreduced models is identical to Algorithms 11 and 12, once

the step that constructs the mask P
k

from �
k

is added, with the above definitions of m
k

(µ), #
k

(µ),

and '
k

(µ).

5.5 Numerical Experiments

In this section, the error-aware trust region method using projection-based reduced-order models as

the approximation model is applied to solve a number of problems in computational fluid dynamics,

ranging from optimal control of the 1D inviscid Burgers’ equation to shape optimization of a full

aircraft configuration.

5.5.1 Optimal Control of 1D Inviscid Burgers’ Equation

This section presents a thorough investigation of the trust region methods proposed in this chap-

ter based on the various projection-based reduced-order models of Chapter 4. The model PDE-

constrained optimization problem considered is optimal control of the steady, inviscid, one-dimensional

Burgers’ equation in only a few control parameters. The optimization problem takes the form

minimize
µ2Rnµ

Z
1

0

1

2
(u(µ, x)� ū(x))2 dx (5.55)

where u(µ, x) is the solution of the inviscid Burgers’ equation under a specific parametrization of

the inflow boundary condition and control

u(µ, x)@
x

u(µ, x) = µ

2

e

µ

3

x

x 2 (0, 100)

u(µ, 0) = µ

1

(5.56)

and ū(x) is the target state. The PDE is discretized with a first-order, vertex-centered finite volume

method with 1000 vertices for a state space of dimension N

u

= 999 after application of the inflow

boundary condition. The functional form of the control in (5.56) was made to minimize the number

of optimization parameters to allow the sensitivity-based approach to be included in the study. The

target state corresponds to the solution of the (5.56) at the target parameter configuration µ̄ =

(2.5, 0.02, 0.0425). Therefore, the target state is realizable since it lies within the parametrization

of the optimization problem and the optimal value of the objective function is 0. All methods

considered will start from an initial guess of µ
0

= (1.0, 1.0, 0.0). Figure 5.1 shows the control
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Figure 5.1: Control (left) and corresponding solution (right) of the inviscid Burgers’ equation in
(5.56) at: the initial condition µ = (1.0, 1.0, 0.0) ( ), the target solution µ = (2.5, 0.02, 0.0425)
( ), and solution of the baseline optimization method ( ).

g(µ, x) and state vector u(µ, x) at the initial guess and optimal value of µ. Figure 5.2 shows the

contours of the objective function (after discretization) in the µ
1

�µ
2

plane at a slice of the parameter

space at µ
3

= 0, with the initial condition µ
0

and optimal solution µ⇤ indicated.

Trust region geometry and impact of snapshots

Before studying the entire performance of the proposed optimization solvers on the optimal control

problem in (5.55), the geometry of the various trust region constraints presented in this document

are considered: the traditional trust region constraint

kµ� µ
0

k  �

and the residual-based trust region constraint

kr(�u
r

(µ
0

; �,  ), µ
0

)k+ kr(�u
r

(µ; �,  ), µ)k  �.

A trust region constraint based on the true error in the quantity of interest

|f(u(µ), µ)� f(�u
r

(µ; �,  ))|  �

is included in this study for illustration purposes only as it is far too expensive to use in practice.

The traditional trust region is purely geometric and therefore does not depend on the reduced-order

model, while the residual- and error-based trust regions are heavily dependent on the type of reduced-

order model employed and the trial subspace chosen. This section considers reduced-order models

based on a Galerkin and LSPG projection. Since the Jacobians of the discrete inviscid Burgers’

equation are not symmetric positive-definite, reduced-order models based on a Galerkin projection

do not necessarily possess the minimum-residual property. However, LSPG-based ROMs do possess

the minimum-residual property, by definition. The trial basis will be constructed in three di↵erent

ways following the developments in Section 5.1.2: from snapshots of the primal solution only, from
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snapshots of the primal and sensitivity solutions, and from snapshots of the primal and adjoint

solutions. All snapshots will be computed at the control corresponding to the initial condition of

the optimization problem, µ
0

. That is,

col(�) = span{u(µ
0

)} col(�) = span{u(µ
0

), �(µ
0

)} col(�) = span

⇢
u(µ

0

),
@u

@µ
(µ

0

)

�

depending on which trial subspace is being considered.

The trust regions for the reduced-order models based on a Galerkin projection are provided in

Figure 5.3 and those based on a LSPG projection are in Figure 5.4. These figures show the contours

of the reduced objective function f(�u
r

(�,  ), µ), which can be compared to the contours of

the true objective function f(u(µ), µ) in Figure 5.2. It can be seen that the residual-based trust

regions do not match the trust regions based on the true error. Even though the use of residuals as

a surrogate for the true error partially motivated the introduction of the error-aware trust region

theory in Chapter 3, it is not a requirement since the asymptotic bound (3.12) holds due to the

derivation in Appendix B. From Figures 5.3 and 5.4, a few more observations are made that agree

with the minimum-residual reduced-order model theory in Chapter 4. First, the residual-based trust

regions corresponding to a Galerkin ROM (Figure 5.3) are a subset of those corresponding to the

LSPG ROM (Figure 5.4). This is expected since LSPG minimizes the residual in the I-norm, which

is exactly the quantity defining the trust region. Despite the larger residual-based trust regions of

LSPG ROMs, the Galerkin ROMs have larger trust regions based on the true error. While non-

intuitive, this does not contradict the theory outlined in Chapter 4 since LSPG is only guaranteed to

minimize the residual over the trial subspace, not the error in a quantity of interest. Finally, for both

the Galerkin and LSPG ROMs, the trial subspaces built from primal states and sensitivities produce

larger residual- and error-based trust regions than only those that only use primal snapshots. There

is disagreement between the two types of reduced-order models when it comes to the use of adjoint

snapshots. For the Galerkin ROMs, the incorporation of adjoint snapshots improve the prediction

capability of the reduced-order model with respect to the quantity of interest, but have little influence

on the extent of the residual-based trust region. In contrast, the incorporation of adjoint snapshots

increases the extent of the residual-based trust region—as expected from the monotonicity property

of minimum-residual reduced-order models— however, they actually reduce the extent of the error-

based trust region. This provides some evidence that the incorporation of non-physical snapshots

can cause the residual minimization to produce worse solutions with respect to prediction of the

quantity of interest [198].

Performance of proposed optimization solvers

This section provides a thorough comparison of the variants of the multifidelity trust region method

based on reduced-order models and partially converged solutions in Algorithms 11 and 12. The

following aspects of the algorithms will be considered in this study:

• the type of reduced-order model underlying the approximation model: Galerkin and LSPG
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Figure 5.2: Contours of the objective function f(u(µ), µ) in (5.55) in the µ
1

�µ
2

plane corresponding
to a slice at µ

3

= 0.0. The initial condition for the optimization problem and target solution are
shown with a red circle and blue square, respectively.

projections will be considered,

• the type of snapshots used to define the trial subspace: primal snapshot alone, primal and

sensitivity snapshots, and primal and adjoint snapshots will be considered,

• the trust region constraint used to define the trust region subproblem: the traditional ball

constraint and residual-based constraint (5.3) will be considered, and

• the optimization solver used for the trust region subproblem: the interior point method of

Section 3.1.2 based on a Newton-CG solver3 will be used to exactly solve the subproblem and

Steihaug-Toint CG will be used to approximately solve the subproblem (when the traditional

trust region constraint is used).

Table 5.1 summarizes the variants of Algorithms 11 and 12 considered in this section and pro-

vides appropriate names for convenient reference. For the Galerkin reduced-order models, the true

sensitivities and adjoints will be computed according to (4.20), (4.47) since this is amenable to imple-

mentation due to the constant test basis and will lead to consistency of the reduced functionals and

their gradients. For the LSPG reduced-order models, the minimum-residual sensitivity and adjoint

approximations in (4.28) and (4.56) will be employed (only guarantees consistency of functionals

and gradients at trust region centers). Finally, all numerical experiments use the following trust

region parameters:



#

= 0.5 

'

= 2.0 � = 0.5 ⌘

1

= 0.25 ⌘

2

= 0.75

r

k

= 1/(k + 1) �
0

= 10�1 �
max

= 105.
(5.57)

3The interior point method based on a BFGS unconstrained solver of Algorithm 3 is replaced with a Newton-CG
unconstrained solver for fair comparison to the second-order Steihaug-Toint CG method.
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Figure 5.3: Contour of the reduced objective function f(�u
r

(µ; �,  ), µ) in (5.55) in the µ

1

� µ

2

plane corresponding to a slice at µ
3

= 0.0. The reduced-order model employs a Galerkin projection
and the trial basis is constructed from: (top) the primal solution at µ

0

, i.e., col(�) = span{u(µ
0

)};
(middle) the primal and adjoint solution at µ

0

, i.e., col(�) = span{u(µ
0

), �(µ
0

)}; (bottom) the

primal and sensitivity solution at µ
0

, i.e., col(�) = span

⇢
u(µ

0

),
@u

@µ
(µ

0

)

�
. The green shaded re-

gion indicates the areas where: (left) the Euclidean ball is bounded by 0.5, i.e., kµ� µ
0

k  0.5,
(center) the error between the true and reduced objective function is bounded by 100, i.e.,
|f(u(µ), µ) � f(�u

r

(µ; �,  ), µ)|  100, and (right) the residual norm of the reconstructed
ROM solution is bounded by 10, i.e., kr(�u

r

(µ; �,  ), µ)k  10. The initial condition for the
optimization problem and target solution are shown with a red circle and blue square, respectively.
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Figure 5.4: Contour of the reduced objective function f(�u
r

(µ; �,  ), µ) in (5.55) in the µ

1

� µ

2

plane corresponding to a slice at µ

3

= 0.0. The reduced-order model employs a LSPG projection
and the trial basis is constructed from: (top) the primal solution at µ

0

, i.e., col(�) = span{u(µ
0

)};
(middle) the primal and adjoint solution at µ

0

, i.e., col(�) = span{u(µ
0

), �(µ
0

)}; (bottom) the

primal and sensitivity solution at µ
0

, i.e., col(�) = span

⇢
u(µ

0

),
@u

@µ
(µ

0

)

�
. The green shaded re-

gion indicates the areas where: (left) the Euclidean ball is bounded by 0.5, i.e., kµ� µ
0

k  0.5,
(center) the error between the true and reduced objective function is bounded by 100, i.e.,
|f(u(µ), µ) � f(�u

r

(µ; �,  ), µ)|  100, and (right) the residual norm of the reconstructed
ROM solution is bounded by 10, i.e., kr(�u

r

(µ; �,  ), µ)k  10. The initial condition for the
optimization problem and target solution are shown with a red circle and blue square, respectively.
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Table 5.1: Variants of the multifidelity trust region method based on projection-based reduced-
order models introduced in Algorithms 11 and 12. The first three methods are not guaranteed to be
globally convergent since they do not necessarily satisfy the gradient condition (3.15). The methods
that employ the traditional trust region employ two trust region subproblem solvers: an exact
solver based on the interior point method in Algorithm 3 and the inexact Steihaug-Toint CG solver.
The methods that employ the residual-based trust region rely on the exact interior point solver
in Algorithm 3. The interior point solver considered in this section uses Newton-CG to solve the
unconstrained subproblem (instead of BFGS) for fair comparison with the second-order Steihaug-
Toint CG. The snapshot matrices U

k

, W
k

, Z
k

consist of state, sensitivity, and adjoint snapshots,
respectively, of the high-dimensional model at all previous trust region centers, i.e., µ

0

, . . . , µ
k�1

.

Name Reduced basis (�
k

) TR constraint (#
k

(µ)) TR solver

prim-etr-intpt PODSP(u(µ
k

), U
k

) residual-based (5.3) Intpt Newton-CG
prim-ctr-intpt PODSP(u(µ

k

), U
k

) kµ� µ
k

k Intpt Newton-CG
prim-ctr-stcg PODSP(u(µ

k

), U
k

) kµ� µ
k

k Steihaug-Toint CG
sens-etr-intpt PODHSP(u(µ

k

), U
k

,

@u

@µ

(µ
k

), W
k

) residual-based (5.3) Intpt Newton-CG

sens-ctr-intpt PODHSP(u(µ
k

), U
k

,

@u

@µ

(µ
k

), W
k

) kµ� µ
k

k Intpt Newton-CG

sens-ctr-stcg PODHSP(u(µ
k

), U
k

,

@u

@µ

(µ
k

), W
k

) kµ� µ
k

k Steihaug-Toint CG
adj-etr-intpt PODHSP(u(µ

k

), U
k

, �
k

(µ
k

), Z
k

) residual-based (5.3) Intpt Newton-CG
adj-ctr-intpt PODHSP(u(µ

k

), U
k

, �
k

(µ
k

), Z
k

) kµ� µ
k

k Intpt Newton-CG
adj-ctr-stcg PODHSP(u(µ

k

), U
k

, �
k

(µ
k

), Z
k

) kµ� µ
k

k Steihaug-Toint CG

The convergence history of the methods in Table 5.1, in terms of the objective function and gra-

dient decrease, is provided in Figures 5.5 for reduced-order models that employ a Galerkin projection

and 5.6 for reduced-order models that employ an LSPG projection. The convergence of the baseline

solver, an L-BFGS linesearch method (without model reduction), is also included in the figures for

comparison. All of methods in Table 5.1 based on Galerkin ROMs converge to a first-order critical

point of tolerance at least 10�4 (9 orders of magnitude reduction from the initial control), even

though global convergence cannot be rigorously established for the methods that build the reduced

basis from only primal snapshots (‘prim-etr-intpt’, ‘prim-ctr-intpt’, ‘prim-ctr-stcg’). In contrast, the

methods based on LSPG ROMs that build the reduced basis from primal and adjoint snapshots

(‘adj-etr-intpt’, ‘adj-ctr-intpt’, ‘adj-ctr-stcg’) do not converge. These methods are supposed to be

globally convergent since the inclusion of adjoint snapshots ensures the error conditions (3.14) and

(3.15) holds. The failure of these methods is attributed to failed trust region subproblem solves that

results from using inconsistent gradients away from trust region centers. Figures 5.5 and 5.6 lead to

two more observations. First, all methods converge faster, in terms of major iterations, when exact

trust region subproblem solvers are used. Later in this section, the convergence rate will be assessed

in terms of a cost metric that accounts for the cost of each major iteration in the respective methods.

Second, the methods that include more information exhibit faster convergence. For example, the

methods that incorporate sensitivity information converge faster than those that incorporate adjoint

information which converge faster than those that consider solely primal snapshots. In addition to

the sensitivities providing more information than adjoints (there are 3 sensitivities and 1 adjoint for

this problem), the information is also richer since they equip the basis with first order information
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Figure 5.5: Convergence history of various optimization solvers for optimal control of the inviscid
Burgers’ equation when Galerkin reduced-order model defines the approximation model. Optimiza-
tion solvers considered: L-BFGS solver with only HDM evaluations ( ), prim-etr-intpt ( ),
prim-ctr-intpt ( ), prim-ctr-stcg ( ), sens-etr-intpt ( ), sens-ctr-intpt ( ), sens-ctr-stcg
( ), adj-etr-intpt ( ), adj-ctr-intpt ( ), adj-ctr-stcg ( ).

[52, 210].

The increased convergence rate, in terms of major iterations (and therefore HDM evaluations),

of Algorithms 11 and 12 comes at the price of a large number of ROM evaluations. Figure 5.7 shows

the cumulative number of primal ROM queries as a function of major iteration and a histogram

of the number of primal ROM evaluations at a given reduced basis size (k
u

). The methods that

use the residual-based trust region constraint constitute more di�cult trust region subproblems and

require more ROM evaluations than those that use a traditional trust region. The benefit of using

the residual-based trust region is fewer major iterations, and thus HDM queries (Figures 5.5 and

5.6). Another observation is that, as expected, the inexact trust region solver (Steihaug-Toint CG)

requires far fewer ROM queries than the exact solver (interior point Newton-CG), at the cost of

additional major iterations (HDM evaluations).

To assess the speedups that can be realized by the variants of the proposed ROM-based trust

region methods in Table 5.1, the following simplified cost model is introduced

C = n

hp

+ n

hs

+ ⌧

�1(n
rp

+ n

rs

) (5.58)

where C is the total cost associated with a particular method in the units of equivalent number of

primal HDM queries, n
hp

is the number of primal HDM queries, n
hs

is the number of sensitivity

HDM queries, n
rp

is the number of primal ROM queries, n
rs

is the number of sensitivity ROM

queries, and ⌧ is the ratio of the cost of a primal HDM query to a primal ROM query. This cost

model assume the cost of computing the primal HDM (ROM) solution is the same as computing all

three sensitivities. Under this cost model, Figure 5.8 contains the convergence rates of the various

algorithms as a function of cost for three values of ⌧ : two moderate values for the expected speedup

of the reduced-order model (⌧ = 20, 50) and the asymptotic case of a free reduced-order model

(⌧ = 1). All variants of the trust region method outperform the baseline L-BFGS method, with
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Figure 5.6: Convergence history of various optimization solvers for optimal control of the inviscid
Burgers’ equation when LSPG reduced-order model defines the approximation model. Optimization
solvers considered: L-BFGS solver with only HDM evaluations ( ), prim-etr-intpt ( ), prim-
ctr-intpt ( ), prim-ctr-stcg ( ), sens-etr-intpt ( ), sens-ctr-intpt ( ), sens-ctr-stcg ( ),
adj-etr-intpt ( ), adj-ctr-intpt ( ), adj-ctr-stcg ( ).
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Figure 5.7: Left : Cumulative number of primal ROM queries as a function of major iteration in the
trust region algorithm based on reduced-order models (Algorithm 11) as applied to optimal control
of the inviscid Burgers’ equation. Right : Histogram of the number of primal ROM queries at a
given basis size. Data separated into the top and bottom rows to deal with the disparate x-scales.
All reduced-order models use a Galerkin projection. Optimization solvers considered: prim-etr-
intpt ( ), prim-ctr-intpt ( ), prim-ctr-stcg ( ), sens-etr-intpt ( ), sens-ctr-intpt ( ),
sens-ctr-stcg ( ), adj-etr-intpt ( ), adj-ctr-intpt ( ), adj-ctr-stcg ( ).
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the variants based on exact trust region solvers (‘sens-etr-intpt’ and ‘sens-ctr-intpt’) outperforming

the inexact solver (‘sens-ctr-intpt’), even if ROM queries are only 20⇥ faster than HDM queries.

Depending on the speedup of the ROM, a given value of the objective function or gradient can be

achieved by methods ‘sens-etr-intpt’ or ‘sens-ctr-intpt’ at roughly 10� 50% the cost required by the

baseline method.

The section closes with a study of the convergence behavior of the trust region method that uses

a residual-based trust region constraint when Algorithms 11 (fully converged solutions as snapshots

and for trust region assessment) and 12 (partially converged solutions as snapshots and for trust

region assessment) are used. Figure 5.9 contains the convergence history of the objective function

and approximation model at trust region centers and candidate steps. Figures 5.10 and 5.11 contain

the same information for the gradient and trust region constraint, respectively. From these figures,

the model is first-order consistent at trust region centers for Algorithm 11 (left plots) since the

basis is constructed with the span-preserving variant of POD (Algorithm 7) and uses fully converged

snapshots. This is not the case for Algorithm 12 (right plots) that uses partially converged snapshots.

Despite relatively poor agreement of the model and objective (and the corresponding gradients) at

trust region centers and candidate steps, rapid progress is made toward the optimal solution. From

Figure 5.11, the trust region constraints are active at early iterations of the trust region algorithm

and inactive later. This suggests that, as the optimal solution is approached, the reduced-order

model is only queried in regions of the parameter space where it is very accurate, i.e., near training

points. Finally, Algorithm 12 requires one additional iteration than Algorithm 11 to converge to a

similar tolerance. This is expected since Algorithm 12 utilizes partially converged solutions in the

construction of the reduced basis, an additional level of inexactness. These observations are verified

in Tables 5.2–5.5 that contains the convergence history of the relevant trust region quantities for the

variants ‘sens-etr-intpt’ and ‘sens-ctr-stcg’ of Algorithms 11 and 12.

5.5.2 Optimal Control of 1D Viscous Burgers’ Equation

The investigation into the methods introduced in this chapter continues in this section with an

emphasis on problems where the number of parameters is su�ciently large that gradients must be

computed with the adjoint method. The model PDE-constrained optimization problem considered is

optimal control of the steady, viscous, one-dimensional Burgers’ equation. The optimization problem

takes the form

minimize
µ2Rnµ

Z
1

0

1

2
(u(µ, x)� ū(x))2 dx+

↵

2

Z
1

0

z(µ, x)2 dx

�
(5.59)

where u(µ, x) is the solution of the viscous Burgers’ equation with a general parametrization of the

control z(µ, x)

�⌫@
xx

u(µ, x) + u(µ, x)@
x

u(µ, x) = z(µ, x) x 2 (0, 1)

u(µ, 0) = 1 u(µ, 1) = 0
(5.60)
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Figure 5.8: Convergence of the objective function (left) and gradient (right) as a function of the cost
metric in (5.58) for several values of the speedup factor of the reduced-order model: ⌧ = 20 (top row),
⌧ = 50 (middle row), ⌧ =1 (bottom row) for optimal control of the inviscid Burgers’ equation. All
reduced-order models use a Galerkin projection. Optimization solvers considered: L-BFGS solver
with only HDM evaluations ( ), sens-etr-intpt ( ), sens-ctr-intpt ( ), sens-ctr-stcg ( ).
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Figure 5.9: Convergence history of the objective quantities for optimal control of the inviscid Burgers’
equation using Algorithm 11 (left – fully converged solutions as snapshots and in the evaluation of
trust region steps) and Algorithm 12 (right – partially converged solutions as snapshots and in the
evaluation of trust region steps): F (µ

k

) ( ), F (µ̂
k

) ( ), m
k

(µ
k

) ( ), m
k

(µ̂
k

) ( ). The
variant ‘sens-etr-intpt’ (Table 5.1) of the multifidelity trust region algorithm with Galerkin-based
reduced-order models is used. Since the approximation model in the left plot is first-order consistent
at trust region centers, m

k

(µ
k

) is omitted.
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Figure 5.10: Convergence history of the gradient quantities for optimal control of the inviscid Burg-
ers’ equation using Algorithm 11 (left – fully converged solutions as snapshots and in the evaluation
of trust region steps) and Algorithm 12 (right – partially converged solutions as snapshots and
in the evaluation of trust region steps): krF (µ

k

)k ( ), krF (µ̂
k

)k ( ), krm
k

(µ
k

)k ( ),
krm

k

(µ̂
k

)k ( ). The variant ‘sens-etr-intpt’ (Table 5.1) of the multifidelity trust region algo-
rithm with Galerkin-based reduced-order models is used. Since the approximation model in the left
plot is first-order consistent at trust region centers, krm

k

(µ
k

)k is omitted.
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Figure 5.11: Convergence history of the constraint quantities for optimal control of the inviscid
Burgers’ equation using Algorithm 11 (left – fully converged solutions as snapshots and in the
evaluation of trust region steps) and Algorithm 12 (right – partially converged solutions as snapshots
and in the evaluation of trust region steps): #
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( ). The variant
‘sens-etr-intpt’ (Table 5.1) of the multifidelity trust region algorithm with Galerkin-based reduced-
order models is used.
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Figure 5.12: Control (left) and corresponding solution (right) of the viscous Burgers’ equation in
(5.60) at: the initial guess for the optimization problem ( ) and the optimal solution of (5.59)
( ).

and ū(x) is the target state. The viscosity is fixed at ⌫ = 10�2 and the PDE is discretized with

1000 linear finite elements for a state space of dimension N

u

= 999, after application of the essential

boundary conditions. The target state is chosen as the constant solution ū(x) ⌘ 1, which is not

reachable due to the boundary conditions on the PDE. The control is parametrized with 50 cubic

splines with clamped boundary conditions for a total of 53 optimization variables4, i.e., N
µ

= 53.

The control is parametrized in this way, instead of the standard approach [78, 96, 108, 109] of

interpolating the control using the underlying finite element shape functions to avoid a parameter

space whose dimension is comparable to that of the state space, i.e., N
µ

= O(N
u

), as this case

requires special consideration (Appendix C).

Even though the number of parameters does not scale with the dimension of the state space,

the large number of parameter (N
µ

= 53) calls for the adjoint approach to compute gradients of

4The optimization variables are the value of each spline knot (the location of each knot is fixed) and the slope of
the curve its boundaries.
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Figure 5.13: Convergence history of various optimization solvers for optimal control of the viscous
Burgers’ equation when Galerkin reduced-order model defines the approximation model. Optimiza-
tion solvers considered: L-BFGS solver with only HDM evaluations ( ), adj-etr-intpt ( ),
adj-ctr-intpt ( ), adj-ctr-stcg ( ).

quantities of interest; therefore, this section only studies ‘adj-etr-intpt’, ‘adj-ctr-intpt’, and ‘adj-ctr-

stcg’ from Table 5.1. Furthermore, this section only considers reduced-order models based on a

Galerkin projection to ensure consistent gradients, which is a particularly important consideration

when the number of parameters is large. The convergence of these methods, as a function of

major iteration, is provided in Figure 5.13, along with the convergence of the baseline method that

uses an L-BFGS method (without model reduction). The trust region method with a residual-based

constraint converges most rapidly and, similar to the previous section, the methods that employ exact

trust region solvers outperform the inexact Steihaug-Toint CG solver. In fact, the method based on

the Steihaug-Toint CG solver is converging; however, after the maximum number of iterations (50)

the iterates are not close enough to the solution for quadratic convergence to be realized and does

not converge to the same tolerance as the other methods.

The increased convergence rate, in terms of major iterations (and therefore HDM evaluations),

of Algorithm 11 comes at the price of a large number of ROM evaluations. Figure 5.14 shows the

cumulative number of primal ROM queries as a function of major iteration and a histogram of the

number of primal ROM evaluations at a given reduced basis size (k
u

). Similar to the previous

section, the inexact solver requires far fewer ROM queries than the exact solvers. However, unlike

the previous section, the number of ROM queries required by the residual-based trust region and

traditional trust region are not significantly di↵erent.

To assess the speedups that can be realized by the variants of the proposed ROM-based trust

region methods in Table 5.1, the following simplified cost model is introduced

C = n

hp

+ n

ha

/2 + ⌧

�1(n
rp

+ n

ra

/2) (5.61)

where C is the total cost associated with a particular method in the units of equivalent number of

primal HDM queries, n
hp

is the number of primal HDM queries, n
ha

is the number of adjoint HDM
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Figure 5.14: Left : Cumulative number of primal ROM queries as a function of major iteration in the
trust region algorithm based on reduced-order models (Algorithm 11) as applied to optimal control
of the viscous Burgers’ equation. Right : Histogram of the number of primal ROM queries at a
given basis size. Data separated into the top and bottom rows to deal with the disparate x-scales.
All reduced-order models use a Galerkin projection. Optimization solvers considered: adj-etr-intpt
( ), adj-ctr-intpt ( ), adj-ctr-stcg ( ).
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queries, n
rp

is the number of primal ROM queries, n
ra

is the number of adjoint ROM queries, and ⌧

is the ratio of the cost of a primal HDM query to a primal ROM query. This cost model assume the

cost of computing the primal HDM (ROM) solution is twice that of computing an adjoint solution.

Under this cost model, Figure 5.15 contains the convergence rates of the various algorithms as a

function of cost for three values of ⌧ : two moderate values for the expected speedup of the reduced-

order model (⌧ = 50, 100) and the asymptotic case of a free reduced-order model (⌧ = 1). The

variants of the trust region method based on the exact trust region solver (‘adj-etr-intpt’ and ‘adj-

ctr-intpt’) outperform the baseline L-BFGS method, even if ROM queries are only 50⇥ faster than

HDM queries. Depending on the speedup of the ROM, a given value of the objective function or

gradient can be achieved by methods ‘adj-etr-intpt’ at less than 50% the cost required by the baseline

method.

This section closes with a study of the convergence behavior of the trust region method that

uses a residual-based trust region constraint. Figure 5.16 contains the convergence history of the

objective function and approximation model (left) and their gradients (right) at trust region centers

and candidate steps. The approximation model is first-order consistent at trust region centers

since the basis is constructed with the span-preserving variant of POD (Algorithm 7) and uses

fully converged snapshots. Despite relatively poor agreement of the model and objective (and the

corresponding gradients) at the candidate steps, rapid progress is made toward the optimal solution.

These observations are verified in Tables 5.6–5.7 that contains the convergence history of the relevant

trust region quantities for methods ‘adj-etr-intpt’ and ‘adj-ctr-intpt’.

5.5.3 Shape Optimization of Airfoil in Inviscid, Subsonic Flow

In this section, we consider the inverse shape design of an airfoil in inviscid, subsonic flow: given

only the pressure distribution of a target shape—the RAE2822 airfoil, in this case—the goal is to use

shape optimization to recover the underlying shape. The initial guess for the optimization problem

is the symmetric NACA0012 airfoil.

Shape parametrization and problem setup

A plethora of shape parametrization techniques exist [177, 9], each with strengths and weaknesses.

They typically trade-o↵ between e�ciency and flexibility. A subset of these techniques have been

studied in the context of model order reduction [174]. In this work, the SDESIGN software [129, 127,

128], based on the design element approach [99, 61], is used for shape parametrization (Section 2.1.2).

Here, a single “cubic” design element is used to parametrize the deformation of the NACA0012 airfoil.

Such a design element has 8 control nodes. They are used to define cubic Lagrangian polynomials

to describe the displacement field along the horizontal edges of the element, and linear functions

to define the displacement field along its vertical edges. For this application, the set of admissible

shapes is further restricted by constraining the control nodes to move in the vertical direction only.

This results in a parametrization with 8 variables where each of them represents the displacement

of a control node in the vertical direction. The case where all parameters are equal, µ = c1 for
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Figure 5.15: Convergence of the objective function (left) and gradient (right) as a function of the
cost metric in (5.61) for several values of the speedup factor of the reduced-order model: ⌧ = 50
(top row), ⌧ = 100 (middle row), ⌧ = 1 (bottom row) for optimal control of the viscous Burgers’
equation. All reduced-order models use a Galerkin projection. Optimization solvers considered: L-
BFGS solver with only HDM evaluations ( ), adj-etr-intpt ( ), adj-ctr-intpt ( ), adj-ctr-stcg
( ).
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Figure 5.16: Convergence history of the objective (left) and gradient (right) quantities for optimal
control of the viscous Burgers’ equation using Algorithm 11 (fully converged solutions as snapshots
and in the evaluation of trust region steps). Left : |F (µ
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c 2 R, corresponds to a rigid translation in the vertical direction. Because such a translation does

not a↵ect the definition of a shape, it is eliminated by constraining one of the displacement variables

to zero. Furthermore, because the control nodes are allowed to move only in the vertical direction,

rigid rotations are automatically eliminated. A visualization of the vertices of the design element

and the deformation induced by perturbing each design variable is given in Figure 5.17. While

SDESIGN is used to deform the surface nodes of the airfoil, a robust mesh motion algorithm based

on a structural analogy is used to deform the surrounding body-fitted CFD mesh accordingly.

The flow over the airfoil is modeled using the compressible Euler equations, and these are solved

numerically using AERO-F [68]. Because this flow solver is three-dimensional, the two-dimensional

fluid domain around the airfoil is represented as a slice of a three-dimensional domain. This slice is

discretized using a body-fitted CFD mesh with 54 816 tetrahedra and 19 296 nodes (Figure 5.18a).

Specifically, the flow equations are semi-discretized by AERO-F on this CFD mesh using a second-

order finite volume method based on Roe’s flux [169].

For each airfoil configuration generated during the iterative optimization procedure, the steady

state solution of the flow problem is computed iteratively using pseudo-transient continuation. For

this purpose, each sought-after steady state solution is initialized using the best previously computed

steady state solution available in the database5. The best steady state solution is defined here as that

steady state solution available in the database which, for the given airfoil configuration, minimizes

the residual of the discretized steady state Euler equations. Because the database of steady state

flow solutions is initially empty, the iterative computation of the steady state flow over the initial

shape—in this case, that of the NACA0012 airfoil—is initialized with the uniform flow solution.

The trust region method described in this chapter that employs ROMs as the approximation

model is used to solve the aerodynamic shape optimization problem. At each HDM sample, the

5In this context, the database refers to the flow solutions computed for all shapes previously visited by the
optimization trajectory.
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(a) µ1 = 0.1 (b) µ2 = 0.1
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(g) µ7 = 0.1 (h) µ8 = 0.1

Figure 5.17: Shape parametrization of a NACA0012 airfoil using a cubic design element (the notation
µ

i

designates the i-th component of the vector µ which refers to the i-th displacement degree of
freedom of the shape parametrization)

steady state solution and sensitivities with respect to shape parameters are computed and used as

snapshots. As the chosen shape parametrization has 8 parameters, 9 snapshots are generated per

HDM sample: one snapshot corresponding to the steady state solution and 8 solution sensitivities. A

ROB is extracted from these snapshots using the heterogeneous span-preserving variant of the POD

method in Algorithm 7. Because very few snapshots are generated for this problem, the truncation

step in the POD algorithm is skipped. Consequently, the size of the constructed ROB is k

u

= 9s,

where s is the number of sampled HDMs. The nonlinear least-squares problem describing the ROM

is solved using the Gauss-Newton method equipped with a backtracking linesearch algorithm. The

python interface to the SNOPT [70] software, pyOpt [151], is used to solve the optimization problem

itself.

At this point, it is noted that since the exact profile of the RAE2822 airfoil does not lie in

the space of admissible airfoil profiles defined by the cubic design element parametrization, it is

approximated by the closest admissible profile. This approximation is referred to in the remainder

of this section as the Cub-RAE2822 airfoil. It is graphically depicted in Figure 5.19 which also shows

the pressure isolines computed for this airfoil at the free-stream Mach number M1 = 0.5 and angle

of attack ↵ = 0.0�.
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(a) CFD mesh for the NACA0012 airfoil

(undeformed, 19 296 nodes)

(b) Pressure field (M1 = 0.5, ↵ = 0.0�)

Figure 5.18: NACA0012 mesh and pressure distribution at Mach 0.5 and zero angle of attack.

Subsonic inverse design

The free-stream conditions of interest are set to the subsonic Mach number M1 = 0.5 and zero

angle of attack (↵ = 0�), and the following optimization problem is considered

minimize
µ2RNµ

1

2

��p(u(µ))� p(u(µRAE2822))
��2
2

subject to µ

3

= 0

µ
l

 µ  µ
u

(5.62)

where p(u) is the vector of nodal pressures, and µRAE2822 designates the parameter solution vector

morphing the NACA0012 airfoil into the Cub-RAE2822 airfoil. The first constraint is introduced

to eliminate the rigid body translation in the vertical direction as discussed in the previous section.

The box constraints prohibit the optimization trajectory from going through highly distorted shapes

that would cause the flow solver to fail.

To obtain a reference solution that can be used for assessing the performance of the proposed

ROM-based optimization method, problem (5.62) is first solved using the HDM as the constraining

PDE. In this case, the optimizer is found to reduce the initial value of the objective function by

9 orders of magnitude, before numerical di�culties cause it to terminate (Figure 5.20). Relevant

statistics associated with this HDM-based reference solution of the optimization problem are gath-

ered in Table 5.8. Essentially, 24 optimization iterations are required to obtain a solution with a

relative error well below 0.1%. These iterations incur a total of 29 HDM queries (including those

associated with the linesearch iterations). Figure 5.21 shows the pressure distribution associated

with this reference solution matches the target pressure distribution very well.
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(a) CFD mesh for the Cub-RAE2822 airfoil (b) Pressure field (M1 = 0.5, ↵ = 0.0�)

Figure 5.19: Cub-RAE2822 mesh and pressure isolines computed at Mach 0.5 and zero angle of
attack.

Next, the ROM-based trust region method developed in this chapter and summarized in Algo-

rithm 11 is applied to solve problem (5.62), which solves a sequence of trust region subproblems of

the form

minimize
µ2RNµ

1

2

��p(�
k

u
r

(µ))� p(u(µRAE2822))
��2
2

subject to µ

3

= 0

µ
l

 µ  µ
u

1

2
kr(�

k

u
r

(µ),µ)k2
2

 �
k

.

(5.63)

The HDM is sampled at the initial configuration and the resulting 9 snapshots are used to build

a ROB using Algorithm 7, without truncation. The resulting ROB is used to construct a reduced-

order model based on a LSPG projection and the corresponding minimum-residual sensitivity model

to solve (5.63). Indeed, as the minimum-residual sensitivity computation described in Section 4.1.2

is not consistent with the true reduced sensitivities for large residuals, convergence of the optimiza-

tion problem is not guaranteed. To address this issue, an upper bound is set on the number of

optimization iterations (25 in this case) and the goal of the reduced optimization problem is set to

finding an improvement to the current solution before updating the ROB. The HDM is sampled at

the termination point of each reduced optimization problem yielding 9 additional snapshots which

are appended to the ROB using Algorithm 9. Linear independence of the basis is maintained by

truncating vectors corresponding to singular values below some tolerance. For the present applica-

tion, such truncation was not necessary as the snapshots added to the ROB at a given iteration were

not contained in the span of the snapshots from previous iterations.

Using only 7 HDM samples, the progressive ROM optimization framework reduces the initial

pressure discrepancy by 18 orders of magnitude, to essentially machine zero. Interestingly, this is 4

times fewer HDM queries than required by the HDM-based optimization. Figure 5.21 shows that
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Figure 5.20: Progression of the objective function during the HDM-based optimization. The initial
guess is defined as the 0th optimization iteration.

both the shape of the airfoil and the associated pressure distribution discovered by the ROM-based

optimization method match the target shape and pressure distribution very well.

Surprisingly, the ROM-based optimization process achieves a lower value of the objective function

than the HDM-based one. This can be traced to convergence tolerance on the HDM sensitivity

analysis. The HDM-based sensitivities are obtained by solving the multiple right-hand side linear

system of equations in (2.87) using GMRES. The convergence tolerance is kAx� bk
2

 � kbk
2

for solving the linear system of equations Ax = b, with � = 10�10 in this case. If kbk is large

(b = @r/@µ in this case), the convergence requirement may be rather flexible. Conversely, the

minimum-residual ROM sensitivities in (4.28) are solved to machine precision using a direct QR

factorization.

Recall from Chapter 4 that the minimum-residual reduced sensitivities approach the true sen-

sitivities for LSPG projection as the HDM residual approaches zero. Figure 5.24 verifies that the

HDM residual is small after 6 HDM samples are taken, which implies the minimum-residual ROM

sensitivities are (nearly) consistent with the true ROM sensitivities. This consistency will guaran-

tee convergence of the reduced optimization problem when using a globally convergent optimization

solver. Additionally, the small HDM residual implies that the ROM is highly accurate in this region,

making it likely that the reduced optimization problem will converge to a point close to the true

optimum.

Figure 5.22 reports on the evolution of the objective function with the number of optimization

iterations, and marks each new HDM query along the optimization trajectory. The reader can

observe that the proposed ROM-based optimization method performs a total of 160 trust region

subproblem iterations (Figure 5.23) requiring 346 ROM evaluations (see Table 5.8) and 7 HDM
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Figure 5.21: Subsonic inverse design of the airfoil Cub-RAE2822: initial shape (NACA0012) and
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p

function, and final shape (Cub-RAE2822) and associated C

p

functions delivered by
the HDM- and ROM-based optimizations, respectively.

queries. From a computational complexity viewpoint, this compares favorably with the 24 HDM-

based optimization iterations requiring 29 HDM queries (see Table 5.8). Figure 5.23 graphically

depicts the progression of the reduced objective function across all reduced optimization problems

using a dashed line to indicate a new HDM sample and a subsequent update of the ROB. For each

optimization problem, it also reports the size of the ROM.

Finally, Figure 5.24 shows the evolution of the HDM residual evaluated at the solution of the

ROM—which is an indicator of the ROM error—across all reduced optimization problems, along

with the trust region radius �
k

. It is common practice in nonlinear programming software to allow

violation of nonlinear constraints during an optimization procedure, which explains the residual

bound violation seen in this figure. Figure 5.24 also shows that the ROM solution coincides with

the HDM solution at the initial condition of each optimization problem, as expected from the

interpolation property of minimum-residual reduced-order models. In the first few major iterations

that are far the optimal solution, the residual grows rapidly as the iterates move into areas of the

parameter space away from HDM samples. However, near the optimal solution, the residual remains

small as the optimization iterates remain in a small neighborhood of the most recent HDM sample.
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Remark. There are two mechanisms that prevent the reduced optimization problem from venturing

into regions of the parameter space where it lacks accuracy: (1) the objective function and (2) the

nonlinear trust region. In the present inverse design example, the objective function is mostly su�-

cient to keep the ROM in regions of accuracy, as can be seen from Figure 5.24 where the trust region

bound is only reached once and the upper bound always increases. For other objective functions such

as drag, the nonlinear trust region will be necessary as it is likely that an inaccurate ROM can predict

a lower value in such objective functions than is actually present. In practice, inaccurate ROMs have

been observed to predict the nonphysical situation of negative drag (i.e. thrust), which motivates the

need for the residual-based trust region.
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Figure 5.22: Objective function versus number of queries to the HDM: ROM-based optimization
(red) and HDM-based optimization (black).

5.5.4 Shape Optimization of the Common Research Model in Viscous,

Turbulent Flow

This section applies the proposed trust region method based on reduced-order approximation models

to shape design of a full aircraft configuration—the Common Research Model (CRM)—in viscous,

turbulent flow. The goal of the optimization problem is to maximize the lift-to-drag ratio of the

aircraft while maintaining a constant lift. The flow is modeled using the Reynolds’ Averaged Navier-

Stokes (RANS) equations with a Spalart-Allmaras turbulence model. The freestream Mach number

and angle of attack are taken as M = 0.85 and ↵ = 2.32�, which are standard operating conditions

for a commercial aircraft of this size. The Reynolds’ number is Re = 5⇥106, which is based on wind

tunnel model conditions and the reference chord length in the undeformed configuration. The chosen

6The last HDM sample in Figure 5.22 was not included in this count as the residual-based error indicator is small
at this configuration (Figure 5.24). A similar argument could also be made for the 7th HDM sample.
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Figure 5.23: Progression of reduced objective function: dashed line indicates an HDM sample and a
subsequent update of the ROB.

freestream Mach number place the flow in the transonic regime, which implies shocks will develop

on the wing of the aircraft. The governing equations are discretized with a second-order, vertex-

centered finite volume scheme using the AERO-F software [68] and the resulting system of nonlinear

equations are solved using pseudo-transient continuation. The mesh employed was validated for

these freestream conditions [198] and consists of 11 454 702 nodes for a total of 68 728 212 degrees of

freedom.

The design problem (5.64) looks to maximize the lift-to-drag ratio at a constant lift subject to

box constraints over a four-dimensional shape design space

maximize
µ2R4

L

z

(µ)/L
x

(µ)

subject to L

z

(µ) = L

z

(0)

µ
l

 µ  µ
u

.

(5.64)

The four shape parameters considered in this problem are: wingspan (µ
1

), localized sweep (µ
2

),

twist (µ
3

), and localized dihedral (µ
4

); see Figure 5.25 for an illustration of each parameter. The

lift constraint is included to ensure the optimized aircraft can carry the same payload as the original

aircraft. The box constraints are included to ensure the shape changes are reasonable and the com-

putational mesh does not tangle. The optimization problem in (5.64) is initialized from a perturbed

CRM configuration that shortens the wing and adds negative twist. The optimized configuration

achieves a drag count reduction of 2.2 by lengthening the wing and adding positive sweep, dihedral,

and twist. This solution was obtained using by embedding a L-BFGS-B [215] bound-constrained op-

timization solver in an augmented Lagrangian framework to handle the nonlinear equality constraint

and solve (5.64) directly. This method, which solely relies on HDM solves for objective and gradient
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Figure 5.24: Progression of HDM residual: dashed line indicates an HDM sample and a subsequent
update of the ROB.

queries, will serve as a baseline for comparison with the proposed hyperreduced trust region method

in the remainder. Figure 5.26 provides two di↵erent views of the initial and optimized shapes to

illustrate the changes that occur during the maximization process. Figure 5.27 shows the initial

and optimized shapes colored by the pressure coe�cient distribution on the surface. The optimized

shape weakens the shock near the wing tip, which explains the 2.2 drag count reduction.

The proposed trust region method based on masked minimum-residual hyperreduced approxi-

mation models (with an underlying LSPG projection) is applied to solve the optimization problem

in (5.64). Gradients are computed according to the masked minimum-residual sensitivity method

and primal/sensitivity snapshots are used in the heterogeneous, span-preserving variant of POD

without truncation. Therefore, the size of the reduced-order model increases by 5 at each iteration

since a single primal snapshot and four sensitivity snapshots are added to the reduced-order basis.

Due to the presence of the nonlinear equality constraint, the unconstrained trust region method is

wrapped in the augmented Lagrangian framework described in Section 3.2.1. Figure 5.28 shows the

convergence history of the drag count reduction as a function of the number of HDM queries for the

baseline method and the hyperreduced trust region method. The hyperreduced trust region method

requires half as many queries to the HDM to converge to a prescribed tolerance. However, this

does not account for all sources of cost in the hyperreduced trust region method since there is cost

associated with solving the trust region subproblem (hyperreduced model queries) and construction

of the hyperreduced model at each iteration. Figure 5.29 includes these additional sources of cost

by showing the convergence of the drag count reduction as a function of wall time normalized by

the wall time of a single HDM solve. When properly accounting for all sources of cost, the speedup

of the hyperreduced trust region method decreases marginally from 2⇥ to 1.6⇥ (80% e�ciency).

Finally, Figure 5.30 shows the sample mesh used at intermediate of the hyperreduced trust region
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Figure 5.25: Parametrization of CRM. Left : Undeformed CRM configuration. Right : Deformed
CRM configuration with positive perturbation to the wingspan µ

1

(top row), localized sweep µ

2

(second row), twist µ
3

(third row), and localized dihedral µ
4

(bottom row).
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Figure 5.26: Two di↵erent views of the initial guess (gray) and solution (red) of the optimization
problem in (5.64). The displacement from the undeformed configuration to the optimal solution
(red) is magnified by 2⇥. There is a 2.2 drag count reduction from the initial to optimized shape.

Figure 5.27: Left : Initial guess for optimization problem in (5.64). Right : Solution of optimization
problem in (5.64). Both plots are colored by the coe�cient of pressure C

p

. There is a 2.2 drag count
reduction from the initial to optimized shape.
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Figure 5.28: Convergence history of the baseline PDE-constrained optimization solver without model
reduction ( ) and proposed trust region method based on hyperreduced approximation models
( ). A yellow square ( ) indicates an augmented Lagrangian update. The reduction in drag
count is taken as the performance metric and the number of primal HDM queries is the cost model.
With respect to this cost metric, the ROM-based optimization solver converges 2⇥ faster than the
HDM-based solver.

method, which contains only 72 110 nodes—0.6% of the original mesh.
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Figure 5.29: Convergence history of the baseline PDE-constrained optimization solver without model
reduction ( ) and proposed trust region method based on hyperreduced approximation models
( ). A yellow square ( ) indicates an augmented Lagrangian update. The reduction in drag count
is taken as the performance metric and the total wall time of the optimization procedure (normalized
by the wall time of a single primal HDM solve) is the cost model. With respect to this cost metric,
the ROM-based optimization solver converges 1.6⇥ faster than the HDM-based solver.

Figure 5.30: The sample mesh (72⇥ 103 nodes) used at an intermediate iteration of the trust region
method based on hyperreduced (collocation) approximation models.
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Table 5.8: Performance of the HDM- and ROM-based optimization methods.

HDM-based
optimization

ROM-based
optimization

# of HDM Evaluations 29 76

# of ROM Evaluations - 346��µ⇤ � µRAE2822

��
kµRAE2822k 2.28⇥ 10�3% 4.17⇥ 10�6%



Chapter 6

Model Reduction and Sparse Grids

for E�cient Stochastic

Optimization

To this point, all partial di↵erential equations, and the corresponding optimization problems, have

been posed in a deterministic setting, that is, the PDE itself and all its data are assumed known. This

is not a realistic assumption since all PDEs are merely mathematical models of physical phenomena

and even if the PDE is an accurate approximation of reality, its data—coe�cients, boundary con-

ditions, source terms, etc—will rarely be known with certainty. This is particularly true in physical

systems characterized by a high degree of volatility or those where physical measurements are di�-

cult to take. In such settings, the uncertainty must be incorporated into the optimization problem

if a robust, risk-averse design or control is to be attained. In this work, parametrized uncertainties

are considered and risk-averse measures (Section 2.2.1) of quantities of interest will be used as the

objective and constraint functions for the stochastic PDE-constrained optimization problem. The

mathematical construction and discretized of parametrized stochastic partial di↵erential equations

is provided in Section 2.2, including the introduction of a complete probability space, the finite

noise assumption, spatio-temporal discretization of a realization of the stochastic partial di↵erential

equation, and collocation-based discretization of the stochastic space. Since risk-averse measures

usually require the computation of an integral over the stochastic space, a single query to an op-

timization function requires the evaluation of an integral whose integrand depends on the solution

of a realization of the stochastic partial di↵erential equation. In general, this requires a (possibly

large) ensemble of deterministic PDE solves and makes stochastic PDE-constrained optimization

problems potentially many orders of magnitude more expensive than the deterministic counterparts.

In fact, if there are large number of stochastic parameters, it is di�cult to evaluate an integral

over a high-dimensional space even if the integrand is inexpensive to evaluate due to the curse of

dimensionality. A straightforward or brute force approach to solve such optimization problems is
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infeasible for all but the simplest problems.

To address the large cost of PDE-constrained optimization under uncertainty, a multifidelity trust

region method based on the theory introduced in Chapter 3 is developed. The approximation model

incorporates two levels of inexactness: dimension-adaptive sparse grids for e�cient collocation-

based integration in moderate-to-high dimensional spaces and reduced-order models to reduce the

cost of queries to a realization of the stochastic partial di↵erential equation. Both levels of the

approximation will be incorporated into the required error indicators. A two-level greedy method is

proposed to construct the sparse grid and reduced-order basis such that, at a given iteration of the

trust region method, the required error conditions are satisfied, thus ensuring global convergence.

The proposed method is demonstrated on a one-dimensional optimal flow control problem. For

simplicity, the remainder of this document will consider only the risk-neutral measure, or expectation,

of a quantity of interest. Extension to other risk-averse measures will be deferred to later work.

6.1 Background

This chapter begins with an overview of ingredients that will be necessary to develop the proposed

trust region method based on the two-level approximation of risk measures of quantities of interest

of stochastic PDEs: stochastic reduced-order models and anisotropic sparse grids.

6.1.1 Stochastic High-Dimensional Model

Consider the discrete collocation-based stochastic PDE introduced in Section 2.2

r(u, µ, y) = 0 8y 2 ⌅ (6.1)

where u 2 RNu is the state vector, µ 2 RNµ is the parameter vector, y 2 ⌅ are the stochastic

variables, and ⌅ ⇢ RNy is the stochastic space. The existence of a continuously di↵erentiable

function u(µ; y), defined as the solution of r( · , µ, y) = 0, is guaranteed by Theorem 2.1, under

suitable assumptions. Depending on the nature of the stochastic variables, the quantity of interest

may be stochastic as well and a realization will take the form

f(u, µ, y) (6.2)

for y 2 ⌅, which can be considered only a function of µ and y using the implicit definition u(µ; y)

F (µ; y) = f(u(µ; y), µ, y). (6.3)

The risk-neutral measure of the QoI, which will be used as the objective for the stochastic optimiza-

tion problem in this work, is

F (µ) = E[f(u(µ; · ), µ, · )] = E[F (µ, · )]. (6.4)
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Generalization to other risk-averse measures proceeds by replacing E[·] with R[·] defined in (2.51)-

(2.55); however, special care will be required in the construction of quadrature rules for non-smooth

risk-averse measures.

The gradient of the risk-neutral measure of the QoI, rF (µ), is computed via the sensitivity or

adjoint method, depending on the number of QoIs versus the number of parameters (N
µ

). Since

the di↵erentiation operation (with respect to µ) can be pulled inside the expectation operation

(integration with respect to y), the gradient takes the form

rF (µ) = E [rf(u(µ; · ), µ, · )] = E [rF (µ, · )] . (6.5)

This illustrates that the computation of the gradient of the risk-neutral measure of the QoI reduces

to an integral over realizations of the QoI gradients, i.e., for a fixed y 2 ⌅ and µ 2 RNµ . The

gradient of a particular realization proceeds exactly according to the adjoint or sensitivity method

outlined in Sections 2.3.3 and 2.3.4. Following the procedures outlined in that section, the stochastic

variant of the sensitivity and adjoint residuals are

r@ (u, w, µ, y) :=
@f

@µ
(u, µ, y) +

@f

@u
(u, µ, y)w

r� (u, z, µ, y) :=
@f

@µ
(u, µ, y)� zT

@r

@µ
(u, µ, y).

(6.6)

Then, a realization of the sensitivity problem for a fixed y 2 ⌅ and µ 2 RNµ is: given the primal

solution u(µ; y) that satisfies r( · , µ, y) = 0, find
@u

@µ
such that r@

✓
u(µ; y),

@u

@µ
, µ, y

◆
= 0.

Similarly, a realization of the adjoint problem for a fixed y 2 ⌅ and µ 2 RNµ is: given the primal

solution u(µ; y), find � such that r�(u(µ; y), �, µ, y) = 0. The sensitivity and adjoint solution,

for a particular y 2 ⌅ and µ 2 RNµ , will be denoted
@u

@µ
(µ; y) and �(µ; y), respectively. The

reconstruction of the gradient of a QoI from a sensitivity or adjoint solution are generalized from

the deterministic case in (2.90), (2.102) to the stochastic case as

g@(u, w, µ, y) :=
@f

@µ
(u, µ, y) +

@f

@u
(u, µ, y)w

g�(u, z, µ, y) :=
@f

@µ
(u, µ, y) + zT

@r

@µ
(u, µ, y).

(6.7)

With these definitions, a realization of the gradient of a QoI corresponding to y 2 ⌅ and µ 2 RNµ

takes the form

rF (µ, y) = g@

✓
u(µ; y),

@u

@µ
(µ; y), µ, y

◆
= g� (u(µ; y), �(µ; y), µ, y) (6.8)

and the gradient of the risk-neutral measure in (6.4) is

rF (µ) = E

g@

✓
u(µ; · ), @u

@µ
(µ; · ), µ, ·

◆�
= E

⇥
g� (u(µ; · ), �(µ; · ), µ, · )

⇤
. (6.9)



CHAPTER 6. STOCHASTIC PDE OPTIMIZATION WITH ROMS AND SPARSE GRIDS 173

6.1.2 Stochastic Reduced-Order Model

The dimension of the discretized stochastic PDE in (6.1) is reduced through the introduction of the

model reduction ansatz u = �u
r

from (4.2) into (6.1), where � 2 RNu⇥ku is the trial basis that

defines a subspace that (approximately) contains the solution of any realization of the stochastic

PDE, i.e., u(µ, y) for µ 2 RNµ and y 2 ⌅. The result is an overdetermined nonlinear system

of equations r(�u
r

, µ, y) = 0 for any realization y 2 ⌅. Projection of these equations onto the

columnspace of the test basis  2 RNu⇥ku leads to the projection-based reduced-order model with

k

u

equations and unknowns

r
r

(u
r

, µ, y) :=  Tr(�u
r

, µ, y) = 0. (6.10)

This work will primarily be consider minimum-residual reduced-order models (Definition 4.1), which

completely prescribes the test basis  based on the trial basis � and optimality metric ⇥. For a

given µ 2 RNµ and realization y 2 ⌅, the solution of (6.10) will be denoted u
r

(µ; y, �,  ), which

will be shortened to u
r

(µ; y) when there is no risk of confusion regarding the choice of test and

trial basis. From Theorem 2.1, u
r

(µ; y, �,  ) is a continuously di↵erentiable function of µ. A

realization of the reduced quantity of interest takes the form f(�u
r

, µ, y), which can be considered

solely a function of µ and y through the implicit solution of (6.10)

F

r

(µ; y, �,  ) = f(�u
r

(µ; y, �,  ), µ, y). (6.11)

Finally, the risk-neutral measure of the reduced quantity of interest, which serves as an approxima-

tion for the risk-neutral measure of the true quantity of interest in (6.4), is

F

r

(µ; �,  ) = E[f(�u
r

(µ; · , �,  ), µ, · )] = E[F
r

(µ; · , �,  )]. (6.12)

Following the exposition in Sections 4.1.2 and 4.1.3, the gradient of the risk-neutral measure is

computed according to the sensitivity or adjoint method as

rF
r

(µ; �,  ) = E

g@

✓
�u

r

(µ; · , �,  ), �
@u

r

@µ
(µ; · , �,  ), µ, ·

◆�

= E
⇥
g� (�u

r

(µ; · , �,  ),  �
r

(µ; · , �,  ), µ, · )
⇤
.

(6.13)

where �u
r

(µ; y, �,  ) is the reconstructed primal solution for realization y 2 ⌅, @ur

@µ
(µ; y, �,  )

is the reduced sensitivity, and �
r

(µ; y, �,  ) is the reduced adjoint. The minimum-residual variants

of the reduced gradient computation in (6.13) can be used in place of rF
r

(µ)

drF
r

(µ; �,  , �@

, ⇥@) = E
"
g@

 
u( · ), �@

d
@u

r

@µ
(µ; · , �@

, ⇥@

, u( · )), µ, ·
!#

drF
r

(µ; �,  , ��

, ⇥�) = E
h
g�

⇣
u( · ), ���̂

r

(µ; · , ��

, ⇥�

, u( · )), µ, ·
⌘i (6.14)
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where u(y) = �u
r

(µ; y, �,  ) is the reconstructed primal solution for realization y 2 ⌅,
d
@u

r

@µ
(µ; y, �@

, ⇥@

, u(y)) is the solution of the minimum-residual sensitivity equations in (4.28)

and �̂
r

(µ; y, ��

, ⇥�

, u(y)) is the solution of the minimum-residual adjoint equations in (4.56)

for the realization corresponding to y 2 ⌅. Using Propositions 4.3 and 4.5 as motivation, the

sensitivity/adjoint bases and optimality metrics are chosen according to (4.35) and (4.63). This

implies that the selection of � and  completely specify �@ and ��. From these propositions,

the exact and minimum-residual sensitivities will only agree if the test basis  is constant (such

as a Galerkin projection) or the primal reduced-order model solution is exact for each realization

y 2 ⌅. Since training a reduced-order model to be exact for all y 2 ⌅ is impractical, the relation

rF
r

(µ) = drF
r

(µ) will only hold if the test basis is constant.

The residual-based error bounds derived in Appendix B hold for a particular realization y 2 ⌅
of the stochastic PDE, provided Assumptions (AR1)–(AR8), (AQ1)–(AQ4) hold for this realization.

The primal, sensitivity, and adjoint residual error bounds for a realization y 2 ⌅ are

|f(u(µ, y), µ, y)� f(u, µ, y)|  ⇣ kr(u, µ, y)k
����g

@

✓
u(µ, y),

@u

@µ
(µ, y), µ, y

◆
� g@(u, w, µ, y)

����   kr(u, µ, y)k+ ⌧

��r@ (u, w, µ, y)
��

��g� (u(µ, y), �(µ, y), µ, y)� g�(u, z, µ, y)
��   kr(u, µ, y)k+ ⌧

��r� (u, z, µ, y)
��
(6.15)

where u = �u
r

(µ; y, �,  ) is the reconstructed primal solution,w is the reconstructed reduced sen-

sitivity (exact or minimum-residual), i.e.,w = �
@u

r

@µ
(µ; y, �,  ) orw = �@

d
@u

r

@µ
(µ; y, �@

, ⇥@

, u),

and z is the reconstructed reduced adjoint (exact or minimum-residual), i.e., z =  �
r

(µ; y, �,  )

or z = ���
r

(µ; y, ��

, ⇥�

, u).

Finally, the stochastic generalization of the collocation-based hyperreduced models of Section 4.2

follows immediately from the construction in that section and takes the form

(P T )TP Tr(�u
r

, µ, y) = 0 8y 2 ⌅ (6.16)

The case of stochastic hyperreduction will not be considered further as only problems amenable

to precomputations (polynomial nonlinearities) will be considered in the numerical experiments

(Section 6.4).

While the introduction of the stochastic reduced-order and hyperreduced models in this section

reduces the cost of evaluating risk-averse measures of PDE quantities of interest, e.g., for stochastic

optimization, they may still be prohibitively expensive due to the curse of dimensionality. The

next section introduces anisotropic sparse grids to mitigate or delay the impact of the curse of

dimensionality when evaluating risk-averse measures in moderate-to-large dimensional stochastic

spaces.
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6.1.3 Anisotropic Sparse Grids

Consider the di�cult problem of evaluating the expectation of a smooth function g : RNy ! R

E[g] =
Z

⌅
⇢(y)g(y) dy (6.17)

where ⌅ ⇢ [�1, 1]Ny is the stochastic space and ⇢ : ⌅ ! R
+

is the joint probability density

function with marginal probability density functions ⇢
k

: ⌅
k

! R
+

for k = 1, . . . , N
y

such that

⇢ = ⇢

1

⌦ · · ·⌦⇢
N

y

). When N

y

is moderate-to-large, the evaluation of the integral in (6.17) is di�cult

since multidimensional quadrature rules derived from optimal 1D quadrature rules su↵er from the

curse of dimensionality. Isotropic sparse grids, originally introduced in [184] and extensively studied

since [144, 66, 145, 156, 18, 157], generate e�cient quadrature rules that delay the influence of the

curse of dimensionality and allows for larger stochastic spaces to be considered. Anisotropic sparse

grids [67] further optimize the quadrature rules by leveraging anisotropy of the integrand.

The sparse grid construction begins with the definition of a one-dimensional quadrature rule of

level i that will be used in the kth dimension, Ei

k

. The level is an integer used to indicate refinement

of the one-dimensional quadrature rule such that

Ei

k

[h]! E
k

[h] =

Z

⌅

k

⇢

k

(y)h(y) dy as i!1. (6.18)

for h : ⌅
k

! R. Let ⌅i

k

⇢ [�1, 1] be the quadrature nodes associated with the quadrature rule Ei

k

.

While the sparse grid construction to follow holds for any valid and refinable quadrature rule that

satisfies (6.18), only nested quadrature rules will be considered. That is, the nodes at level i are a

subset of the nodes at level i + 1, ⌅i

k

⇢ ⌅i+1

k

. The nested property will not be used in the sparse

grid construction, but leads to an e�cient implementation since, at level i + 1, only h(y) must be

evaluated for y 2 ⌅i+1

k

\ ⌅i

k

.

From the one-dimensional quadrature rules, the corresponding di↵erence operators are defined

as

�1

k

:= E1

k

and �i

k

:= Ei

k

� Ei�1

k

for i � 2. (6.19)

The requirement in (6.18) on the quadrature rules implies �i

k

[g]! 0 as i! 0. The one-dimensional

quadrature rule Ei

k

is recovered by summing over all di↵erence operators in dimension k up through

level i

Ei

k

=
iX

j=1

�j

k

(6.20)

since the sum telescopes due to the definition of �i

k

in (6.19). A multi-dimensional di↵erence

operator is constructed from a tensor product of one-dimensional di↵erence operators, each possibly

at a di↵erent level of refinement

�i := �i

1

1

⌦ · · ·⌦�
i

Ny

Ny
. (6.21)

A multi-index i 2 NNy

+

with components i = (i
1

, . . . , i

Ny ) is used to track the refinement level of
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each one-dimensional di↵erence operator, i.e., i
k

is the refinement level of the di↵erence operator in

dimension k. From the multi-dimensional di↵erence operator, a quadrature rule EI is defined by

summing over all multi-indices in a multi-index set I ⇢ NNy

+

EI =
X

i2I
�i :=

X

i2I
�i

1

1

⌦ · · ·⌦�
i

Ny

Ny
. (6.22)

Let ⌅I ⇢ [�1, 1]Ny denote the quadrature nodes associated with the multi-dimensional quadrature

rule EI . The use of nested, one-dimensional quadrature rules implies ⌅I ⇢ ⌅J for I, J multi-index

sets such that I ⇢ J . In the multi-dimensional case, this leads to substantial savings as evaluations

of g can be recycled as the sparse grid is refined.

For EI to be a convergent quadrature rule, i.e., EI ! E as I ! NNy

+

, a telescoping property

similar to that in (6.20) must hold. This requirement is satisfied if the multi-index I is admissible

in the sense of Definition 6.1.

Definition 6.1. An index set I ⇢ NNy

+

is admissible if for all k 2 I,

k � e
j

2 I for 1  j  N

y

, k

j

> 1 (6.23)

This completes the construction of general, anisotropic sparse grids. From this general construc-

tion, some well-known special cases can be recovered. The tensor product quadrature rule of level

i, Ei

1

⌦ · · ·⌦ Ei

Ny
, can written as EIi

1
with Ii

1 = {i 2 NNy

+

| |i|1  i}, i.e.,

Ei

1

⌦ · · ·⌦ Ei

Ny
[g] =

X

|i|1i

(�i

1

⌦ · · ·⌦�i

Ny
)[g] = EIi

1
. (6.24)

Figure 6.1 provides an example of a tensor product quadrature rule, and the corresponding index

set, based on Clenshaw-Curtis quadrature rules; the index set is dense and leads to a quadrature

rule with the maximum number of nodes. The isotropic Smolyak sparse grid of level i is

X

|i|
1

i+Ny+1

(�i

1

⌦ · · ·⌦�i

Ny
)[g] = EIi

iso

, (6.25)

where Ii

iso

= {i 2 NNy

+

| |i|
1

 i + N

y

� 1}. See Figure 6.2 for an illustration of the quadrature

nodes and index set; the index set is only refined along the diagonal, which leads to much sparser

quadrature rules than direct tensor products. Finally, Figure 6.3 illustrates an anisotropic sparse

grid, including quadrature nodes and index set, which further reduces the number of quadrature

compared to the other options and (potentially) takes advantage of anisotropy in the integrand g(y)

and probability density function ⇢(y).

The neighbor of a sparse grid is the final concept introduced in this section and will be used

extensively in assessing the truncation error that arises from approximating E[g] by EI [g]. The set
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of neighbors corresponding to a sparse grid I ⇢ NNy

+

, denoted N (I) ⇢ NNy

+

is defined as

N (I) := {i 2 Ic | I [ {i} is admissible} (6.26)

where Ic is the complement of the multi-index set I in NNy

+

, i.e., Ic = {i 2 NNy

+

| i 62 I}. Figure 6.4
shows the quadrature nodes and index set corresponding to the anisotropic sparse grid, including

neighbors, in Figure 6.3. Following the work in [67, 108, 109], the truncation error, which can be

written as the infinite sum

E[g]� EI [g] =
X

i2Ic

(�i

1

1

⌦ · · ·⌦�
i

Ny

Ny
)[g] (6.27)

can be approximated as

E[g]� EI [g] ⇡
X

i2N (I)
(�i

1

1

⌦ · · ·⌦�
i

Ny

Ny
)[g]. (6.28)

The concept and notation used to represent neighbors of a sparse grid is easily extended to handle

j layers of neighbors, that is, N (I) is the 1st layer of neighbors, N (N (I)) is the 2nd layer, and

N j(I) := N � · · · �N| {z }
j terms

�I is the jth layer. A more accurate approximation of the truncation error

is attainable by including more distant neighbors, but expense of the corresponding computation

rapidly increases. For this reason, usually only the first layer of neighbors is used to approximate

the truncation error [67, 108, 109], which is the approach taken in this work.
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Figure 6.1: Full tensor product based on Clenshaw-Curtis (levels 1, 3, 5)
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Figure 6.2: Isotropic sparse grid based on Clenshaw-Curtis (levels 1, 3, 5)
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Figure 6.3: Anisotropic sparse grid based on Clenshaw-Curtis (levels 1, 3, 5)
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Figure 6.4: Anisotropic sparse grid based on Clenshaw-Curtis with all (including non-admissible)
forward neighbors (levels 1, 3, 5)
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6.2 Two Levels of Approximation of Risk-Averse Measures

The two approximation technologies introduced—anisotropic sparse grids for the e�cient approxima-

tion of high-dimensional integrals and stochastic reduced-order models to reduce the cost associated

with solving a realization of the SPDE—are combined to yield an inexpensive approximation of

risk-averse measures of quantities of interest of high-fidelity partial di↵erential equations. For the

remainder of this section, suppose a sparse grid I and reduced-order model (�,  ) are given – the

construction of each will be considered in detail in Section 6.3.2. The two-level approximation of

the risk-averse measure of the quantity of interest in (6.4) is

F

r

(µ; �,  , I) := EI [f(�ur

(µ; ·, �,  ), µ, · )]. (6.29)

The introduction of the sparse grid introduces a truncation error into the evaluation of the integral

and the reduced-order model introduces an error in the evaluation of the quantity of interest at

each collocation node. The benefit of such an approximation is that the many high-dimensional

model solutions required to evaluate F (µ) are replace by few reduced-order model solutions to

evaluate F

r

(µ). The introduction of the sparse grid further benefits the reduced-order model since

it only needs to be trained on the collocation nodes instead of everywhere in ⌅. The gradient of the

approximation in (6.29) is computed according to the sensitivity or adjoint method as

rF
r

(µ; �,  , I) = EI


g@

✓
�u

r

(µ; ·, �,  ), �
@u

r

@µ
(µ; ·, �,  ), µ, ·

◆�

= EI
⇥
g� (�u

r

(µ; ·, �,  ),  �
r

(µ; · , �,  ), µ, · )
⇤
.

(6.30)

If the true sensitivity and adjoint of the stochastic reduced-order model are too cumbersome to

compute, i.e., if second derivatives of r are required (see Chapter 4), the minimum-residual variants

can be used to compute an approximation to rF
r

(µ) as

drF
r

(µ; �,  , �@

, ⇥@

, I) = EI

"
g@

 
u( · ), �@

d
@u

r

@µ
(µ; ·, �@

, ⇥@

, u( · )), µ, ·
!#

drF
r

(µ; �,  , ��

, ⇥�

, I) = EI
h
g�

⇣
u( · ), ���̂

r

(µ; · , ��

, ⇥�

, u( · )), µ, ·
⌘i (6.31)

where u(y) = �u
r

(µ; y, �,  ) is the reconstructed primal reduced-order model solution of the

realization corresponding to y 2 ⌅.
The error incurred by approximating F (µ) with F

r

(µ; �,  , I) must account for both the

truncation error introduced by the sparse grid and the pointwise error in the reduced-order model.

These terms arise naturally from a simple application of the triangle inequality to the error

|F (µ)� F

r

(µ; �,  , I)| = |E[f(u(µ; · ), µ, · )� EI [f(�ur

(µ; · , �,  ), µ, · )]|

 E[|f(u(µ; · ), µ, · )� f(�u
r

(µ; · , �,  ), µ, · )|]

+ EIc [|f(�u
r

(µ; · , �,  ), µ, · )|]

(6.32)
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where EIc := E � EI was used (Section 6.1.3). The first term in the error bound is the integrated

reduced-order model error and the second is the truncation error that results from using the sparse

grid I to integrate the reduced quantity of interest. While the error bound is instructive in un-

derstanding the sources of error, it can not be e�ciently computed due to the presence of the true

error in the first integrand and the infinite sum required to compute the expectations in both terms

(quadrature over an infinite set of collocation nodes to compute the integral exactly). The residual-

based error bounds from Appendix B are used to circumvent the first issue by bounding the true

error by an arbitrary constant (⇣ > 0) times the residual norm

|F (µ)� F

r

(µ; �,  , I)|  ⇣E[kr(�u
r

(µ; · , �,  ), µ, · )k] + EIc [|f(�u
r

(µ; · , �,  ), µ, · )|]

= ⇣E[kr(�u
r

(µ; · , �,  ), µ, · )k] + EIc [|F
r

(µ; · , �,  )|],
(6.33)

where the definition of F
r

, introduced in Section 6.1.2, was used in the second line. The infinite sums

required to compute both expectations are reduced to finite sums by approximating the complement

of the sparse grid Ic (infinite set of collocation points) with the forward neighbors of the sparse grid

N (I) (finite set of collocation points). With this approximation, the expectation operator E and

truncation operator EIc become

E := EI[Ic ⇡ EI[N (I) and EIc ⇡ EN (I). (6.34)

The introduction of this approximation into the error bound in (6.33) reduces the uncomputable

right-hand side (due to the infinite sums required for evaluation of the expectation and truncation

operators) to

|F (µ)� F

r

(µ; �,  , I)| . ⇣EI[N (I)[kr(�ur

(µ; · , �,  ), µ, · )k] + EN (I)[|Fr

(µ; · , �,  )|],
(6.35)

which is amenable to computation as only finite summations are required. In general, the right-

hand side of (6.35) does not bound the left-hand side due to the introduction of the approximation

Ic ⇡ N (I). While this approximation does not necessarily preserve the error bound in (6.33), it

leads to an inexpensive error indicators: the right-hand side of (6.35) only requires reduced-order

models solves and residual evaluations on the sparse grid I and its neighbors N (I).
An identical procedure is carried out to convert the pointwise error bounds in (6.13) for a given

realization of the stochastic PDE to an inexpensive error indicator. The error indicator for gradients

computed via the sensitivity method takes the form

|rF (µ)�rF
r

(µ; �,  )| . EI[N (I) [kr(�ur

(µ; · , �,  ), µ, · )k] +

⌧EI[N (I)

����r
@(�u

r

(µ; · , �,  ), �
@u

r

@µ
(µ; · , �,  ), µ, · )

����

�
+

EN (I) [krFr

(µ; �,  )k]
(6.36)
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and for gradients computed via the adjoint method, it takes the form

|rF (µ)�rF
r

(µ; �,  )| . EI[N (I) [kr(�ur

(µ; · , �,  ), µ, · )k] +

⌧EI[N (I)
⇥��r�(�u

r

(µ; · , �,  ),  �
r

(µ; · , �,  ), µ, · )
��⇤+

EN (I) [krFr

(µ; �,  )k] .
(6.37)

Similar to the error indicator in (6.35) for the value of quantity of interest, the gradient error

indicators in (6.36) and (6.37) have terms that separately account for the reduced-order model error

and integral truncation error. The three terms in these error indicators account for the error in the

primal reduced-order model solution, the error in the reduced-order model sensitivity/adjoint, and

truncation error from approximating the expectation operators with the sparse grid I, respectively.
The gradient error indicators must include the terms that accounts for the error in the primal solution

since, in general, the sensitivity/adjoint equations are defined about an approximate linearization

point. The gradient error indicators for the minimum-residual sensitivity and adjoint reduced-order

model follow in a similar manner

|rF (µ)� drF
r

(µ; �,  , �@

, ⇥@)| . EI[N (I) [kr(u( · ), µ, · )k] +

⌧EI[N (I)

"�����r
@(u( · ), �@

d
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r

@µ
(µ; · , �@

, ⇥@ ; u( · )), µ, · )
�����

#
+

EN (I)
h���drF

r

(µ; �,  , �@

, ⇥@)
���
i

|rF (µ)� drF
r

(µ; �,  , ��

, ⇥�)| . EI[N (I) [kr(�ur

(µ; · , �,  ), µ, · )k] +

⌧EI[N (I)
h���r�(u( · ), ���̂

r

(µ; · , ��

, ⇥�

, u( · )), µ, · )
���
i
+

EN (I)
h���drF

r

(µ; �,  , ��

, ⇥�)
���
i
.

(6.38)

where u(y) = �u
r

(µ; y, �,  ) is the reconstructed primal solution for realization y 2 ⌅.
At this point, the proposed two-level approximation of risk-averse measures of quantities of inter-

est based on anisotropic sparse grids and model reduction has been introduced and relevant details

pertaining to gradients and computable error indicators have been discussed. The next section uses

this technology as the approximation model in the multifidelity trust region method of Chapter 3 to

yield an e�cient algorithm to solve stochastic PDE-constrained optimization problems. To simplify

the exposition in the next section, details pertaining to the use of the minimum-residual sensitiv-

ity/adjoint reduced-order models to approximate rF
r

(µ) with drF
r

(µ) will be dropped. These

details follow in a straightforward manner from those corresponding to the exact sensitivity/adjoint

method to compute rF
r

(µ). Furthermore, the numerical experiments in Section 6.4 will solely

consider a reduced-order models based on a Galerkin projection  = �, which implies the test

basis is constant and drF
r

(µ) = rF
r

(µ), provided the sensitivity and adjoint bases are chosen

according to (4.35), (4.63). Therefore, the distinction between the exact and minimum-residual

sensitivity/adjoint methods is irrelevant since they are identical in this case.
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6.3 Multifidelity Trust Region Method Based on Two-Level

Approximation

This section presents the primary contribution of this chapter: the use of sparse grids and model

reduction in the multifidelity trust region framework of Chapter 3 to yield an e�cient algorithm for

stochastic PDE-constrained optimization. The approximation model, m
k

(µ), that is central to the

trust region theory will be taken as the two-level approximation of risk-averse measures of quantities

of interest introduced in the previous section. The error indicators required for the trust region

theory are inspired from the error indicators in (6.35), (6.36)-(6.37). A two-level greedy algorithm

will be introduced in Section 6.3.2 that combines dimension-adaptive sparse grid construction [67]

with a classical reduced basis greedy method [149, 173]. The purpose of the greedy algorithm is to

simultaneously construct a sparse grid I
k

and reduced-order model �
k

,  
k

such that the two-level

approximation is su�ciently accurate to guarantee convergence based on the requirements (3.14),

(3.15), (3.22) detailed in Chapter 3.

Before proceeding to the exposition of the multifidelity trust region method, additional notation

will be introduced for convenience. In particular, each component of the error indicators in (6.35)

and (6.36)-(6.37) are separated into individual terms. Define the following primal error terms from

(6.35)

E
1

(�,  , I, µ) := EI[N (I) [kr(�ur

(µ; · , �,  ), µ, · )k]

E
2

(�,  , I, µ) := EN (I) [|f(�ur

(µ; · , �,  ), µ, · )|] ,
(6.39)

where E
1

is the (integrated) reduced-order model error indicator and E
2

is the truncation error

indicator associated with using the sparse grid I in place of the true expectation. The gradient error

terms depend on whether the sensitivity or adjoint method are used in the gradient computation.

If the sensitivity method is employed, define the error terms

E
3

(�,  , I, µ) := EI[N (I)

����r
@(�u

r

(µ; · , �,  ), �
@u

r

@µ
(µ; · , �,  ), µ, · )

����

�

E
4

(�,  , I, µ) := EN (I)

����g
@(�u

r

(µ; · , �,  ), �
@u

r

@µ
(µ; · , �,  ), µ, · )

����

�
.

(6.40)

Otherwise, the adjoint method is used and the error terms are defined as

E
3

(�,  , I, µ) := EI[N (I)
⇥��r�(�u

r

(µ; · , �,  ),  �
r

(µ; · , �,  ), µ, · )
��⇤

E
4

(�,  , I, µ) := EN (I)
⇥��g�(�u

r

(µ; · , �,  ),  �
r

(µ; · , �,  ), µ, · )
��⇤

.

(6.41)

Regardless of whether the sensitivity or adjoint method is used, E
3

is the (integrated) sensitiv-

ity/adjoint reduced-order model error indicator and E
4

is the truncation error indicator associated

with using the sparse grid I in place of the true expectation in the gradient computation. With the
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above definitions of the individual error terms, the error indicators in (6.35), (6.36)-(6.37) become

|F (µ)� F

r

(µ; �,  )|  ⇣E
1

(�,  , I, µ) + E
2

(�,  , I, µ)

krF (µ)�rF
r

(µ; �,  )k  E
1

(�,  , I, µ) + ⌧E
3

(�,  , I, µ) + E
4

(�,  , I, µ),
(6.42)

where ⇣, , ⌧ > 0 are arbitrary constants.

6.3.1 Trust Region Ingredients

This section will detail the various ingredients required to leverage the two-level approximation of

risk-averse measures of quantities of interest in the multifidelity trust region framework of Chapter 3.

In particular, the approximation model m
k

(µ), objective decrease error indicator #
k

(µ), gradient

error indicator #
k

(µ), and inexact objective model  
k

(µ) and associated error indicator ✓
k

(µ) will

be specified using the developments of Section 6.2. For the remainder of this section, it is assumed

that, at iteration k, the sparse grid I
k

and reduced-order model �
k

,  
k

have been constructed.

Details pertaining to their construction will be provided in the next section.

At the kth iteration, the approximation model is taken as the two-level approximation of the

risk-averse measure of the PDE quantity of interest, i.e.,

m

k

(µ) := F

r

(µ; �
k

,  
k

, I
k

) = EI
k

[f(�
k

u
r

(µ, · , �
k

,  
k

), µ, · )] . (6.43)

Similar to the trust region method detailed in Chapter 5, there are two options for the objective

decrease error indicators: (1) the two-level residual-based indicator introduced in Section 6.2 and

(2) the classical trust region constraint. The residual-based error indicator requires the pointwise

form of the objective condition (3.14) to leverage the error terms E
1

and E
2

|F (µ
k

)� F (µ) +m

k

(µ)�m

k

(µ
k

)|  |F (µ
k

)�m

k

(µ
k

)| + |F (µ)�m

k

(µ)|

. ⇣(E
1

(�
k

,  
k

, I
k

, µ
k

) + E
1

(�
k

,  
k

, I
k

, µ))+

E
2

(�
k

,  
k

, I
k

, µ
k

) + E
2

(�
k

,  
k

, I
k

, µ).

(6.44)

for an arbitrary constant ⇣ > 0. Inspired from the above error indicator, the residual-based trust

region constraint is defined as

#

k

(µ) =↵
1

(E
1

(�
k

,  
k

, I
k

, µ
k

) + E
1

(�
k

,  
k

, I
k

, µ))+

↵

2

(E
2

(�
k

,  
k

, I
k

, µ
k

) + E
2

(�
k

,  
k

, I
k

, µ))
(6.45)

for user-defined parameters ↵
1

, ↵

2

> 0 that balance the contribution of the reduced-order model

error and truncation error. However, unlike the approach taken in Chapter 5, the classical trust

region is primarily used in this section

#

k

(µ) = kµ� µ
k

k . (6.46)
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This choice is primarily due to the fact that the objective error bound required for global convergence

of the trust region method (3.14)

|F (µ
k

)� F (µ) +m

k

(µ)�m

k

(µ
k

)|  ⇣#
k

(µ)

for some constant ⇣ > 0, cannot be guaranteed with the residual-based choice of #
k

(µ) in (6.35)

due to approximate bound that results from approximating the truncation error using only the

collocation nodes corresponding to the neighbors of the sparse grid. From the discussion in Chapter 3,

the classical choice of #
k

(µ) in (6.46) guarantees the above error bound if the gradient conditions

(3.13),(3.15) are satisfied. Another reason for the choice of the classical trust region is that (6.45)

can significantly increase the cost of an iteration of the trust region subproblem since #
k

(µ) requires

an expectation computation over I [N (I) at two points µ
k

and µ, which may have substantially

more nodes that I alone (used for the evaluation of m
k

(µ)). Finally, the definition of #
k

(µ) is

not di↵erentiable for all µ 2 RNµ due to the presence of the norm in E
1

and absolute value in E
2

,

which may cause convergence issues in the interior-point trust region subproblem solver discussed

in Section 3.1.2.

From the choice of m
k

(µ), the gradient is rm
k

(µ) = rF
r

(µ; �
k

,  
k

, I
k

), which suggests the

following gradient error bound based on the approximate bound in (6.42)

'
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E
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(�
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, µ) + �
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E
3

(�
k

,  
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, I
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, µ) + �

3

E
4

(�
k

,  
k

, I
k

, µ) (6.47)

This choice of '
k

(µ) does not guarantee the bound required by the global convergence theory in

Chapter 3, i.e.,

krF (µ
k

)�rm
k

(µ
k

)k  ⇠'
k

(µ
k

), (6.48)

for a constant ⇠ > 0, due to the approximation of the truncation error on the neighbors of the

sparse grid. Therefore global convergence is not strictly guaranteed; however, the numerical results

in Sections 6.4 suggest this choice does lead to global convergence for these problems.

With these choices of #
k

(µ) and '

k

(µ), the sparse grid I
k

and reduced-order model �
k

,  
k

must be constructed to satisfy the error conditions in (3.14), (3.15), i.e.,

#

k

(µ
k

)  
#

�
k

'

k

(µ
k

)  
'

min{rm
k

(µ
k

), �
k

}.

The construction of these quantities such that the above error bounds are satisfied is somewhat

delicate since the error terms E
1

and E
3

behave di↵erently than E
2

and E
4

when �
k

,  
k

and I
k

are refined. For a fixed basis �
k

, refinement of the sparse grid I
k

decreases the truncation error

terms E
2

and E
4

. However, refinement of I
k

may cause the model reduction error terms E
1

and

E
3

to increase since the pointwise error is integrated over an expanded set of collocation nodes.

A dimension-adaptive greedy algorithm that accounts for this interplay between the various error

terms in response to refinement of the sparse grid and reduced-order basis will be introduced in the
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next section.

At this point, the basic version of the multifidelity trust region method in Algorithm 1 is fully

defined using the proposed two-level approximation and corresponding error indicators. An immedi-

ate issue with using these definitions in Algorithm 1 of Chapter 3 pertains to the evaluation of F (µ)

in the computation of ⇢
k

in (3.9). From its definition, evaluation of F (µ) requires an infinite sum

to evaluate the true expectation. The true expectation can be approximated on a “fine” quadra-

ture rule (possibly based on a refined sparse grid) to evaluate F (µ) to high precision. While this

option is simple and e↵ective, it requires a large number of collocation nodes and the computation

will constitute a bottleneck in the trust region algorithm since it must be performed at each major

iteration. Instead, we opt to use the flexibility a↵orded by the trust region method in Chapter 3 for

inexact objective evaluations in the computation of the actual-to-predicted ratio. This follows the

work in [109] that uses dimension-adaptive sparse grids (without reduced-order models) for inexact

objective evaluations. For this purpose, a separate sparse grid I 0
k

and reduced-order model �0
k

,  0
k

are introduced and, following the notation in Chapter 3, the inexact objective function,  
k

(µ), is

employed with corresponding error indicator ✓
k

(µ) defined as
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(6.49)

These choices are identical to m

k

(µ) and the residual-based definition of #
k

(µ), based on a (possibly

refined) sparse grid I 0
k

and reduced-order model �0
k

,  0
k

. They do not necessarily guarantee the

bound required for global convergence (3.21), again due to the approximation of the truncation

errors on the neighbors of the sparse grid in (6.35). With these definitions, the actual-to-predicted

ratio is computed as

⇢

k

=
 

k

(µ
k

)�  
k

(µ̂
k

)

m

k

(µ
k

)�m

k

(µ̂
k

)
(6.50)

where µ̂
k

is the solution of the trust region subproblem, i.e.,

µ̂
k

= argmin
µ2RNµ

m

k

(µ) subject to #

k

(µ)  �
k

. (6.51)

The sparse grid I 0
k

and reduced-order model �0
k

,  0
k

are constructed to guarantee

✓

!

k

 ⌘min{m
k

(µ
k

)�m

k

(µ̂
k

), r
k

}, (6.52)

where ! 2 (0, 1), ⌘ < min{⌘
1

, 1� ⌘
2

}, and {r
k

}1
k=1

is a sequence such that r
k

! 0, using the two-

level dimension-adaptive greedy algorithm to be introduced in the next section. Once this training

algorithm is completely specified, the complete trust region algorithm will be fully prescribed and

is summarized in Section 6.3.3 and Algorithm 15.
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6.3.2 Greedy Construction of Sparse Grid and Reduced Basis

The quality of the two-level approximation of risk-averse measures of PDE quantities of interest

introduced in the previous section depends critically on the sparse grid I and reduced-order basis

� used in (6.43). This section develops dimension-adaptive greedy methods for the simultaneous

construction of the sparse grid I
k

(I 0
k

) and reduced-order basis �
k

(�0
k

) that targets each term in the

error indicators '
k

(µ) and ✓
k

(µ) such that the error conditions (required for global convergence) in

(3.14), (3.15), (3.22) are satisfied. Since the classical trust region constraint is used to define #
k

(µ),

the objective decrease condition (3.14) will be automatically satisfied if the gradient bound (3.13)

and condition (3.15) are satisfied (Chapter 3). Thus, the task reduces to construction of I
k

, �
k

such

that the gradient condition (3.15) is satisfied and I 0
k

, �0
k

such that the inexact objective condition

(3.22) is satisfied. We begin with the gradient condition.

Recall from (6.47), the gradient error indicator is a weighted sum of three terms: the primal

error E
1

, the sensitivity/adjoint error E
3

, and the gradient truncation error E
4

'

k

(µ) = �

1

E
1

(�
k

,  
k

, I
k

, µ) + �

2

E
3

(�
k

,  
k

, I
k

, µ) + �

3

E
4

(�
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,  
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, I
k

, µ).

From Chapter 3, global convergence of the multifidelity trust region method is predicated on the

satisfaction of the gradient condition: '
k

(µ
k

)  

'

min{krm
k

(µ
k

)k , �
k

}. A su�cient condition

for this gradient condition to hold is that each term satisfies an appropriate fraction of the condition,

i.e.,
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(6.53)

The purpose of the positive weights �
1

, �

2

, �

3

, introduced in the previous section, is to balance

or scale the individual contributions of the error terms such the uniform split above is justified.

This decomposition has reduced the monolithic task of constructing a sparse grid and reduced-order

model such that the gradient condition in (3.15) holds to the individual tasks in (6.53). While

the interplay between the three error terms in (6.53) and refinement of the reduced-order model

and sparse grid is highly coupled and fairly complex, the following observations suggest an e↵ective

training strategy: (1) for a fixed sparse grid, E
1

and E
3

decrease (possibly non-monotonically) as the

reduced-order model is hierarchically refined and (2) for a fixed reduced-order model, E
4

decreases

(possibly non-monotonically) as the sparse grid is refined. Therefore, the construction of the reduced-

order model, for a fixed sparse grid, will proceed according to a variant of the classical greedy method

[149, 173], to target the error terms E
1

and E
3

. For a fixed reduced-order model, the sparse grid

will be adapted using the anisotropic dimension-adaptive approach [67] to target E
4

. These steps

will be performed iteratively until the conditions in (6.53) are met. Before discussing the combined

algorithm in detail, the individual components, namely dimension-adaptive construction of a sparse

grid and greedy construction of a reduced-order model, are introduced.
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The construction of I will mimic the dimension-adaptive algorithm introduced in the seminal

work by Gerstner and Griebel [67] for constructing a goal-oriented, anisotropic sparse grid. In

this approach, the truncation error associated with the sparse grid I is approximated solely on the

neighbors N (I), exactly as discussed in Section 6.1.3. If this truncation error approximation is

larger than a specified tolerance, the multi-index in the set of neighbors that contributes most to

the error is added to the index set, that is, I  I [ {i⇤} where

i⇤ = argmin
i2N (I)

���i[g]
��
. (6.54)

for the integrand g : RNy ! R. In the context of the proposed two-level approximation, the

dimension-adaptive algorithm is applied to the integrand

krF
r

(µ; · , �,  )k

for a fixed reduced-order model �,  and given µ. With this integrand, the dimension-adaptive

algorithm decreases the error terms E
4

(�,  , · , µ). While the convergence is not necessarily mono-

tonic, this term approaches zero in the limiting case as I ! NNy

+

. In fact, since E
4

(�,  , I, µ) is

exactly the truncation error approximation, it is used for the convergence criteria in the algorithm.

The construction of the reduced-order basis follows the well-studied greedy algorithm [149, 173].

The original greedy algorithm improves the parametric robustness (usually over µ-space) of a

reduced-order basis � by adding snapshots of the high-dimensional model at the point where the

reduced-order model error is largest. Regions of high error are found by evaluating the reduced-

order model and an inexpensive error indicator at a (possibly large) set of candidate points (in the

space where the ROM is being trained) and performs a direct search for maximum value of the error

indicator over the candidate set. A weighted variant of the greedy algorithm was developed [42] for

stochastic problems with non-uniform probability distributions to train a reduced-order model over

the stochastic space ⌅. This weighted greedy method uses the probability density ⇢(y) to weight

the error indicator at a particular realization y 2 ⌅ since regions with significant mass will amplify

errors during the expectation computation. In the same work, the weighted greedy algorithm was

coupled with sparse grids by using the sparse grid nodes as the candidate set; since the reduced-

order model is only queried on the nodes of the sparse grid, it only needs to be trained at these

points. In the present work, a similar weighted greedy algorithm is applied to train the reduced-order

model over the stochastic collocation nodes (and neighbors) ⌅I[N (I) for a fixed µ and sparse grid

I. Since the gradient condition is only required to hold at the trust region center, the training is

performed solely in stochastic space (with ⌅I[N (I) as the candidate set) for µ = µ
k

fixed. Unlike

the traditional greedy methods, the proposed method builds a reduced-order model that accurately

represents primal and sensitivity or adjoint states over the training space. This is required since the

greedy algorithm will be responsible for reducing the primal E
1

and sensitivity/adjoint E
3

error terms

as both terms arise in the gradient error indicator '
k

(µ). This is achieved by adding sensitivity or

adjoint snapshots to the reduced-order basis, in addition to the standard primal snapshots. From
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the form of the gradient error indicator '
k

(µ) in (6.47), the primal error indicator is taken as the

weighted primal residual norm, i.e., the integrand in E
1

,

⇢(y) kr(�u
r

(µ; y, �,  ),µ, y)k (6.55)

and the dual error indicator is taken as the weighted dual solution, i.e., the integrand in E
3

⇢(y)

����r
@(�u

r

(µ; y, �,  ), �
@u

r

@µ
(µ; y, �,  ), µ, y)

����

⇢(y)
��r�(�u

r

(µ; y, �,  ),  �
r

(µ; y, �,  ), µ, y)
��
.

(6.56)

Since the error terms E
1

and E
3

are integrated over I [ N (I), ⌅I[N (I) is used as the candidate

set. For a fixed point in parameter space µ and sparse grid I, the greedy algorithm builds up the

reduced-order basis using primal and sensitivity/adjoint snapshots in the described manner, un-

til E
1

(�,  , I, µ) and E
3

(�,  , I, µ) drop below user-defined tolerances. If a minimum-residual

reduced-order model is employed, the algorithm is guaranteed to terminate due to the monotonic-

ity property (Proposition 4.1). In the limiting case where snapshots have been added for each

y 2 ⌅I[N (I), the primal reduced-order model will be exact for each y 2 ⌅I[N (I) and thus E
1

is

identically zero. If the reduced-order model is exact at these sparse grid nodes, the reduced sensi-

tivity and adjoint method possess the minimum-residual property, which (Propositions 4.2 and 4.4)

guarantees the reduced sensitivity/adjoint exactly reconstruct the corresponding high-dimensional

quantity. Therefore E
3

is identically zero. If a minimum-residual reduced-order model is employed,

E
1

(in the appropriate norm) will actually decrease monotonically since adding snapshots to the

reduced-order basis can only improve the approximation quality (in terms of the residual norm in

a particular metric). A similar argument cannot be made for E
3

, even if minimum-residual sensi-

tivity/adjoint reduced-order models are used, since modification of � alters the linearization point

defining the sensitivity/adjoint residual and the objective function in successive minimum-residual

optimization problems cannot be compared.

The final training algorithm combines the dimension-adaptive sparse grid construction with

greedy sampling to build a reduced-order basis. For a fixed sparse grid I, the primal-sensitivity/adjoint

weighted greedy algorithm is used to build a reduced-order basis � such that E
1

(�,  , I, µ) and

E
3

(�,  , I, µ) satisfy (6.53). This reduced-order basis is fixed and a single step of the dimension-

adaptive sparse grid is applied to updated I according to I  I [{i⇤} where i⇤ is defined in (6.54).

Then the weighted greedy algorithm is applied with the new sparse grid. The algorithm proceeds

in this manner until E
4

(�,  , I, µ) satisfies (6.53). Therefore the combined algorithm consists of

an outer loop that refines the sparse grid (to reduced truncation error, E
4

) and an inner loop that

builds an accurate reduced-order basis for a given sparse grid (to decrease the reduced-order model

error, E
1

and E
3

).

Algorithm 13 summarizes the combined dimension-adaptive greedy algorithm that proceeds ac-

cording to the above two-level iteration to improve a given sparse grid and reduced-order basis such
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that the gradient condition in (6.53) is satisfied. As stated, the algorithm implicitly requires ini-

tialization of each quantity. At iteration 0, the sparse grid is initialized as the uniform level-one

sparse grid, I = {(1, . . . , 1)}, which consists of a single node ⌅I = {0}. The reduced-order basis is

constructed from the primal and sensitivity/adjoint snapshot at this single sparse grid node at the

first trust region center, i.e., u(µ
0

, 0) and
@u

@µ
(µ

0

, 0) or �(µ
0

, 0). That is, the sparse grid I
0

and

reduced-order model �
0

,  
0

are constructed as

�
0

,  
0

, I
0

= two-level-refine-grad(��1

,  �1

, I�1

, µ
0

) (6.57)

where I�1

= {(1, . . . , 1)}, ��1

,  �1

is the reduced-order model constructed with the aforemen-

tioned snapshots, and two-level-refine-grad is defined in Algorithm 13. For all subsequent

iterations, the sparse grid and reduced-basis basis are initialized from the previous iteration, i.e.,

the construction of I
k

, �
k

is initialized with I
k�1

, �
k�1

�
k

,  
k

, I
k

= two-level-refine-grad(�
k�1

,  
k�1

, I
k�1

, µ
k

). (6.58)

Apart from being a natural way to initialize the dimension-adaptive greedy algorithm, it has the

added benefit of only refining I
k�1

and �
k�1

if the choice I
k

= I
k�1

, �
k

= �
k�1

are not su�cient

to guarantee convergence, i.e., the gradient condition in (6.53) does not hold.

This completes the discussion of the training algorithm to build I
k

and �
k

,  
k

to ensure the

gradient condition holds and attention is shifted to construction of I 0
k

, �0
k

,  0
k

such that the inexact

objective condition (3.22) holds in order to properly assess the trust region step without requiring

queries to F (µ). The error indicator for the objective decrease is a weighted sum of two terms: the

primal error E
1

and QoI truncation error E
2

✓

k

(µ) =↵
1

(E
1

(�0
k

,  0
k

, I 0
k

, µ
k

) + E
1

(�0
k

,  0
k

, I 0
k

, µ))+

↵

2

(E
2

(�0
k

,  0
k

, I 0
k

, µ
k

) + E
2

(�0
k

,  0
k

, I 0
k

, µ)),
(6.59)

which involves error terms evaluated at µ
k

and µ̂
k

since the pointwise version of the objective

decrease bound is used. From Chapter 3, the error condition (3.22), i.e., ✓
k

(µ̂
k

)!  ⌘min{m
k

(µ
k

)�
m

k

(µ̂
k

), r
k

}, is required to preserve global convergence of the trust region method when  
k

(µ) is

used in place of F (µ) in the computation of ⇢
k

. A su�cient condition for the objective condition to

hold is that each term satisfies an appropriate fraction of the condition, i.e.,

E
1

(�0
k

,  0
k

, I 0
k

, µ
k

) + E
1

(�0
k

,  0
k

, I 0
k

, µ̂
k

)  1

2↵
1

(⌘min{m
k

(µ
k

)�m

k

(µ̂
k

), r
k

})1/!

E
2

(�0
k

,  0
k

, I 0
k

, µ
k

) + E
2

(�0
k

,  0
k

, I 0
k

, µ̂
k

)  1

2↵
2

(⌘min{m
k

(µ
k

)�m

k

(µ̂
k

), r
k

})1/!
(6.60)

where the positive weights ↵
1

, ↵

2

balance the contributions of E
1

and E
2

to justify this uniform split.

Therefore the monolithic task of satisfying the objective condition has been broken into the modular

tasks in (6.60). Similar to the approach taken to construct I
k

and �
k

, a weighted greedy algorithm
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Algorithm 13 Refine reduced-order basis and sparse grid for gradient condition

�,  , I = two-level-refine-grad(�,  , I, µ, �)
1: Initialization: Given

�,  , I, µ, �, �
1

> 0, �
2

> 0, �
3

> 0, 
'

> 0

2: while E
4

(�,  , I, µ) > 

'

3�
3

min {kEI [rF
r

(µ; · , �,  )]k , �} do

3: Refine index set: Add index set with largest contribution to truncation error

I  I [ {i⇤} where i⇤ = argmax
i2N (I)

���i [krF
r

(µ; · , �,  )k]
��

4: while E
1

(�,  , I, µ) > 

'

3�
1

min {kEI [rF
r

(µ; · , �,  )]k , �} do

5: Evaluate primal error indicator: Greedily select y 2 ⌅
i

⇤ with largest error

y⇤ = argmax
y2⌅i⇤

⇢(y) kr(�u
r

(µ; y, �,  ); µ, y)k

6: Reduced-order model construction: Update reduced basis with new snapshots

� =


� u(µ; y⇤)

@u

@µ
(µ; y⇤)

�
or

⇥
� u(µ; y⇤) �(µ; y⇤)

⇤

7: end while

8: while E
2

(�,  , I, µ) > 

'

3�
2

min {kEI [rF
r

(µ; · , �,  )]k , �} do

9: Evaluate dual error indicator: Greedily select y 2 ⌅
i

⇤ with largest error

y⇤ = argmax
y2⌅i⇤

⇢(y)

����r
@

✓
�u

r

(µ; y, �,  ); �
@u

r

@µ
(µ; y, �,  ), µ, y

◆���� or

= argmax
y2⌅i⇤

⇢(y)
��r� (�u

r

(µ; y, �,  );  �
r

(µ; y, �,  ), µ, y)
��

10: Reduced-order model construction: Update reduced basis with new snapshots

� =


� u(µ; y⇤)

@u

@µ
(µ; y⇤)

�
or

⇥
� u(µ; y⇤) �(µ; y⇤)

⇤

11: end while
12: end while
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will be used to enforce the conditions on E
1

and the dimension-adaptive sparse grid construction to

satisfy the conditions on E
2

.

While the dimension-adaptive greedy algorithm to construct I 0
k

,�0
k

, 0
k

for the objective decrease

condition will be very similar that used to construct I
k

, �
k

,  
k

, there will be two critical di↵erences.

First, the error terms in (6.60) involve two points in parameters space: the trust region center µ
k

and

the candidate step µ̂
k

. In contrast, the gradient condition only imposed requirements at the trust

region center. This has implications for both the dimension-adaptive sparse grid construction and

greedy method. Second, the conditions in (6.60) only impose requirements on the primal reduced-

order model accuracy and truncation error, whereas the gradient condition also placed requirements

on the sensitivity/adjoint accuracy. This implies only primal snapshots are required during the

greedy construction of the reduced-order model.

For a given I, �,  , if the truncation error conditions in (6.60), i.e., requirements on E
2

, are not

satisfied, the sparse grid is updated according to I  I [ {i⇤}, where

i⇤ = argmax
i2N (I)

�
max

����i [F
r

(µ
k

; �,  )]
��
,

���i [F
r

(µ̂
k

; �,  )]
�� �

. (6.61)

The integrands in each term is precisely the integrand of E
2

at the two parameters of interest: µ
k

and µ̂
k

. Therefore this refinement process can be repeated iteratively until the conditions on E
2

in

(6.60) are satisfied. Following the combined dimension-adaptive greedy method introduced for the

gradient condition, the sparse grid refinement steps are interwoven with greedy construction of the

reduced-order model. For a fixed I, �,  , define µ⇤ 2 {µ
k

, µ̂
k

} and y⇤ 2 ⌅I as the quantities that

maximize the weighted residual-based error indicator

µ⇤
, y⇤ = argmax

µ2{µ
k

, ˆµ

k

},
y2⌅I

⇢(y) kr(�u
r

(µ; y, �,  ), µ, y)k . (6.62)

The reduced-order basis� is updated according to� 
h
� u(µ⇤

, y⇤)
i
; an optional orthogonaliza-

tion step is usually used to ensure the the reduced basis is full rank and the resulting reduced-order

model is well-conditioned. As discussed, only primal snapshot are used since the conditions in (6.60)

only places requirements on the primal accuracy of the reduced-order model. The argument of

the maximization problem in (6.62) is exactly the integrand of E
1

. Assuming a minimum-residual

reduced-order model is used, E
1

(�,  , I, µ
k

) and E
1

(�,  , I, µ̂
k

) will monotonically decrease with

each iteration of the greedy method and the iterations proceed until the conditions in (6.60) are satis-

fied. The combined training algorithm alternates between sparse grid and reduced basis construction

exactly as that in Algorithm 14, namely, for a fixed sparse grid, the greedy method is applied to

ensure the conditions on E
1

in (6.60) hold, then the reduced-order model is fixed and the sparse grid

is refined according to (6.62). The combined algorithm terminates when all conditions in (6.60) are

satisfied.

Algorithm 14 summarizes the combined dimension-adaptive greedy algorithm that constructs a

sparse grid and reduced-order model such that the objective decrease condition (6.60) holds. Similar



CHAPTER 6. STOCHASTIC PDE OPTIMIZATION WITH ROMS AND SPARSE GRIDS 193

to Algorithm 13, this algorithm refines a given sparse grid and reduced basis and implicitly requires

initialization of each quantity. At any iteration k, the sparse grid I
k

and reduced-order model �
k

,

 
k

are used to initialize Algorithm 14, i.e.,

�0
k

,  0
k

, I 0
k

= two-level-refine-obj(�
k

,  
k

, I
k

, µ
k

, µ̂
k

, r

k

) (6.63)

since I
k

, �
k

,  
k

have been constructed to satisfy the error condition in (3.15) at µ
k

. If that

requirements turns out to be more restrictive than that in (3.22), the algorithm will not modify the

sparse grid or reduced-order basis, i.e., I 0
k

= I
k

and �0
k

= �
k

, and the actual-to-predicted ratio is

unity and acceptance of the step is guaranteed.

Algorithm 14 Refine reduced-order basis and sparse grid for objective decrease condition

�,  , I = two-level-refine-obj(�,  , I, µ
1

, µ
2

, s)

1: Initialization: Given

�,  , I, µ
1

, µ
2

, s > 0, ! 2 (0, 1)

2: while

E
2

(�,  , I, µ
1

) + E
2

(�,  , I, µ
2

) >

1

2↵
2

(⌘min {EI [F
r

(µ
1

; · , �,  )]� EI [F
r

(µ
2

; · , �,  )] , s})1/!

do

3: Refine index set: Add index set with largest contribution to truncation error

I  I [ {i⇤} where i⇤ = argmax
i2N (I)

�
max

����i

F

r

(µ
1

; · , �,  )
��
,

���i

F

r

(µ
2

; · , �,  )
�� �

4: while

E
1

(�,  , I, µ
1

) + E
1

(�,  , I, µ
2

) >

1

2↵
1

(⌘min {EI [F
r

(µ
1

; · , �,  )]� EI [F
r

(µ
2

; · , �,  )] , s})1/!

do

5: Evaluate error indicator: Greedily select µ 2 {µ
1

, µ
2

}, y 2 ⌅
i

⇤ with the largest error

µ⇤
, y⇤ = argmax

µ2{µ
1

,µ

2

}
y2⌅i⇤

⇢(y) kr(�u
r

(µ; y, �,  ); µ, y)k

6: Reduced-order model construction: Update reduced basis with new snapshot

� =
⇥
� u(µ⇤; y⇤)

⇤

7: end while
8: end while
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6.3.3 Summary

The proposed multifidelity trust region method for e�cient stochastic PDE-constrained optimization

leverages the trust region framework of Chapter 3 and the two-level approximation of risk-averse

measures of PDE quantities of interest using anisotropic sparse grids and projection-based model

reduction. The ingredients required for the trust region algorithm in the present context were

introduced in Section 6.3.1 and summarized below

m

k

(µ) = EI
k

[F
r

(µ; · , �
k

,  
k

)]

#

k

(µ) = kµ� µ
k

k

'

k

(µ) = �

1

E
1

(�
k

,  
k

, I
k

, µ) + �

2

E
3

(�
k

,  
k

, I
k

, µ)+

�

3

E
4

(�
k

,  
k

, I
k

, µ)

 

k

(µ) = EI0
k

⇥
F

r

(µ; · , �0
k

,  0
k

)
⇤

✓

k

(µ) = ↵

1

(E
1

(�0
k

,  0
k

, I 0
k

, µ
k

) + E
1

(�0
k

,  0
k

, I 0
k

, µ))+

↵

2

(E
2

(�0
k

,  0
k

, I 0
k

, µ
k

) + E
2

(�0
k

,  0
k

, I 0
k

, µ)).

(6.64)

The sparse grid I
k

and reduced-order model �
k

,  
k

are constructed using the dimension-adaptive

greedy algorithm (Algorithm 13) to ensure the gradient condition (6.53) is satisfied. The algorithm

is initialized from the sparse grid and reduced-order model from the previous iteration

�
k

,  
k

, I
k

= two-level-refine-grad(�
k�1

,  
k�1

, I
k�1

, µ
k

) (6.65)

in the event the quantities satisfy the gradient condition without refinement, e.g., if a small step is

taken, which would save queries to the high-dimensional model. Once the dimension-adaptive greedy

algorithm has been applied to satisfy the gradient condition (3.15), the objective decrease condition

in (3.14) holds trivially since #
k

(µ) is taken as the classical trust region constraint (Section 3.1.1).

The sparse grid I 0
k

and reduced-order model �0
k

,  0
k

defining the inexact objective decrease used

in the computation of ⇢
k

are constructed using a similar dimension-adaptive greedy algorithm (Al-

gorithm 13). In this case, primal high-dimensional model snapshots are used to reduce the error

terms E
1

and E
2

at two parameters—the trust region center µ
k

and candidate step µ̂
k

—to satisfy

the objective error condition (6.60)

�0
k

,  0
k

, I 0
k

= two-level-refine-obj(�
k

,  
k

, I
k

, µ
k

, µ̂
k

, r

k

). (6.66)

This initialization of the dimension-adaptive algorithm will take I 0
k

= I
k

, �0
k

= �
k

,  0
k

=  
k

if

they satisfy the objective error condition, which may save substantial computational resources as

it will eliminate (possibly many) queries to realizations of the high-dimensional model. With these

choices, it is clear from (6.43) and (6.49) that m
k

(µ
k

) =  

k

(µ
k

) and m

k

(µ̂
k

) =  

k

(µ̂
k

). This implies

⇢

k

is unity and the step can be accepted with no additional work.
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The complete multifidelity trust region algorithm, including inexact evaluation of the actual-

to-predicted ratio using  

k

(µ), is presented in Algorithm 16. Global convergence is not strictly

guaranteed since the error indicators '
k

(µ) and ✓
k

(µ) do not necessarily lead to bounds of the form

(3.13) and (3.21) due to the approximation EIc ⇡ EN (I) in (6.35) and (6.36)-(6.37). However, even

though the bounds cannot be rigorously established in the general case, the fact that the bounds are

only required up to an arbitrary constant leaves hope they will hold in specific situations of interest.

The numerical results in the next section provide evidence that this is the case since convergence is

observed.

Future work will consider the incorporation of partially converged solutions as snapshots in the

construction of �
k

and �0
k

in Algorithms 15 and 16 to further improve the e�ciency of the proposed

multifidelity trust region method. This will build on the idea introduced in Chapter 5; however, the

implications on global convergence of the trust region framework will be more complicated to analyze

since another layer of complexity is present, i.e., risk-averse measures of quantities of interest.
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Algorithm 15 Trust region method based on reduced-order models and sparse grids

1: Initialization: Given

µ
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)  
'
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k

},

re-use for the current iteration: m

k
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k�1

(µ) and #
k

(µ) = kµ� µ
k

k. Otherwise, refine
the reduced-order model and sparse grid using two-level dimension adaptive greedy method
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k

u
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), µ, · )]
#
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(µ) = kµ� µ
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k

3: Step computation: Approximately solve the trust region subproblem

min
µ2RN

m

k

(µ) subject to #

k

(µ)  �
k

for a candidate, µ̂
k

, to satisfy the fraction of Cauchy decrease

4: Actual-to-predicted reduction: Compute actual-to-predicted reduction ratio

⇢
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5: Step acceptance:

if ⇢
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1

then µ
k+1

= µ̂
k

else µ
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= µ
k

end if

6: Trust region update:

if ⇢
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Algorithm 16 Trust region method based on reduced-order models and sparse grids with inexact
objective evaluations

1: Initialization: Given

µ
0

, �
0

, 0 < � < 1, �
max
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1

< ⌘
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'
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'
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re-use for the current iteration: m

k

(µ) := m

k�1

(µ) and #
k

(µ) = kµ� µ
k

k. Otherwise, refine
the reduced-order model and sparse grid using two-level dimension adaptive greedy method
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u
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), µ, · )]
#

k

(µ) = kµ� µ
k

k

3: Step computation: Approximately solve the trust region subproblem

min
µ2RN

m

k

(µ) subject to #

k

(µ)  �
k

for a candidate, µ̂
k

, to satisfy the fraction of Cauchy decrease

4: Computed-to-predicted reduction: Compute computed-to-predicted reduction ratio

⇢

k

=

8
>>><

>>>:

1 if #

k

(µ̂
k

)!  ⌘min{m
k

(µ
k

)�m

k

(µ̂
k

), r
k

}

 

k

(µ
k

)�  
k

(µ̂
k

)

m

k

(µ
k

)�m

k

(µ̂
k

)
otherwise

where
 

k

(µ) := EI0
k

⇥
f(�0

k

u
r

(µ; · , �0
k

,  0
k

), µ, · )
⇤

�0
k

,  0
k

, I 0
k

= two-level-refine-obj(�
k

,  
k

, I
k

, µ
k

, µ̂
k

, r

k

)
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6: Trust region update:
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6.4 Numerical Experiment: Optimal Control of the Viscous

Burgers’ Equation with Uncertain Coe�cients

This section studies the performance of the proposed algorithms (Algorithms 15 and 16) on a simple

stochastic PDE-constrained optimization problem: optimal control of the one-dimensional viscous

Burgers’ equation with uncertain coe�cients. This is precisely the stochastic counterpart to the

problem in Section 5.5.2 used to study the deterministic trust region algorithm based on reduced-

order models in Chapter 5. The optimization problem takes the form

minimize
µ2Rnµ

Z

⌅
⇢(y)

Z
1

0

1

2
(u(µ,y, x)� ū(x))2 dx+

↵

2

Z
1

0

z(µ, x)2 dx

�
dy (6.67)

where u(µ, y, x) is the solution of the following parametrization of the one-dimensional viscous

Burgers’ equation

�⌫(y)@
xx

u(µ, y, x) + u(µ, y, x)@
x

u(µ, y, x) = z(µ, x) x 2 (0, 1), y 2 ⌅

u(µ, y, 0) = d

0

(y) u(µ, y, 1) = d

1

(y).
(6.68)

corresponding to the realization y 2 ⌅ . As in Section 5.5.2, the target state is ū(x) ⌘ 1 and the

regularization parameter is ↵ = 10�3. This is the risk-neutral optimal control problem. A three-

dimensional stochastic space, ⌅ = [�1, 1]3, is chosen to introduce stochasticity into the viscosity

and boundary conditions

⌫(y) = 10y1

�2

d

0

(y) = 1 +
y

2

1000
d

1

(y) =
y

3

1000
.

A uniform probability distribution, ⇢(y)dy = 2�3

dy, is chosen for simplicity, although any distribu-

tion could be used. The source term, or control, z(µ, x) is defined by 50 cubic splines with clamped

boundary conditions, which leads to 53 optimization variables. This stochastic optimal control prob-

lem is nearly identical to the one studied in [108, 109], with two exceptions being that the authors

in [108, 109]: (1) considered one additional stochastic parameter governing a forcing term in (6.68)

and (2) used a larger optimization parameter space consisting of the nodes of the underlying finite

element shape functions. In all numerical experiments, the partial di↵erential equation in (6.68) is

discretized with 500 linear finite elements for a state space of dimension N

u

= 499, after application

of the essential boundary conditions.

The initial guess for the optimal control problem taken in all numerical experiments is the

constant: z(µ
0

, x) ⌘ 1. Figure 6.5 contains several di↵erent controls and the corresponding solution

statistics of (6.68), including those corresponding to the optimal deterministic (y = 0) and stochastic

control. It is clear that the including stochasticity in the optimization formulation has a non-trivial

impact on the optimal solution obtained. Furthermore, the stochastic formulation allows statistics

of the solution and quantities of interest to be considered. The remainder of this section is devoted

to studying the methods proposed in Algorithms 15 and 16 and comparing its performance to three
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Figure 6.5: Left : the control defining the initial guess for the optimization problem ( ), the
solution of the deterministic optimal control problem, i.e., with the stochastic variables fixed at
their mean value y = 0 ( ), and the solution of the stochastic optimal control problem ( ).
Right : the mean solution of the viscous Burgers’ equation in (6.68) at the initial control ( ),
optimal deterministic control ( ), and the optimal stochastic control. One ( ) and two ( )
standard deviations about the mean solution corresponding to the optimal stochastic control are
also included.

baseline methods.

The first method applied to the solve the stochastic optimization problem in (6.67) is Algo-

rithm 15. Since the true function evaluations F (µ) are unavailable (the expectation cannot be

computed exactly), it is approximated using a level 5 isotropic sparse grid. This amounts to a trust

region method where inexactness is only used for the gradients, i.e., Algorithm 1 of Chapter 3.

The work in [108] considers an identical trust region method for stochastic optimization, except

the authors use an approximation model based solely on dimension-adaptive sparse grids, while the

proposed method also employs projection-based reduced-order models. The reduced-order models

considered in all numerical experiments use a Galerkin projection and, due to the large number

of optimization variables, the adjoint method is used to compute gradients of reduced quantities

of interest. To promote accuracy of the primal and adjoint solutions with respect to the HDM

counterparts, the trial basis is constructed from primal and adjoint snapshots according. Such a

reduced-order model does not guarantee the minimum-residual property (Definition 4.1) since the

Jacobians of (6.68) are not SPD. However, the numerical experiments suggest that it is important

for the reduced-order model gradients to possess discrete consistency to properly converge the trust

region subproblem and ensure global convergence, particularly when there are a large number of op-

timization variables. This will be referred to a method MI in the remainder. The second stochastic

optimization solver employed is exactly the method in Algorithm 16, including the approximation

of the actual-to-predicted reduction ratio. This will be referred to as method MII. These two meth-

ods are expected to converge similarly since they are built on the same approximation framework;

however, MI will require far more queries to the HDM since it employs a fine isotropic sparse grid

to evaluate ⇢
k

. It is possible that method MII will generate an inaccurate approximation of ⇢
k

and will incorrectly accept or reject a step. It will be seen that does not occur in this numerical

experiment.
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Figure 6.6: Convergence history of the objective error quantities using MI (left) and MII (right):
|F (µ

k

)�F (µ⇤)| ( ), |F (µ̂
k

)�F (µ⇤)| ( ), |m
k

(µ
k
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k

(µ̂
k

)�F (µ⇤)| ( ).
Rapid progress is made toward the optimal solution, despite poor agreement between the objective
and model at early iterations.

To assess the performance of these proposed stochastic optimization solvers, three baseline meth-

ods will be used for comparison. The first method is the naive approach of using a fixed level 5

isotropic sparse grid to integrate the quantity of interest and the optimization problem is solved with

the L-BFGS algorithm. This method will be denoted BI. The second, BII, and third, BIII, methods

are the dimension-adaptive sparse grid approaches of [108] and [109], respectively. The stochastic

optimization solvers MI, MII, BII, BIII are all trust region methods that use the Steihaug-Toint

CG [48] method to approximate the solution of the trust region subproblem and use the parameters

in (5.57).

The convergence history of the proposed trust region methods MI and MII are shown in Fig-

ure 6.6 and Tables 6.1–6.2. Both methods are converging to a first-order critical point (krF (µ
k

)k !
0); after only 5 trust region iterations the first-order optimality condition has reduced 4 orders of

magnitude from the initial, sub-optimal control. At early iterations, the approximation model,

m

k

(µ), and true objective, F (µ), do not exhibit good agreement, even at trust region centers. In

fact, from the tables, they do not even agree in the first digit. Despite this lack of agreement, the

candidate step found by the approximation model leads to reasonable reduction in the true objective

function. As a local minima is approached, the bound in (3.15) places more stringent requirements

on the model error and, as a result, the approximation model shows excellent agreement with the

objective function. The behavior of methods MI and MII are nearly identical since they rely on

the same approximation model and error indicators in the trust region method. The only di↵erence

is the computation of ⇢
k

and, even though MII uses the approximation in (3.20) to compute ⇢
k

, it

never falsely accepts or rejects a step; see Tables 6.1–6.2.

In contrast to the values of the approximation model and objective function, the gradient norms

do show reasonable agreement, even at early iterations, which can be seen in Figure 6.7. This is

to be expected since the refinement method in Algorithm 13 targets the gradient error. Both the

values and gradients of the approximation model and objective do not show good agreement at the

candidate step µ̂
k

, which is also expected since, at iteration k, the sparse grid and reduced-order
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Figure 6.7: Convergence history of the gradient quantities using MI (left) and MII (right):
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Figure 6.8: Cumulative number of HDM primal and adjoint evaluations as the major iterations in
the various trust region algorithms progress: BII ( ), BIII ( ), MI ( ), MII ( ).

model were only trained at the trust region center.

Figure 6.8 provide further insight to behavior of the two proposed methods (MI and MII) in

comparison to the trust region-based baseline methods (BII andBIII). All methods are based on the

trust region framework in Algorithms 1 and 2 of Chapter 3 that are adapted from the work in [108,

109] and therefore possess the same concept of a major iteration. Figure 6.8 shows the cumulative

number of queries to the high-dimensional model as the major iterations progress. The methods

BII and BIII require more HDM queries (primal and adjoint) than their counterparts in MI and

MII since their trust region model problems rely solely on HDM queries on an anisotropic sparse

grid while MI, MII replace these with ROM queries. Another observation is that the BIII requires

fewer primal HDM queries than BII and the same number of adjoint queries. This is expected since

they both use the same approximation model in the trust region subproblem (implies same number

of adjoint queries), but BIII uses inexact objective evaluations to evaluate the actual-to-predicted

reduction ratio (implies fewer primal queries). A similar observation holds when comparing MI and

MII for the same reason.

The reduction in the number of HDM queries realized by the proposed methods MI and MII
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Figure 6.9: Left : Cumulative number of primal and adjoint ROM evaluations as the major iterations
in the various trust region algorithms progress. Right : Number of primal and adjoint ROM queries
organized according to the size of the reduced-order basis (k

u

). Trust region methods considered:
MI ( ), MII ( ).

comes at the price of a large number of ROM queries. This can be seen from Figure 6.9 that includes

the cumulative number of queries to the primal and adjoint ROM. Since the size of the reduced-order

model constantly changes as these algorithms progress, the number of queries to a reduced-order

model of a given size is also presented in Figure 6.9. Method MII requires nearly three times as

many primal reduced-order queries as MI, but nearly the same number of adjoint queries. This

comes from the fact that MII uses a (possibly) refined reduced-order model to approximation ⇢
k

,

while MI uses high-dimensional model queries to compute it exactly. This also explains the fact

that larger reduced-order models are required for MII and nearly all of these large reduced-order

models are only called upon for a primal solve only, i.e., few adjoint solves for reduced-order models

of size > 40.

Since the proposed method MI and MII and the baseline methods BI–BIII have di↵erent

sources of cost, i.e., HDM and ROM evaluations versus only HDM evaluations, care must be taken

when assessing the performance of the methods. The ultimate cost metric of interest is wall time;

however, this one-dimensional model problem will not be representative of the speedups that can be
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Figure 6.10: Convergence of the objective function (left) and gradient (right) as a function of the
cost metric in (6.69) for method MIII for several values of the speedup factor of the reduced-order
model: ⌧ = 1 ( ), ⌧ = 10 ( ), ⌧ = 100 ( ), ⌧ = 1 ( ). The baseline methods used for
comparison: BI ( ) and BIII ( ).

realized by methods MI and MII. Due to the small problem size and the fact that hyperreduction

has not been included to reduce the complexity associated with the nonlinear term, queries to the

reduced-order model are only marginally less expensive than the HDM queries. For larger problems

that include hyperreduction, the motivation for this work, ROM queries have been shown [198] to

be one to five orders of magnitude less expensive than HDM queries. To assess the speedups that

can be realized by this method, the following simple cost model is introduced

C = n

hp

+ n

ha

/2 + ⌧

�1(n
rp

+ n

ra

/2) (6.69)

where C is the total cost associated with a particular method in the units of equivalent number

of primal HDM queries, n
hp

is the number of primal HDM queries, n
ha

is the number of adjoint

HDM queries, n
rp

is the number of primal ROM queries, n
ra

is the number of adjoint ROM queries,

and ⌧ is the ratio of the cost of a primal HDM query to a primal ROM query. This cost model

assumes a primal solve is twice as expensive as an adjoint solve and a primal HDM solve is ⌧ times

as expensive as a primal ROM solve. Figure 6.10 shows the evolution of the objective function

and gradient as a function of the cost metric in (6.69) for the baseline methods BI, BIII and the

proposed method MII for ⌧ = 1, 10, 100,1. Even for slow reduced-order models (⌧ = 1), MII

exhibits faster convergence than the brute-force baseline method BI; however, it converges more

slowly than the state-of-the-art method BIII. For a modest ROM speedup of ⌧ = 10, MII is more

than 5⇥ less expensive than BIII, i.e., for a given value of the objective function or gradient, the

cost of MII is less than a fifth of BIII. For fast reduced-order models (⌧ = 100), MII is an order

of magnitude more e�cient than BIII. An upper bound on the improvement attainable by MII

compared to BIII is slightly greater than an order of magnitude, which is seen from the limiting

case of free reduced-order model (⌧ =1) in Figure 6.10.
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Chapter 7

Conclusions

7.1 Summary and Conclusions

The primary contributions of this thesis are two-fold: (1) the development of an e�cient solver

for deterministic PDE-constrained optimization problems that leverages projection-based reduced-

order models and partially converged PDE solutions and (2) the development of an e�cient solver

for stochastic PDE-constrained optimization problems that leverages projection-based reduced-order

models and anisotropic sparse grids. These primary contributions were built on two independent

auxiliary contributions that have applications that extend well beyond the scope of this thesis:

(1) the introduction of a globally convergent, highly flexible generalized trust region method for

managing e�cient approximation models and (2) the generalization and extension of minimum-

residual projection-based reduced-order models [115, 28, 31, 89] to sensitivity and adjoint PDEs.

The multifidelity trust region method introduced in Chapter 3 extends traditional trust region

methods by allowing generalized trust region constraints to be used, provided the relationship in

(3.12) between the approximation model decrease error and the trust region constraint can be

established. This method is said to be a “generalized” trust region since the traditional trust

region constraint, i.e., a ball in RNµ , satisfies the required relationships and is therefore a valid

constraint in the proposed method. The trust region method is closely based on the methods in

[108, 109] that does not require first-order consistency with the objective function and allows an

approximation model to be used in the computation of the actual-to-predicted reduction. This

flexibility is significant since the resulting method in Algorithm 2 does not explicitly depend on the

expensive objective function F (µ); however, construction of the approximation models m

k

(µ) and

 

k

(µ) will likely require (inexact) evaluations of F (µ). Furthermore, the inexactness conditions

adopted from [93, 108, 109] allow for asymptotic error bounds between the true and approximated

quantities, which provides considerable flexibility in the approximation models that can be used.

Even though the trust region framework was developed in the unconstrained setting, it can be

embedded in an augmented Lagrangian framework to handle nonlinear equality constraints. This

205



CHAPTER 7. CONCLUSIONS 206

multifidelity trust region method, or trust region model management framework, constitutes one of

the pillars of this thesis from which the primary contributions regarding deterministic and stochastic

PDE-constrained optimization in Chapters 5 and 6 follow. The second pillar is the primary PDE

approximation technology employed in this work: projection-based model reduction.

While the concept of minimum-residual projection-based reduced-order models is not new [115,

28, 31, 89], this work contributes to the understanding of this technology and extends it to apply

to sensitivity and adjoint PDEs. The primary factors that motivate the use of minimum-residual

reduced-order models—optimality, monotonicity, and interpolation—are stated and proved in Propo-

sition 4.1, 4.2, 4.4 for the primal, sensitivity, and adjoint PDEs. For the primal PDE, these concepts

are well-known from previous work [31], but have only been sparingly explored [210] in the sensi-

tivity/adjoint settings. These properties are crucial when reduced-order models are combined with

the generalized trust region method of Chapter 3 as the trust region convergence theory places

specific requirements on the accuracy of the approximation model at trust region centers, which

is closely linked to these minimum-residual properties and the construction of the reduced-order

bases. Propositions 4.3 and 4.5 are particularly important contributions of this thesis to the model

reduction literature as they state conditions under which minimum-residual sensitivities/adjoints co-

incide with the true sensitivities/adjoints of the reduced-order model. These results provide insight

into the construction of the reduced-order basis and ensures the true reduced-order model sensitivi-

ties/adjoints possess the minimum-residual properties (optimality, monotonicity, and interpolation).

This is particularly important in the context of optimization since it guarantees the minimum-

residual sensitivities/adjoints will lead to consistent gradients of QoIs based on the reduced-order

model, which is extensively leveraged in the deterministic and stochastic PDE-constrained optimiza-

tion methods of Chapters 5 and 6. Finally, the minimum-residual sensitivities/adjoints are much

easier to implement and compute than their exact counterparts when a non-constant test basis is

used since they do not require second derivatives of the governing equations. These results sur-

rounding minimum-residual reduced-order models were extended to the case of collocation-based

hyperreduction where the residual minimization occurs only over the subset of the degrees of free-

dom in the mask. Weaker versions of the crucial propositions mentioned above were established in

this setting (Propositions 4.6 – 4.8).

These two technologies—the generalized trust region method and minimum-residual projection-

based reduced-order models—serve as pillars for the primary contributions of the thesis: e�cient

optimization methods for deterministic and stochastic PDE-constrained optimization. The proposed

method for deterministic PDE-constrained optimization uses projection-based reduced-order mod-

els as the approximation model in the generalized trust region method and residual-based error

indicators (Appendix B justifies the use of residual-based error indicators as error bounds). The

minimum-residual properties of the reduced-order models, as well as the compression algorithms in

Section 4.3, are used to build a ROM that exactly satisfies the error conditions in (3.14), (3.15),

which guarantees global convergence. The flexibility of the trust region framework is leveraged to

use partially converged PDE solutions as snapshots for the reduced-order model and to approximate
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the actual-to-predicted reduction. The proposed method is applied to a number of PDE-constrained

optimization problems in fluid mechanics. The large-scale industrial example of aerodynamic shape

optimization of the Common Research Model demonstrated the potential of the proposed method

to be 1.6⇥ faster than a state-of-the-art PDE-constrained optimization solver.

The multifidelity trust region method proposed as an e�cient solver for stochastic PDE-constrained

optimization problems in Chapter 6 requires a second level of inexactness to e�ciently integrate quan-

tities of interest over the stochastic space to form risk measures (Section 2.2.1). This lead to the

development of the two-level approximation of risk measures of PDE quantities of interest that uses

dimension-adaptive anisotropic sparse grids to perform e�cient integration in the stochastic space

and model reduction for e�cient PDE queries at each collocation node. This two-level approximation

was used to define the approximation model in the multifidelity trust region method and suitable

error indicators were derived that take both the model reduction error and integral truncation er-

ror into account. Global convergence is established by employing a two-level dimension-adaptive

greedy algorithm to simultaneously construct the sparse grid and reduced-order basis to satisfy the

error conditions (3.14), (3.15). The proposed method directly extends the work in [108, 109] that

only defines the approximation model using dimension-adaptive sparse grids with PDE queries at

collocation nodes performed using the HDM. It is also similar to [44, 42, 43] that employs the same

two-level approximation, but embeds it in an o✏ine-online framework and claims regarding conver-

gence only apply to simple PDEs. The numerical experiment in Chapter 6 demonstrate the promise

of this method as a 500-fold reduction in the cost metric (6.69), compared to using a fine isotropic

sparse grid without reduced-order models to perform the stochastic optimization, was realized. Even

compared to the method in [109] that is considered state-of-the-art, a 10-fold reduction in the cost

metric was realized.

7.2 Prospective Future Work

This thesis leaves a variety of research issues and spin-o↵ projects that constitute promising avenues

of future research. These research direction include:

• Possible improvements to the proposed methods. A number of possible improvements to the

various methods proposed in this thesis are apparent. The first is a theoretical matter to

extend the liminf statement on global convergence in Appendix A to the stronger lim conver-

gence. Another independent issue that should be addressed is the complete formulation of the

minimum-residual adjoint equations for the collocation-based hyperreduced models. As was

pointed out in Section 4.2.6, this is delicate due to the di↵erences between the mask and sample

mesh that become a factor when considering the transpose of the Jacobian (as required by the

adjoint residual). Another possible enhancement that would have a positive and widespread

impact across the methods proposed in this thesis is the use of improved, faster, and possibly

probabilistic, [15] error indicators. In the trust region framework, these can either be used as
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the trust region constraint or as the gradient error indicator. Finally, in the context of opti-

mization under uncertainty, the use of sparse grids implicitly assumes the risk measures are

su�ciently smooth, which eliminates many of the most interesting and relevant risk measures

in Section 2.2.1. To enable the use of these alternate risk measures, future work should focus

on an alternative construction of collocation nodes that explicitly deals with non-smoothness.

• Extension to problems with large-scale parameter spaces, N
µ

= O(N
u

). All of the methods

developed in this document assume there are few parameters compared to the dimension

of the state vector, i.e., N

µ

⌧ N

u

, since reduction was only applied to the state vector.

To handle the more complicated case where N

µ

= O(N
u

) that arises in applications such

as topology optimization or inverse problems, reduction of some form must be applied to

the parameter space as well. Evaluation of the reduced-order model will require at least

O(N
µ

) operations, particularly if the parameters define coe�cient of the underlying PDE,

e.g., material properties, and this will constitute a major bottleneck when there are O(N
u

)

parameters. One possible method that exploits low-dimensional search spaces employed by

individual iterations of linesearch and subspace methods is outlined in Appendix C.

• Extension to time-dependent problems, possibly with periodicity constraints. In this thesis, all

problems considered in Chapters 5 and 6 were static. However, optimization problems governed

by time-dependent PDEs (Appendix D) would benefit most from a multifidelity approach such

as the ones proposed in this thesis due to their extreme computational cost and the plethora of

training information generated, even after a single query to the HDM. Extension of this work

to time-dependent problems will require the development of inexpensive error indicators for

the primal and sensitivity/dual; however, the optimization methods themselves do not need

to be modified since they are agnostic to the form of the underlying PDE (only work with

quantities of interest and their gradients).



Appendix A

Global Convergence Proof:

Error-Aware Trust Region Method

This section provides the global convergence theory for the error-aware, multifidelity trust region

method in Algorithm 2 for the solution of the unconstrained optimization problem

minimize
µ2RNµ

F (µ).

It largely parallels the convergence theory in [133, 108, 109] with required changes to handle the

error-aware trust regions. At iteration k, define the approximation model m
k

: RNµ ! R and the

error indicators #
k

: RNµ ! R
+

and '
k

: RNµ ! R
+

such that

|F (µ
k

)� F (µ) +m

k

(µ)�m

k

(µ
k

)|  ⇣#
k

(µ)⌫ µ 2 R
k

(A.1)

krF (µ
k

)�rm
k

(µ
k

)k  ⇠'
k

(µ
k

) (A.2)

where ⇣, ⇠ > 0 are arbitrary constants, ⌫ > 1, {µ
k

} is the sequences of iterates produced by the

Algorithm 2, and R
k

= {µ 2 RNµ | #
k

(µ)  �
k

} are the sublevel sets of the error indicator #
k

(µ).

Furthermore, require the approximation is refined such that the error indicators satisfy the following

conditions at trust region centers

#

k

(µ
k

)  
#

�
k

(A.3)

'

k

(µ
k

)  
'

min{krm
k

(µ
k

)k , �
k

}, (A.4)

where 
#

2 (0, 1) and 

'

> 0 are algorithmic constants. Additionally, define an approximation

model for the objective function  
k

: RNµ ! R and corresponding error indicator ✓
k

: RNµ ! R
+

that satisfy

|F (µ
k

)� F (µ) +  

k

(µ)�  
k

(µ
k

)|  �✓
k

(µ) (A.5)
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where � > 0 is an arbitrary constant. Finally, require the objective approximation is refined such

that the error indicators satisfies

✓

k

(µ̂
k

)!  ⌘min{m
k

(µ
k

)�m

k

(µ̂
k

), r
k

} (A.6)

where ⌘ < min{⌘
1

, 1� ⌘
2

}, ! 2 (0, 1) and 0 < ⌘

1

< ⌘

2

< 1 are algorithmic constants, {r
k

}1
k=1

such

that r
k

! 0 is a forcing sequence, and µ̂
k

is the solution of the trust region subproblem at iteration

k

minimize
µ2RNµ

m

k

(µ)

subject to #

k

(µ)  �
k

.

Before proceeding the main content of this section, the global convergence proof of Algorithm 2,

additional assumptions are introduced on the regularity and boundedness of the objective function

F (µ) and approximation model m
k

(µ) in Assumptions A.1 and A.2.

Assumption A.1 (Objective function assumptions).

(AF1) F : RNµ ! R is twice-continuously di↵erentiable on RNµ

(AF2) F (µ) is bounded below on RNµ , i.e., there exists 
lbf

> 0 such that, for all µ 2 RNµ ,

F (µ) � 
lbf

Assumption A.2 (Approximation model assumptions).

(AM1) m

k

: RNµ ! R is twice-continuously di↵erentiable on RNµ

(AM2) The Hessian of the model remains bounded within the trust region, i.e.,

�

k

:= 1 + sup
µ2R

k

��r2

m

k

(µ)
��  

umh

where 
umh

� 1

(AM3) #
k

: RNµ ! R is continuously di↵erentiable on RNµ

(AM4) The directional derivative of the constraint in any direction p
k

is bounded in the trust region,

i.e.,

sup
µ2R

k

����
@#

k

@µ
(µ)p

k

����  r#

where r#

> 0

(AM5) The trust region subproblem

minimize
µ2RNµ

m

k

(µ)

subject to #

k

(µ)  �
k

.
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has a local solution, which is guaranteed if m
k

(µ) has a local minima in the interior of R
k

or

R
k

is compact and a local solution lies on the boundary of the trust region @R
k

:= {µ 2 RNµ |
#

k

(µ) = �
k

}.

Lemma A.1 (Circumscribe ball with radius proportional to �
k

inside R
k

). Assume (AM3)–(AM4)

hold. Then,

D
k

:= {µ 2 RNµ | kµ� µ
k

k
2

 (1� 
#

)�1

r#

�
k

} ✓ R
k

. (A.7)

Proof. Let p
k

be an arbitrary unit vector and take µ 2 D
k

such that µ = µ
k

+ ↵p
k

. From the

definition of D
k

in (A.7), ↵  (1 � 
#

)�1

r#

�
k

. The mean value theorem, bound on #

k

(µ
k

), and

bound on the directional derivatives of #
k

(µ) lead to
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where ⇣ = µ
k

+ ⌧↵p
k

for some ⌧ 2 [0, 1]. The bound on ↵ that results from µ 2 D
k

, along with the

relation in (A.8) leads to

#

k

(µ)  �
k

and therefore µ 2 R
k

. Thus, D
k

✓ R
k

.

Lemma A.2 (Fraction of Cauchy Decrease). Assume (AM1) and (AM3)–(AM4) hold. Then there

exists µ 2 R
k

such that

m

k
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k

)�m

k
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for 
s

2 (0, 1).

Proof. From Theorem 6.3.3 of [48], there exists µ 2 D
k

such that holds

m
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s

2 (0, 1) and � = (1 � 

#

)�1
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�
k

is the radius of D
k

. From Lemma A.1, D
k

✓ R
k

.

Therefore there exists µ 2 R
k

such that (A.9) holds.

Lemma A.3. Assume (AM1), (AM3)–(AM4), (AM5) hold. Then the solution of the optimization

problem

minimize
µ2RNµ

m

k

(µ)

subject to #

k

(µ)  �
k

satisfies

m

k

(µ
k

)�m

k
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k

(µ
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)kmin

⇢
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Proof. From Assumption (AM5), a solution of the optimization problem exists. By Lemma A.2,

there exists a point in the feasible set of the optimization problem, i.e., R
k

, that satisfies (A.9).

The (global) solution of the optimization problem must realize (at least) the same reduction in the

objective function, which leads to the desired result.

Lemma A.4. If the objective approximation error bound (A.5) and accuracy condition (A.6) hold,

then for k su�ciently large
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Proof. The forcing sequence, {r
k

}, in the bound on ✓

k

implies ✓
k

! 0. Therefore, for su�ciently

large k, ✓
k

 ��1/(1�!). Then, (A.5), ✓
k

 ��1/(1�!), and (A.6) lead to the desired result
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Lemma A.5. If the objective approximation error bound (A.5) and accuracy condition (A.6) hold,

then for k su�ciently large
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Proof. For su�ciently large k,
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Then, Lemma A.4 leads to the desired result
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Lemma A.6. Assume (AF2) and (AM1)–(AM4) hold and suppose there exists ✏ > 0 such that

krm
k

(µ
k

)k � ✏ for k su�ciently large. Then the sequence of trust region radii {�
k

} produced by

Algorithm 2 satisfies
1X

k=1

�
k

<1.
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Proof. If there are only a finite number of successful iterations, there exists K > 0 such that all

iterations k > K are unsuccessful. Then,
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The first inequality follows from Lemma A.5, the second from the step acceptance condition in Al-

gorithm 2, the third from the fraction of Cauchy decrease (A.9), and the fourth from the assumption

that krm
k

(µ
k

)k � ✏. Summing over all i su�ciently large
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where the finiteness of the limit follows from F being bounded below. Since ✏/
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is bounded

away from zero, the inequality above implies that
P1

i=1

�
k

i

<1.

Let S ⇢ N be the ordered set of indicies of successful iterations. For every k /2 S, �
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where j(k) 2 S is the largest index such that j(k) < k, i.e. j(k) represents the last

successful iteration before the unsuccessful iteration k. Summing over all k /2 S,
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This proves the desired result.
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Lemma A.7. Assume (AF2) and (AM1)–(AM4) hold and suppose there exists ✏ > 0 such that

krm
k

(µ
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)k � ✏ for k su�ciently large. Then the ratios, {⇢
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}, produced by Algorithm 2, converge

to one.

Proof. From the asymptotic error bound on the approximation model in (A.1) and the fact that the
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From the Lemma A.2 and the convergence criteria on the trust region subproblem in Algorithm 2,

we have
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Then, for su�ciently large k,
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Therefore, ⇢
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! 1 since �
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! 0 (Lemma A.6) and ⌫ > 1.

Theorem A.1. Assume (AF1)–(AF2), (AM1)–(AM4) hold. Let {µ
k

} be the sequence of iterates

produced by Algorithm 2 and {m
k

} the corresponding models. Then
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)k � ✏. By Lemma A.7, there

exists K > 0 such that for all k > K, ⇢
k

is su�ciently close to 1 and the corresponding step is

successful. From Algorithm 2, this implies �
K

 �
k

 �
max

. This result contradicts Lemma A.6

and we must have

lim inf
k!1

krm
k

(µ
k

)k = 0.

From the triangle inequality and (A.2),

krF (µ
k

)k  krm
k

(µ
k

)k+ krm
k

(µ
k

)�rF (µ
k

)k  (1 + ⇠) krm
k

(µ
k

)k

which implies

lim inf
k!1

krF (µ
k

)k = 0.



Appendix B

Residual-Based Error Bounds

In this section, computable error bounds on quantities of interest and their gradients are sought that

will enable reduced-order models to be used in the multifidelity trust region framework introduced in

Chapter 3. Global convergence (Appendix A) of the trust region method in Algorithms 1–2 requires

asymptotic error bounds of the form

|F (µ
k

)� F (µ) +m

k

(µ)�m

k

(µ
k

)|  ⇣#
k

(µ)⌫ µ 2 R
k

krF (µ)�rm
k

(µ)k  ⇠'
k

(µ) µ 2 N
k

,

where ⇣, ⇠ > 0 are arbitrary constants, ⌫ > 1, R
k

= {µ 2 RNµ | #
k

(µ)  �
k

}, and N
k

is any

open neighborhood of µ
k

. The constants ⇣, ⇠ do not need to be small or even computable since

they are never used in the trust region algorithm and global convergence is only predicated on their

existence. Two key points about these error bounds that substantially reduces the burden of deriving

error indicators #
k

(µ) and '
k

(µ) are: (1) they do not need to have high e↵ectivity to ensure global

convergence and (2) they are not required to hold in the entire parameter space, only in the bounded

sets R
k

(assumed) and N
k

. Therefore, this section will consider general residual-based error bounds

that hold in bounded subsets of the parameter space since they are easily derived and computed,

even though they are known to have poor e↵ectivity.

To facilitate the derivation of the residual-based error bounds, recall the following definition

from (2.90) that uses an approximate primal solution u 2 RNu and sensitivity w 2 RNu⇥Nµ to

reconstruct the gradient of the quantity of interest

g@(u, w, µ) :=
@f

@µ
(u, µ) +

@f

@u
(u, µ)w. (B.1)

Similarly, from (2.102), an approximate adjoint solution z 2 RNu can be used to approximate the

gradient of the QoI as

g�(u, z, µ) :=
@f

@µ
(u, µ) + zT

@r

@µ
(u, µ). (B.2)

215
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Given these definitions, it is clear that

rF (µ) = g@

✓
u(µ),

@u

@µ
(µ), µ

◆
= g�(u(µ), �(µ), µ). (B.3)

Before proceeding to the derivation of the residual-based error bounds, an operator D is defined

in Definition B.1 that represents the Jacobian of the nonlinear residual integrated between states

u
1

and u
2

for a fixed parameter µ.

Definition B.1. Define D : RNu ⇥ RNu ⇥ RNµ ! RNu ⇥ RNu as

D(u
1

, u
2

, µ) =

Z
1

0

@r

@u
(u

2

+ t(u
1

� u
2

), µ) dt. (B.4)

Remark. In the special case where r(u, µ) is linear in its first argument, i.e., r(u, µ) = A(µ)u+b,

then D(u
1

, u
2

, µ) = A(µ).

The following assumptions are introduced on the nonlinear operator defining the system of equa-

tions and the quantity of interest.

Assumption B.1 (Nonlinear system assumptions). Let U ⇢ RNu and V ⇢ RNµ be bounded subsets

(AR1) r : U ⇥ V ! RNu is continuously di↵erentiable

(AR2) The Jacobian,
@r

@u
(u, µ), is invertible for all u 2 U and µ 2 V

(AR3) The inverse of the Jacobian,
@r

@u
(u, µ)�1 is bounded for all u 2 U and µ 2 V

(AR4) The matrix D(u
1

,u
2

, µ) defined in (B.4) is invertible for all u
1

, u
2

2 U and µ 2 V

(AR5) The matrix D(u
1

, u
2

, µ)�1 is bounded for all u
1

, u
2

2 U and µ 2 V

(AR6) The parameter Jacobian,
@r

@µ
(u, µ), is bounded for all u 2 U and µ 2 V

(AR7) The Jacobian and its transpose,
@r

@u
(u,µ), are Lipschitz continuous in its first argument over

U , i.e., there exists a constant c
@ur

> 0 such that

����
@r

@u
(u

1

, µ)� @r

@u
(u

2

, µ)

����  c

@ur

ku
1

� u
2

k

for all u
1

, u
2

2 U and µ 2 V

(AR8) The parameter Jacobain,
@r

@µ
(u,µ), is Lipschitz continuous in its first argument over U , i.e.,

there exists c

@µr

> 0 such that

����
@r

@µ
(u

1

, µ)� @r

@µ
(u

2

, µ)

����  c

@µr

ku
1

� u
2

k

for all u
1

, u
2

2 U and µ 2 V
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Assumption B.2 (Quantity of interest assumptions). Let U ⇢ RNu and V ⇢ RNµ be bounded

subsets

(AQ1) f : U ⇥ V ! R is continuously di↵erentiable

(AQ2) f : U ⇥ V ! R is Lipschitz continuous with respect to its first argument, i.e., there exists a

constant c
f

> 0 such that

|f(u
1

, µ)� f(u
2

, µ)|  c

f

ku
1

� u
2

k (B.5)

(AQ3)
@f

@u
: U ⇥ V ! RNu is bounded and Lipschitz continuous with respect to its first argument, i.e.,

there exists a constant c
@uf

> 0 such that

����
@f

@u
(u

1

, µ)� @f

@u
(u

2

, µ)

����  c

@uf

ku
1

� u
2

k (B.6)

(AQ4)
@f

@µ
: U ⇥ V ! RNµ is Lipschitz continuous with respect to its first argument, i.e., there exists

a constant c
@µf

> 0 such that

����
@f

@µ
(u

1

,µ)� @f

@µ
(u

2

,µ)

����  c

@µf

ku
1

� u
2

k (B.7)

Finally, the sets U⇤, W ⇤, Z⇤ are introduced as the set of primal, sensitivity, and adjoint solutions

of the governing equations over a bounded set V of the parameter space.

Definition B.2. Let V ✓ RNµ be a bounded set and define

U

⇤ = {u(µ) | µ 2 V }.

Furthermore, it is assumed that U⇤ is bounded.

Definition B.3. Let V ✓ RNµ be a bounded set and define

W

⇤ =

⇢
@u

@µ
(µ) | µ 2 V

�
.

Boundedness of W ⇤ is established in Lemma B.1.

Definition B.4. Let V ✓ RNµ be a bounded set and define

Z

⇤ = {�(µ) | µ 2 V }.

Boundedness of Z⇤ is established in Lemma B.2.
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Lemma B.1. Assume (AR1)–(AR3), (AR6) hold and V ✓ RNµ is a bounded subset. Then there

exists a constant  > 0 such that

sup
µ2V

����
@u

@µ
(µ)

����   (B.8)

where
@u

@µ
(µ) is the solution of r@(u(µ), · , µ) = 0 and u(µ) is the solution of r( · , µ) = 0.

Proof. From the definition of
@u

@µ
(µ) in (2.87), boundedness of U⇤, and assumptions (AR2), (AR3),

(AR6), there exists a constant  > 0 such that

����
@u

@µ
(µ)

���� 
����
@r

@u
(u(µ),µ)�1

����

����
@r

@µ
(u(µ),µ)

����  .

Lemma B.2. Assume (AR1)–(AR3), (AQ3) hold and V ✓ RNµ is a bounded subset. Then there

exists a constant  > 0 such that

sup
µ2V

k�(µ)k   (B.9)

where �(µ) is the solution of r�(u(µ), · , µ) = 0 and u(µ) is the solution of r( · , µ) = 0.

Proof. From the definition of �(µ) in (2.92), boundedness of U⇤, and assumptions (AR2), (AR3),

(AQ3), there exists a constant  > 0 such that

�(µ) 
����
@r

@u
(u(µ),µ)�T

����

����
@f

@u
(u(µ),µ)T

����  .

Lemma B.3. Assume (AR1), (AR4), (AR5) hold and U ✓ RNu , V ✓ RNµ are bounded subsets.

Then there exists a constant  > 0 such that

ku(µ)� uk   kr(u, µ)k µ 2 V (B.10)

for any u 2 U , where u(µ) is the solution of r( · , µ) = 0.

Proof. Consider any u 2 U . A variant of the mean value theorem gives

r(u(µ), µ)� r(u, µ) = D(u(µ), u, µ)(u(µ)� u).

The boundedness of U⇤ and assumptions (AR4)–(AR5) imply the existence of a constant  > 0 such

that

ku(µ)� uk   kr(u, µ)k .
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Lemma B.4. Assume (AR1), (AR4), (AR5), (AQ2) hold and U ✓ RNu , V ✓ RNµ are bounded

subsets. Then there exists a constant  > 0 such that

|f(u(µ), µ)� f(u, µ)|   kr(u, µ)k µ 2 V (B.11)

for any u 2 U , where u(µ) is the solution of r( · , µ) = 0.

Proof. Consider any u 2 U . Lipschitz continuity of f (AQ2) gives

|f(u(µ), µ)� f(u, µ)|  c

f

ku(µ)� uk . (B.12)

The bound in Lemma B.3 leads to the desired result.

Lemma B.5. Assume (AR1)–(AR8) hold and U ✓ RNu , V ✓ RNµ , W ✓ RNu⇥Nµ are bounded

subsets. Then there exists constants , ⌧ > 0 such that

����
@u

@µ
(µ)�w

����   kr(u, µ)k+ ⌧

��r@(u, w, µ)
�� µ 2 V (B.13)

for any u 2 U and w 2 W , where
@u

@µ
(µ) is the solution of r@(u(µ), · , µ) = 0 and u(µ) is the

solution of r( · , µ) = 0.

Proof. From the definition of
@u

@µ
(µ) in (2.87) and r@ in (2.89), the following relation holds for any

w 2 RNu⇥Nµ

@u

@µ
(µ)�w = � @r

@u
(u(µ), µ)�1


@r

@µ
(u(µ), µ) +

@r

@u
(u(µ), µ)w

�

= � @r
@u

(u(µ), µ)�1r@(u(µ), w, µ).

(B.14)

Existence and boundedness of the Jacobian inverse over U⇤ leads to the bound

����
@u

@µ
(µ)�w

����  1
��r@(u(µ), w, µ)

�� (B.15)

for any w 2 RNu⇥Nµ , where 
1

> 0 is a constant. The desired bound will be obtained by bounding

the sensitivity residual evaluated at the exact primal solution, r@(u(µ), w, µ), by a combination of

the primal and sensitivity residuals at an approximate primal and sensitivity solution. For w 2 W



APPENDIX B. RESIDUAL-BASED ERROR BOUNDS 220

there exists a constant 
2

> 0 such that

��r@(u(µ), w, µ)
�� 

��r@(u, w, µ)
��+

��r@(u(µ), w, µ)� r@(u, w, µ)
��


��r@(u, w, µ)

��+

����
@r

@u
(u(µ), µ)� @r

@u
(u, µ)

���� kwk+
����
@r

@µ
(u(µ), µ)� @r

@µ
(u, µ)

����


��r@(u, w, µ)

��+ (c
@µr

+ c

@ur

kwk) ku(µ)� uk


��r@(u, w, µ)

��+ 

2

kr(u, µ)k .
(B.16)

The first two inequalities follow from the triangle inequality and definition of the sensitivity residual

r@ in (2.89). The third inequality follows from Lipschitz continuity of the partial derivatives of r

(AR7)–(AR8). The final inequality follows from the boundedness of the subset W and Lemma B.3.

Combining (B.15) and (B.16), the desired result follows.

Lemma B.6. Assume (AR1)–(AR7), (AQ1), (AQ3) hold and U ✓ RNu , V ✓ RNµ , Z ✓ RNu .

Then there exists constants , ⌧ > 0 such that

k�(µ)� zk   kr(u, µ)k+ ⌧

��r�(u, z, µ)
�� µ 2 V (B.17)

for any z 2 Z, where �(µ) is the solution of r�(u(µ), · , µ) = 0 and u(µ) is the solution of

r( · , µ) = 0.

Proof. From the definition of �(µ) in (2.92) and r� in (2.101), the following relation holds for any

z 2 RNu

�(µ)� z =
@r

@u
(u(µ), µ)�T


� @f
@u

(u(µ), µ)T +
@r

@u
(u(µ), µ)Tz

�

=
@r

@u
(u(µ), µ)�Tr�(u(µ), z, µ).

(B.18)

Existence and boundedness of the Jacobian inverse over U⇤ leads to the bound

k�(µ)� zk  
1

��r�(u(µ), z, µ)
�� (B.19)

for any z 2 RNu , where 
1

> 0 is a constant. The desired bound will be obtained by bounding

the adjoint residual evaluated at the exact primal solution, r�(u(µ), z, µ), by a combination of the

primal and adjoint residuals at an approximate primal and adjoint solution. Then for z 2 Z, there

exists a constant 
2

> 0 such that

��r�(u(µ), z, µ)
�� 

��r�(u, z, µ)
��+

��r�(u(µ), z, µ)� r�(u, z, µ)
��


��r�(u, z, µ)

��+

����
@r

@u
(u(µ), µ)T � @r

@u
(u, µ)T

���� kzk+
����
@f

@u
(u(µ), µ)� @f

@u
(u, µ)

����


��r�(u, z, µ)

��+ (c
@uf

+ c

@ur

kzk) ku(µ)� uk


��r�(u, z, µ)

��+ 

2

kr(u, µ)k .
(B.20)
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The first two inequalities follow from the triangle inequality and definition of the adjoint residual r�

in (2.101). The third inequality follows from Lipschitz continuity of the Jacobian of r (AR7) and

f (AQ3). The final inequality follows from the boundedness of the set Z. Combining (B.18) and

(B.20), the desired result follows.

Lemma B.7. Assume (AR1)–(AR8), (AQ1)–(AQ4) hold and U ✓ RNu , V ✓ RNµ , W ✓ RNu⇥Nµ

are bounded subsets. Then there exists constant , ⌧ > 0 such that

����g
@

✓
u(µ),

@u

@µ
(µ), µ

◆
� g@(u, w, µ)

����   kr(u, µ)k+ ⌧

��r@ (u, w, µ)
�� µ 2 V (B.21)

for any u 2 U , w 2 W , where u(µ) is the solution of r( · , µ) = 0 and
@u

@µ
(µ) is the solution of

r@(u(µ), · , µ) = 0.

Proof. From the definition of g@ in (2.90) and the triangle inequality

����g
@

✓
u(µ),

@u

@µ
(µ), µ

◆
� g@(u, w, µ)

���� 
����
@f

@µ
(u(µ), µ)� @f

@µ
(u, µ)

����+
����
@f

@u
(u(µ), µ)

@u

@µ
(µ)� @f

@u
(u, µ)w

���� .
(B.22)

for any u 2 U and w 2W . Lipschitz continuity of
@f

@µ
( ·, µ) leads to

����g
@

✓
u(µ),

@u

@µ
(µ), µ

◆
� g@(u, w, µ)

����  c

@µf

ku(µ)� uk+
����
@f

@u
(u(µ), µ)

@u

@µ
(µ)� @f

@u
(u, µ)w

���� .
(B.23)

Adding and subtracting
@f

@u
(u, µ)

@u

@µ
(µ) leads to

����g
@

✓
u(µ),

@u

@µ
(µ), µ

◆
� g@(u, w, µ)

����  c

@µf

ku(µ)� uk+
����

✓
@f

@u
(u(µ), µ)� @f

@u
(u, µ)

◆
@u

@µ
(µ)

����+
����
@f

@u
(u, µ)

✓
@u

@µ
(µ)�w

◆���� .

Lipschitz continuity and boundedness of
@f

@u
( ·, µ) gives

����g
@

✓
u(µ),

@u

@µ
(µ), µ

◆
� g@(u,w,µ)

���� 
✓
c

@µf

+ c

@uf

����
@u

@µ
(µ)

����

◆
ku(µ)� uk+ ⌧

1

����
@u

@µ
(µ)� v

���� ,
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where ⌧
1

> 0 is a constant. The boundedness of W ⇤ leads to

����g
@

✓
u(µ),

@u

@µ
(µ), µ

◆
� g@(u,w,µ)

����  1 ku(µ)� uk+ ⌧

1

����
@u

@µ
(µ)�w

����

where 
1

> 0 is a constant. Combining the above bound with Lemmas B.3 and B.5 gives the desired

result.

Lemma B.8. Assume (AR1)–(AR8), (AQ1)–(AQ4) hold and U ✓ RNu , V ✓ RNµ , Z ✓ RNu are

bounded subsets. Then there exists constant , ⌧ > 0 such that

��g� (u(µ), �(µ), µ)� g�(u, z, µ)
��   kr(u, µ)k+ ⌧

��r� (u, z, µ)
�� µ 2 V (B.24)

for any u 2 U , z 2 Z, where u(µ) is the solution of r( · , µ) = 0 and �(µ) is the solution of

r�(u(µ), · , µ) = 0.

Proof. From the definition of g� in (2.102) and the triangle inequality

��g� (u(µ), �(µ), µ)� g�(u, z, µ)
�� 

����
@f

@µ
(u(µ), µ)� @f

@µ
(u, µ)

����+
�����(µ)

T

@r

@µ
(u(µ), µ)� zT

@r

@µ
(u, µ)

���� .
(B.25)

for any u 2 U and z 2 Z. Lipschitz continuity of
@f

@µ
( ·, µ) over U leads to

��g� (u(µ), �(µ), µ)� g�(u, z, µ)
��  c

@µf

ku(µ)� uk+
�����(µ)

T

@r

@µ
(u(µ), µ)� zT

@r

@µ
(u, µ)

���� .
(B.26)

Adding and subtracting �(µ)T
@r

@µ
(u, µ) leads to

��g@ (u(µ), �(µ), µ)� g@(u, z, µ)
��  c

@µf

ku(µ)� uk+
�����(µ)

T

✓
@r

@µ
(u(µ), µ)� @r

@µ
(u, µ)

◆����+
����(�(µ)� z)T

@r

@µ
(u, µ)

���� .

Lipschitz continuity and boundedness of
@r

@µ
( ·, µ) gives

��g@ (u(µ), �(µ), µ)� g@(u, z,µ)
�� 

�
c

@µf

+ c

@µr

k�(µ)k
�
ku(µ)� uk+ ⌧

1

k�(µ)� zk ,
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where ⌧
1

> 0 is a constant. The boundedness of Z⇤ leads to

��g@ (u(µ), �(µ), µ)� g@(u, z,µ)
��  

1

ku(µ)� uk+ ⌧

1

k�(µ)� zk

where 
1

> 0 is a constant. Combining the above bound with Lemmas B.3 and B.6 gives the desired

result.



Appendix C

Adaptive State and Parameter

Space Reduction for Large-Scale

Optimization

All of the optimization methods introduced in Chapters 5–6 were developed under the assump-

tion that the number of optimization parameters is small compared to the size of the state vector

(N
µ

⌧ N

u

) and therefore the dominant cost is attributed to the PDE solves. However, there are

a large a number of relevant optimization problems, including topological optimization and inverse

problems, where this is not the case. In these problems, the number of parameters is of the same

order of magnitude as the number of degrees of freedom in the PDE, i.e., N
µ

= O(N
u

). In such

settings, the cost of the optimization problem cannot be notably decreased if the state vector alone

is reduced, e.g., with projection-based reduced-order models. This can be attributed to two main

sources of computational cost. The first comes from the fact that the linear algebra involved in

the optimization solver is non-negligible due to the large number of parameters. Therefore, even

the reduced-space approach to PDE-constrained optimization (Section 2.3.2) will yield a large-scale

optimization problem. Second, the evaluation of reduced-order model residual and Jacobian depend

on O(N
u

) parameters and will require at least O(N
u

) operations and can not be expected to enjoy

the dramatic reduction in computational resources that has been exploited in non-parametric or

few-parameter settings [17, 171, 114, 125, 52].

The approach taken to eliminate the bottlenecks associated with large parameter spaces adap-

tively restricts the parameter space to a low-dimensional a�ne subspace of dimension k

µ

, where

k

µ

⌧ N

µ

. While similar approaches have been taken in the past [168, 167, 117, 120], the proposed

method focuses on establishing global convergence (not considered in [117, 120]) without requiring

first-order consistency, a requirement in [168, 167], for increased e�ciency. The proposed restriction

converts the N

µ

-parameter optimization problem to one in k

µ

parameters. The resulting opti-

mization problem with few parameters is solved using the globally convergent multifidelity trust

224



APPENDIX C. TWO-LEVEL REDUCTION FOR LARGE-SCALE PDE OPTIMIZATION 225

region method that leverages projection-based reduced-order models (Chapter 5). This results in

a two-level, nested reduction where, at the outermost level, the parameter space is restricted to a

low-dimensional a�ne subspace to yield an optimization problem in few variables and, at the in-

ner level, the projection-based model reduction reduces the dimensionality of the PDE itself. The

inexactness introduced at the innermost level through the use of projection-based reduced-order

models is managed using the multifidelity trust region of Chapter 5. Once the solution of the re-

stricted optimization problem is found, the low-dimensional parameter subspace is adapted at the

new point in µ-space. Such an approach to numerical optimization is called a subspace method

[54, 119, 137, 143, 207]; the popular linesearch methods [143] correspond to the special case with

k

µ

= 1. Convergence theory from the subspace/linesearch optimization literature will be recycled

to formulate a minimum requirement on the updated low-dimensional a�ne parameter subspace to

ensure a globally convergent method. The proposed subspace update will satisfy this minimum re-

quirement, thereby ensuring global convergence, while providing su�cient flexibility to incorporate

generic optimization-based vectors (such as the steepest descent direction, quasi-Newton directions,

and directions of negative curvature) as well as problem specific information. In applications such

as topology optimization and inverse problems, the parameter vector has a strong connection to the

geometry of the underlying PDE and its discretization, which can be exploited to yield a rapidly

converging algorithm.

General subspace methods (k
µ

> 1) have not been widely adopted by the optimization com-

munity because of the inherent di�culty/expense required to search a k

µ

-dimensional subspace

compared to a one-dimensional subspace as in linesearch methods. This is one reason linesearch

methods have enjoyed considerable success. In contrast, trust region methods search the entire

N

µ

-dimensional space at each optimization iteration; however, the expensive objective function is

usually replaced with a quadratic approximation that is inexpensive to query. The use of the more

expensive subspace methods are justified in this work for two reasons. First, an e�cient method has

been developed in Chapter 5 to solve PDE-constrained optimization problems with few parameters

and it is desirable to use this method to do as much work as possible before adapting the param-

eter space. Additionally, restricting the parameter space to few parameters will ensure evaluation

of the reduced-order model does not involve operations that scale with N

µ

= O(N
u

). To develop

the ideas of this section in a simple setting, only the deterministic case will be considered; future

work will consider stochastic optimization problems with large-dimensional parameter spaces and a

strategy that combines this approach with the method of Chapter 6, i.e., three-level approximation:

reduction of the state space via model reduction, reduction of the parameter space via subspace and

linesearch techniques, and approximation of integrals using dimension-adaptive sparse grids.
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C.1 Two-Level Nested Reduction of Parametrized Partial

Di↵erential Equations

This section proposes a two-level, nested reduction strategy for parametrized partial di↵erential

equations. In the first level of reduction, the high-dimensional parameter space is restricted to

a low-dimensional a�ne subspace. In the context of optimization, this amounts to a restriction

of the search space to the chosen a�ne subspace; however, it does not introduce any error into

the pointwise evaluation of the PDE. The second level of reduction uses projection-based model

reduction (Chapter 4) to the reduce the number of degrees of freedom in the PDE, i.e., reduction

of the state space. Unlike the reduction of the parameter space, the state space restriction does

introduce error into the evaluation of the PDE, as seen previously in Chapter 4. These two types

of reduction will be nested to e�ciently solve a PDE-constrained optimization problem as follows:

first, the parameter space restriction will be applied to reduce the optimization problem over N

µ

parameters to one over k
µ

⌧ N

µ

parameters and the trust region method of Chapter 5 that leverages

projection-based reduced-order models will be applied to solve the reduced optimization problem.

Adaptation of the parameter space, discussed in Section C.2.1, will be required to yield a globally

convergent method. The remainder of this section will consider each layer of reduction, in isolation,

which will be combined in Section C.2 to develop the nested optimization algorithm.

C.1.1 Outer Layer of Reduction: Restriction of Parameter Space

The PDE-constrained optimization problem that motivates this work takes the form (reduced-space

formulation)

minimize
µ2RNµ

F (µ) := f(u(µ), µ) (C.1)

where u(µ) is the unique (Assumption 2.2), continuously di↵erentiable (Theorem 2.1) solution of

the fully discrete parametrized partial di↵erential equation r( · , µ) = 0. Unlike previous chapters,

here it is assumed that N
µ

is large, i.e., N
µ

= O(N
u

). The gradient of the objective function can be

computed using either the sensitivity (Section 2.3.3) or adjoint (Section 2.3.4) method; however, due

to the large number of parameters N
µ

= O(N
u

), the adjoint method is the only feasible approach.

The reduction of the parameter space proceeds in an identical manner to the state reduction in

Chapter 4, i.e., with the ansatz that the parameter lies in a low-dimensional (a�ne) subspace

µ = µ̄+⌥⌘ (C.2)

where µ̄ 2 RNµ is the a�ne o↵set, ⌥ 2 RNµ⇥kµ a basis for the chosen low-dimensional subspace,

⌘ 2 Rkµ are the reduced coordinates of µ in the a�ne subspace A(µ̄, ⌥) := {µ̄+⌥⌘ | ⌘ 2 Rkµ}, and
k

µ

⌧ N

µ

. For the remainder of this section, µ̄ and ⌥ will be assumed given and fixed; Section C.2

will provide details pertaining to their construction and adaptation. Substitution of the ansatz in

(C.2) into the parametrized PDE r(u, µ) = 0 with N

µ

parameters leads to a parametrized PDE in
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µ⇤µ̄

span(⌥)

µ̄+⌥⌘⇤

Figure C.1: Schematic of restriction of parameter space RNµ to a�ne subspace A(µ̄, ⌥) of dimension
k

µ

, in the special case where N

µ

= 2 and k

µ

= 1. The optimal solution µ⇤ in the parameter space,
as well as the optimal solution over A(µ̄, ⌥) are also depicted.

k

µ

parameters

r(u, µ̄+⌥⌘) = 0. (C.3)

In the above setting, the a�ne o↵set µ̄ and basis ⌥ are fixed and the PDE parameter is varied

through variations in the reduced coordinates ⌘. For the remainder of this document, let u(⌘; µ̄, ⌥)

be the solution of the restricted PDE in (C.3), i.e., r( · , µ̄ +⌥⌘) = 0. Uniqueness and continuous

di↵erentiability of u(⌘; µ̄, ⌥) follow immediately from the corresponding properties of u(µ) and

the a�ne relationship between µ and ⌘. Following the discussion at the beginning of this section,

the approximation in (C.3) does not introduce error into the evaluation of the PDE since it is clear

that u(⌘; µ̄, ⌥) = u(µ̄ +⌥⌘). Rather, it limits the possible variations of the parameter that can

be realized, i.e., any µ 2 RNµ such that µ 62 A(µ̄, ⌥) cannot be considered by the restricted PDE

in (C.3). With the ansatz in (C.2), the PDE-constrained optimization problem in N

µ

parameters

reduces to one in k

µ

parameters

minimize
⌘2Rkµ

F (⌘; µ̄, ⌥) := f(u(⌘; µ̄, ⌥), µ̄+⌥⌘) (C.4)

that amounts to a search for the optimal solution in the a�ne subspace A(µ̄, ⌥), i.e., (C.4) is

equivalent to

minimize
µ2A(¯µ,⌥)

F (µ). (C.5)

This situation is illustrated in Figure C.1 for the case of k
µ

= 1. In general, a local minima of

(C.5), call it µ⇤, will not be lie in A(µ̄, ⌥) for an a priori selection of µ̄ and ⌥. This motivates the

adaptation strategy for µ̄ and ⌥ that will be introduced in Section C.2.1.

Remark. As previously discussed, the idea of restricting the optimization problem to a low-dimensional

a�ne subspace generalizes linesearch methods that consider a one-dimensional a�ne search space.

Such methods are known as subspace methods. In linesearch methods, the subspace is defined by any

descent direction p
k

(possibly the steepest descent or a quasi-Newton direction) and o↵set to include

the current optimization iterate, µ
k

, i.e., the search space is {µ
k

+↵p
k

| ↵ > 0}. In the notation of
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this section, linesearch methods amount to the selection µ̄ = µ
k

and ⌥ = [p
k

].

Since the number of parameters has been dramatically reduced, either the sensitivity or adjoint

method are feasible approaches to compute the gradient of F . Following the procedure outlined in

Section 2.3.3, the expression for rF (⌘; µ̄, ⌥) based on the sensitivity method is

rF (⌘; µ̄, ⌥) = g@

✓
u(⌘; µ̄, ⌥),

@u

@⌘
(⌘; µ̄, ⌥), ⌘; µ̄, ⌥

◆
, (C.6)

where the definition of g@ varies slightly from that in (2.90)

g@ (u, w
r

, ⌘; µ̄, ⌥) :=
@f

@µ
(u, µ̄+⌥⌘)⌥+

@f

@u
(u, µ̄+⌥⌘)w

r

. (C.7)

The sensitivity of u with respect to ⌘, i.e.,
@u

@⌘
=
@u

@⌘
(⌘; µ̄, ⌥) is defined as the solution of the

sensitivity equations

r@ (u(⌘; µ̄, ⌥), · , ⌘; µ̄, ⌥) = 0, (C.8)

where the sensitivity residual is defined as

r@(u, w
r

, ⌘; µ̄, ⌥) :=
@r

@µ
(u, µ̄+⌥⌘)⌥+

@r

@u
(u, µ̄+⌥⌘)w

r

. (C.9)

Thus, the sensitivity computation requires the solution of k
µ

linear systems of equations defined by

the Jacobian matrix with the kth right-hand side
@r

@µ
⌥e

k

. For comparison, the sensitivity approach

to compute rF (µ) would require the solution of N
µ

linear systems defined by the Jacobian matrix

and right-hand side
@r

@µ
e
k

. From (C.2), the following relationship between the sensitivity of u with

respect to µ and ⌘ holds
@u

@⌘
(⌘; µ̄, ⌥) =

@u

@µ
(µ̄+⌥u

r

)⌥ (C.10)

Even though k

u

is much smaller than N

u

, it may still be su�ciently large to prefer gradient

computations via the adjoint method. Following any of the three procedures outlined in Section 2.3.4,

the expression for rF (⌘; µ̄, ⌥) based on the adjoint method is

rF (⌘; µ̄, ⌥) = g� (u(⌘; µ̄, ⌥), �(⌘; µ̄, ⌥), ⌘; µ̄, ⌥) , (C.11)

where the definition of g� varies slightly from that in (2.102)

g� (u, z, ⌘; µ̄, ⌥) :=
@f

@µ
(u, µ̄+⌥⌘)⌥+ zT

@r

@µ
(u, µ̄+⌥⌘)⌥. (C.12)

The adjoint state, � = �(⌘; µ̄, ⌥) is defined as the solution of the adjoint equations

r� (u(⌘; µ̄, ⌥), · , ⌘; µ̄, ⌥) = 0, (C.13)
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where the adjoint residual is defined as

r�(u, z, ⌘; µ̄, ⌥) :=
@f

@u
(u, µ̄+⌥⌘) +

@r

@u
(u, µ̄+⌥⌘)Tz. (C.14)

Thus, the adjoint computation requires the solution of one linear system of equations defined by the

transpose of the Jacobian matrix, regardless of k
µ

.

C.1.2 Inner Layer of Reduction: Projection-Based Model Reduction

While the first layer of reduction reduces the number of optimization variables, the large cost as-

sociated with solving the PDE for any µ 2 A(µ̄, ⌥) remains since the dimensionality of the state

space, i.e., number of equations and unknowns, is N

u

� 1. The second layer of reduction aims

to address this source computational expense through the application of projection-based model

reduction (Chapter 4).

Let� and be a given trial and test basis defining a minimum-residual projection-based reduced-

order model. Introduction of the model reduction ansatz u = �u
r

into the discretized PDE defined

over the parameter space A(µ̄, ⌥) and subsequent projection onto the columnspace of  leads to

the projection-based reduced-order model

r
r

(u
r

, ⌘; µ̄, ⌥, �,  ) :=  Tr(�u
r

, µ̄+⌥⌘) = 0. (C.15)

Denote the unique, continuously di↵erentiable solution of the fully reduced model in (C.15) as

u
r

(⌘; µ̄, ⌥, �,  ). Substitution of the reconstructed primal reduced-order model solution into the

quantity of interest leads to its fully reduced form

F

r

(⌘; µ̄, ⌥, �,  ) := f(�u
r

(⌘; µ̄, ⌥, �,  ), µ̄+⌥⌘). (C.16)

The gradient of the reduced quantity of interest is computed via the sensitivity (Section 2.3.3) or

adjoint (Section 2.3.4) method as

rF
r

(⌘; µ̄, ⌥, �,  ) = g@

✓
u, �

@u
r

@⌘
(⌘; µ̄, ⌥, �,  ), µ̄+⌥⌘

◆

= g� (u,  �
r

(⌘; µ̄, ⌥, �,  ), µ̄+⌥⌘)

(C.17)

where u = �u
r

(⌘; µ̄, ⌥, �,  ) is the reconstructed primal solution,
@u

r

@⌘
(⌘; µ̄, ⌥, �,  ) is the

solution of the reduced-order model sensitivity equations in (4.19), and �
r

(⌘; µ̄, ⌥, �,  ) is the

solution of the reduced-order model adjoint equations in (4.45). While the adjoint equations are

identical to those in Section 4.1.3, the sensitivity equations require the following substitutions since

we seek sensitivities with respect to ⌘ instead of µ:

@f

@µ
(u, µ) @f

@µ
(u, µ)⌥ and

@r

@µ
(u, µ) @r

@µ
(u, µ)⌥ (C.18)
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for any u 2 RNu and µ 2 RNµ . If the test basis is non-constant, following the developments of

Sections 4.1.2 and 4.1.3, the minimum-residual approximation of the gradient drF
r

(µ) can be used

to avoid computations involving second derivatives of r

drF
r

(⌘; µ̄, ⌥, �,  ) = g@

 
u, �@

d
@u

r

@⌘
(⌘; µ̄, ⌥, �@

, ⇥@

, u), µ̄+⌥⌘

!

= g�

⇣
u( · ), ���̂

r

(⌘; µ̄, ⌥, ��

, ⇥�

, u), µ̄+⌥⌘
⌘
,

(C.19)

where u = �u
r

(⌘; µ̄, ⌥, �,  ) is the reconstructed primal solution,
d
@u

r

@⌘
(⌘; µ̄, ⌥, �@

, ⇥@

, u) is

the solution of the minimum-residual sensitivity reduced-order model in (4.28), and

�̂
r

(⌘; µ̄, ⌥, ��

, ⇥�

, u) is the solution of the minimum-residual adjoint reduced-order model in

(4.56). For the minimum-residual sensitivity ROM in (4.28), the substitutions in (C.18) are required

to directly compute sensitivities with respect to ⌘.

This section closes by stating the residual-based error bounds for the fully reduced quantity of

interest, its gradient, and minimum-residual gradient approximation. The error bounds are given

with respect to the first level of reduction as we are only concerned with the error for a fixed

µ 2 A(µ̄, ⌥). These will be used in the multifidelity trust region framework of Chapter 5 to

solve (C.4), i.e., the optimization problem after the first layer of reduction. From Lemma B.4, the

residual-based error bound on the quantity of interest takes the form

|F (⌘; µ̄, ⌥)� F

r

(⌘; µ̄, ⌥, �,  )|  ⇣ kr(�u
r

(⌘; µ̄, ⌥, �,  ), µ̄+⌥⌘)k (C.20)

for an arbitrary constant ⇣ > 0. The residual-based error indicator for the gradientrF
r

(⌘; µ̄, ⌥, �,  )

computed with the sensitivity method is

krF (⌘; µ̄, ⌥)�rF
r

(⌘; µ̄, ⌥, �,  )k   kr(u, µ)k+ ⌧

��r@(u, w, µ)
�� (C.21)

where u = �u
r

(⌘; µ̄, ⌥, �,  ⌥) is the reconstructed primal solution,

w = �
@u

r

@⌘
(⌘; µ̄, ⌥, �,  ), is the reconstructed sensitivity solution, and , ⌧ > 0 are arbitrary

constants. The corresponding bound for gradients computed with the adjoint method is

krF (⌘; µ̄, ⌥)�rF
r

(⌘; µ̄, ⌥, �,  )k   kr(u, µ)k+ ⌧

��r�(u, z, µ)
�� (C.22)

where u = �u
r

(⌘; µ̄, ⌥, �,  ⌥) is the reconstructed primal solution, z =  �
r

(⌘; µ̄, ⌥, �,  ) is

the reconstructed adjoint solution, and , ⌧ > 0 are arbitrary constants. The residual-based error

bounds for the minimum-residual approximation of the gradient of F
r

are

���rF (⌘; µ̄, ⌥)�rF
r

(⌘; µ̄, ⌥, �,  , �@

, ⇥@)
���   kr(u, µ)k+ ⌧

��r@(u, w, µ)
��

���rF (⌘; µ̄, ⌥)�rF
r

(⌘; µ̄, ⌥, �,  , ��

, ⇥�)
���   kr(u, µ)k+ ⌧

��r�(u, z, µ)
��

(C.23)
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where u = �u
r

(⌘; µ̄, ⌥, �,  ⌥) is the reconstructed primal solution,

w = �@

d
@u

r

@⌘
(⌘; µ̄, ⌥, �,  , �@

, ⇥@), is the reconstructed minimum-residual sensitivity solution,

z = ���̂
r

(⌘; µ̄, ⌥, �,  , ��

, ⇥�) is the reconstructed minimum-residual adjoint solution, and

, ⌧ > 0 are arbitrary constants.

Remark. The I-norm used in the error bounds (5.18) can be replaced with the minimum-residual

metrics ⇥, ⇥@ , ⇥� as done in Chapter 5 for greater consistency with the minimum-residual inter-

pretation of the reduced-order model. This will be necessary if partially converged solutions are used

as snapshots in construction of the reduced-order basis, as discussed in Section 5.2. This will be

deferred to future work and the simpler (and less expensive) I-norm will be used.

C.2 Globally Convergent Multifidelity Trust Region Method

The two-level nested reduction of parametrized partial di↵erential equations with a high-dimensional

state and parameter space will serve as a pillar for an e�cient method to solve optimization prob-

lems constrained by such PDEs. The first layer of reduction restricts the parameter space to the

k

µ

-dimensional a�ne subspace A(µ̄, ⌥) to yield an optimization problem in k

µ

variables. The

second layer of reduction uses projection-based reduced-order models, embedded in the globally

convergent multifidelity trust region framework of Chapter 3, i.e., the method developed in Chap-

ter 5, to e�ciently solve the k
µ

-dimensional optimization problem. To ensure the method is globally

convergent, the restricted parameter space A(µ̄, ⌥) is adapted using ideas from linesearch methods.

The proposed optimization algorithm based on this nested reduction strategy consists of two types of

iterations: (1) an inner iteration where the a�ne subspace for the parameter, A(µ̄, ⌥) is fixed and

the multifidelity trust region method based on projection-based reduced-order models (Chapter 5)

is applied to solve the optimization problem in (C.4) and (2) an outer iteration that adapts the

parameter subspace A(µ̄, ⌥) to ensure global convergence of the complete algorithm. The inner

iteration is guaranteed to converge to the solution of (C.4) since the multifidelity method introduced

in Chapter 5 is globally convergent. The parameter subspace adaptation in the outer iteration will

be constructed such that global convergence to the solution of (C.1) is guaranteed. The next two

sections detail both the inner and outer iterations.

C.2.1 Outer Iteration: Globally Convergent Parameter Space Adapta-

tion

It is not reasonable to expect an a-prior selection of the restricted parameter subspace A(µ̄, ⌥) to

lead to a globally convergent algorithm since, in general, µ⇤
/2 A(µ̄, ⌥) where µ⇤ is a local minima

of F (µ). Therefore, keeping with the theme of this document, this section develops an adaptation

strategy for the a�ne o↵set µ̄ and subspace ⌥ defining the restricted parameter space. That is, an

algorithm that constructs a sequence of a�ne subspaces {A(µ̄
j

, ⌥
j

)} of dimension k

j

µ

⌧ N

µ

such
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that the iterates {µ
j

}, computed as the solution of the restricted optimization problem

µ
j+1

:= argmin
µ2A(¯µ

j

,⌥
j

)

F (µ), (C.24)

converge to a stationary point of F (µ) over RNµ , i.e., lim
��rF (µ

j

)
�� = 0. From the discussion in

Section C.1, the definition in (C.24) is equivalent to

µ
j+1

= µ̄
j

+⌥
j

⌘
j+1

⌘
j+1

= argmin
⌘2Rk

j

µ

F (⌘; µ̄
j

, ⌥
j

), (C.25)

i.e., the search in the k

j

µ

-dimensional subspace embedded in N

µ

is equivalent to an optimization

problem in k

j

µ

variables.

Before launching into the details of the proposed adaptation strategy, recall two standard results

from optimization theory stated in Lemma C.1 and Theorem C.1. Theorem C.1 states that any

iteration of the form µ
j+1

= µ
j

+ ↵

j

p
j

, where p
j

is a descent direction at µ
j

and ↵
j

> 0 satisfies

the Wolfe conditions (C.28), constitutes a globally convergent optimization method and Lemma C.1

establishes the existence of a point satisfying the Wolfe conditions for any descent direction. These

results are combined to arrive at the following conclusion: if µ̄
j

= µ
j

and col(⌥
j

) contains a descent

direction of F at µ
j

, the sequence {µ
j

} produced by (C.24) will satisfy lim
j!1

��rF (µ
j

)
�� = 0.

This claim is justified since µ
j+1

is the exact solution of the optimization problem restricted to

A(µ̄
j

, ⌥
j

) (which contains µ
j

and a descent direction of F (µ
j

)) and, since a point exists that satisfies

the su�cient decrease conditions (Lemma C.1), µ
j+1

must also satisfy them and the iteration is

globally convergent (Theorem C.1). This argument is justified rigorously by showing µ
j+1

satisfies

the strong Wolfe conditions since Theorem C.1 guarantees global convergence if these conditions

hold. The choice µ̄
j

= µ
j

implies the a�ne subspace A(µ̄
j

, ⌥
j

) contains points of the form

µ = µ
j

+⌥
j

⌘. Since col(⌥
j

) contains a descent direction of F at µ
j

, there must exist ⌘ 2 Rk

j

µ such

that p
j

= (1/↵
j

)⌥
j

⌘ is a descent direction of F at µ
j

for any ↵
j

> 0. Thus, the a�ne subspace

A(µ̄
j

, ⌥
j

) contains vectors of the form µ = µ
j

+ ↵

j

p
j

and Lemma C.1 guarantees the existence of

an interval of step sizes (↵
j

) that satisfies the strong Wolfe conditions. Let ↵⇤
j

be any such step size.

Then the following relations hold

F (µ
j+1

)  F (µ
j

+ ↵

⇤
j

p
j

)  F (µ
j

) + c

1

↵

⇤
j

pT

j

rF (µ
j

), (C.26)

where the first inequality follows from µ
j+1

being the solution of the optimization problem in (C.24)

and the second holds since ↵⇤
j

satisfies the strong Wolfe conditions. This establishes the first strong

Wolfe condition in (C.28). For the remaining Wolfe condition, observe that pT

j

rF (µ
j+1

) = 0. This

follows from the fact that p
j

= (1/↵
j

)⌥
j

⌘ and the first-order optimality condition of (C.24), i.e.,

⌥T

j

rF (µ
j+1

) = 0. Therefore, the following relationships hold

pT

j

rF (µ
j+1

) = 0  |pT

j

rF (µ
j

+ ↵

⇤
j

p
j

)|  c

2

|pT

j

rF (µ
j

)|, (C.27)
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which establishes that µ
j+1

satisfies the second Wolfe condition. Therefore, by Theorem C.1, global

convergence of the sequence {µ
j

} is guaranteed.

Lemma C.1. Let {µ
j

} be a sequence of iterations that satisfy the update formula µ
j+1

= µ
j

+↵
j

p
j

,

where p
j

is any descent direction at µ
j

. Suppose F (µ) is continuously di↵erentiable and bounded

below along the ray {µ
j

+ ↵p
j

| ↵ > 0}. Then, if 0 < c

1

< c

2

< 1, there exist intervals of step

lengths satisfying the strong Wolfe conditions

F (µ
j

+ ↵

j

p
j

)  F (µ
j

) + c

1

↵

j

pT

j

rF (µ
j

)

|pT

j

rF (µ
j

+ ↵

j

p
j

)|  c

2

|pT

j

rF (µ
j

)|.
(C.28)

Proof. Lemma 3.1 of [143].

Theorem C.1. Let {µ
j

} be a sequence of iterations that satisfies the update formula µ
j+1

=

µ
j

+ ↵

j

p
j

, where p
j

is any descent direction at µ
j

and ↵

j

satisfies the strong Wolfe conditions

(C.28) with 0 < c

1

< c

2

< 1. Suppose the F is bounded below in RNµ and continuously di↵erentiable

in an open set N containing the level set {µ 2 RNµ | F (µ)  F (µ
0

)}. Assume also its gradient is

Lipschitz continuous on N . Then

lim
j!1

��rF (µ
j

)
�� = 0. (C.29)

Proof. Theorem 3.2 of [143].

Remark. In linesearch and subspace methods, it is usually considered di�cult or expensive to solve

the low-dimensional optimization problem, e.g., (C.24), exactly. This lead to the introduction of the

Wolfe conditions (C.28) that define a criteria for su�cient decrease in the objective function that

will lead to global convergence (Theorem C.1). As a result, a slew of linesearch methods have been

developed to locate points that satisfy the Wolfe conditions [143]. The proposed method deviates from

this accepted strategy by solving the restricted optimization problem exactly to leverage the e�cient

method developed in Chapter 5 for solving PDE-constrained optimization problems in few variables

using projection-based reduced-order models in the multifidelity trust region method of Chapter 3. To

align with standard practices, the inner iteration can be terminated once the strong Wolfe conditions

are satisfied without destroying global convergence.

Let p
j

be any descent direction to F at µ
j

. From Theorem C.1, the following requirements on the

a�ne subspace A(µ̄
j

, ⌥
j

) are su�cient to guarantee the iteration in (C.24) is globally convergent

µ̄
j

= µ
j

p
j

2 col(⌥
j

). (C.30)

The simplest a�ne subspace that fulfills these requirements is defined by

µ̄
j

= µ
j

⌥
j

= ⌥g

j

:=
h
rF (µ

j

)
i
, (C.31)
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which reduces the iteration in (C.24) to a steepest descent method with an exact linesearch. While

this choice will result in a globally convergent iteration, steepest descent methods are well-known

to su↵er from slow convergence. The remainder of the section will construct a more sophisticated

a�ne subspace such that the iteration in (C.24) quickly converges to a local minima.

From the requirements in (C.30), the a�ne o↵set will always be taken as the previous iterate

µ̄
j

= µ
j

. While the requirement in (C.30) provides considerable flexibility in the definition of⌥
j

, we

impose the stronger requirement that the a�ne subspace must contain the steepest descent space:

A(µ
j

, ⌥g

j

) ✓ A(µ̄
j

, ⌥
j

). This is accomplished by taking the first column of ⌥
j

to be rF (µ
j

)

and guarantees global convergence regardless of the other basis vectors that comprise ⌥
j

. These

auxiliary basis vectors in⌥
j

will serve to improve the convergence rate of the iteration in (C.24). We

will consider two types of auxiliary vectors: (1) optimization-based vectors that are defined for any

optimization problem and (2) problem-specific information that exploits any knowledge or structure

of the optimization variables µ.

The optimization-based vectors will consist of any variety of descent directions, i.e., Newton or

quasi-Newton direction, or directions of negative curvature at the current iterate µ
j

. Let P
j

be a

matrix consisting of such all optimization-based vectors and define

⌥
j

=
h
rF (µ

j

) P
j

i
. (C.32)

This construction is general since the aforementioned directions can be constructed for any opti-

mization problem.

In many applications, particularly those related to PDEs, it may be advantageous to incorporate

problem-specific information in the a�ne subspace. This is particularly true for topology optimiza-

tion and inverse problems where the optimization vectors have a strong connection to the underlying

PDE mesh. The proposed framework is su�ciently flexible to incorporate such information without

destroying global convergence by building ⌥
j

according to

⌥
j

=
h
rF (µ

j

) P
j

Q
j

i
(C.33)

where Q
j

is a matrix whose columns consist of problem-specific vectors. Future work will develop

problem-specific information for various in structural and acoustic inverse problems. Algorithm 17

provides the complete outer iteration algorithm.

C.2.2 Inner Iteration: Multifidelity Optimization with Reduced-Order

Models

Each iteration of the a�ne parameter space adaptation requires the solution of the PDE-constrained

optimization problem (C.24), which can be written as an optimization problem in few variables

(k
µ

⌧ N

µ

). Even though the optimization problem contains few variables, it is still expensive

to solve since each objective evaluation requires the solution of a potentially large-scale partial
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Algorithm 17 Outer iteration: adaptive reduction of parameter space

1: Initialization: Given

µ̄
0

, ⌥
0

2: Inner iteration: Solve restricted optimization problem (Algorithm 18)

minimize
⌘2Rk

j

µ

F (µ̄
j

+⌥
j

⌘)

for ⌘⇤
j

, the optimal solution in the restricted parameter space and define µ⇤
j

= µ̄
j

+⌥
j

⌘⇤
j

3: Update search space: Compute rF (µ⇤
j

), the optimization-based vectors P (µ⇤
j

), and the
problem-specific vectors Q(µ⇤

j

) and update the restricted parameter space

µ̄
j+1

= µ⇤
j

⌥
j+1

=
⇥
rF (µ⇤

j

) P (µ⇤
j

) Q(µ⇤
j

)
⇤

di↵erential equation, and the gradient requires a sensitivity or adjoint solution. The multifidelity

trust region method based on projection-based model reduction proposed in Chapter 5 has been

shown to be an e�cient method to handle exactly these types of problems. This section will consider

a special case of the method proposed in Chapter 5 to solve each k

µ

-variable optimization problem

encountered in the iteration (C.24).

Consider the optimization problem that arises at iteration j of (C.24)

minimize
µ2A(¯µ

j

,⌥
j

)

F (µ) (C.34)

which, from the definition of F and A(µ̄, ⌥), is equivalent to the k

j

µ

-dimensional optimization

problem

minimize
⌘2Rk

j

µ

F (⌘; µ̄
j

, ⌥
j

). (C.35)

We propose to solve this PDE-constrained optimization problem in few parameters using the method

proposed in Chapter 5, i.e., the the multifidelity trust region method using reduced-order/hyperreduced

approximation models. For a fixed outer iteration j, the approximation model at iteration k of the

trust region method is defined as

m

j, k

(⌘) = F

r

(⌘; µ̄
j

, ⌥
j

, �
j, k

,  
j, k

), (C.36)

where F

r

is defined in (C.16) and �
j, k

,  
j, k

are presumed given and define a projection-based

reduced-order model that possesses the minimum-residual property. Details pertaining to the con-

struction of the trial basis �
j, k

(and implicitly the test basis  
j, k

based on the minimum-residual

requirement (4.14)) are provided at the end of this section. The gradient of the approximation model

is computed exactly as

rm
j, k

(⌘) = rF
r

(⌘; µ̄
j

, ⌥
j

, �
j, k

,  
j, k

) (C.37)
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according to the sensitivity or adjoint method as defined in Section 2.3. In situations where the test

basis is not constant, the exact gradient is cumbersome to compute and may be approximated with

drm
j, k

(⌘) = drF
r

(⌘; µ̄
j

, ⌥
j

, �
j, k

,  
j, k

, �@

j, k

, ⇥@

j, k

)

= drF
r

(⌘; µ̄
j

, ⌥
j

, �
j, k

,  
j, k

, ��

j, k

, ⇥�

j, k

)
(C.38)

using minimum-residual sensitivity or adjoint reduced-order models.

A critical component of the multifidelity trust region method of Chapter 3 is the introduction

of an objective decrease error indicator #
k

(µ) and gradient error indicator '
k

(µ) that lead to the

error bounds

|F (⌘
j, k

; µ̄
j

, ⌥
j

)� F (⌘; µ̄
j

, ⌥
j

) +m

j, k

(⌘)�m

j, k

(⌘
j, k

)|  ⇣#
j, k

(⌘)
��rF (⌘; µ̄

j

, ⌥
j

)�rm
j, k

(⌘)
��  ⇠'

j, k

(⌘),
(C.39)

where ⇣, ⇠ > 0 are arbitrary constants and ⌘
j, k

is the trust region center in the reduced parameter

space. Two options are considered for the objective decrease error indicator: the classical trust region

constraint #
j, k

(⌘) =
��⌘ � ⌘

j, k

�� and the residual-based error indicator introduced in Section 5.1.1

#

j, k

(⌘) =
��r(�

j, k

u
r

(⌘
j, k

; µ̄
j

, ⌥
j

, �
j, k

,  
j, k

), µ̄
j

+⌥
j

⌘
j, k

)
��+

��r(�
j, k

u
r

(⌘; µ̄
j

, ⌥
j

, �
j, k

,  
j, k

), µ̄
j

+⌥
j

⌘)
��
.

(C.40)

From the discussion in Section 5.1.1 that refers to the proof in Appendix B, the residual-based error

indicator satisfies the bound in (3.12). The classical trust region satisfies this bound, provided the

gradient bound and condition hold (see Chapter 3 for a complete discussion). For simplicity, only

the classical trust region constraint will be considered in the remainder; see Chapter 5 for a complete

discussion regarding the use of the residual-based error indicator. From the bounds on the gradient

error derived in Lemmas B.7 and B.8, the gradient error indicator is taken as

'

j, k

(⌘) =↵
1

��r(�
j, k

u
r

(⌘; µ̄
j

, ⌥
j

, �
j, k

,  
j, k

), µ̄
j

+⌥
j

⌘)
��+

↵

2

����r
@

✓
�

j, k

u
r

(⌘; µ̄
j

, ⌥
j

, �
j, k

,  
j, k

), �
j, k

@u
r

@⌘
(⌘; µ̄

j

, ⌥
j

, �
j, k

,  
j, k

), µ̂+⌥⌘

◆����
(C.41)

if the sensitivity approach is used to compute rm
j, k

(⌘) and

'

j, k

(⌘) =↵
1

��r(�
j, k

u
r

(⌘; µ̄
j

, ⌥
j

, �
j, k

,  
j, k

), µ̄
j

+⌥
j

⌘)
��+

↵

2

��r�
�
�

j, k

u
r

(⌘; µ̄
j

, ⌥
j

, �
j, k

,  
j, k

),  
j, k

�
r

(⌘; µ̄
j

, ⌥
j

, �
j, k

,  
j, k

), µ̂+⌥⌘
���

(C.42)

if the adjoint approach is used. These indicators can be modified accordingly if the minimum-

residual sensitivity or adjoint approach is used to compute the gradient approximation drm
j, k

(µ).

Finally, the trust region method of Chapter 3 provides the flexibility to introduce an inexpensive

approximation of the objective decrease  
j, k

(⌘) and corresponding error indicator ✓
j, k

(⌘) to mitigate
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the computational burden of computing the actual-to-predicted reduction at each trust region step.

Section 5.3 details an approach that defines  
j, k

(⌘) based on partially converged PDE solutions and

✓

j, k

(⌘) as the residual-based error indicator. This construction can be used in this context without

modification and does not need to be discussed further.

With the definition of the necessary approximations and corresponding error indicators, the only

remaining conditions that are left to satisfy are the error conditions in (3.14) and (3.15), restated

here for convenience
#

j, k

(⌘
j, k

)  
#

�
j, k

'

j, k

(⌘
j, k

)  
'

min{
��rm

j, k

(⌘
j, k

)
��
, �

j, k

}.
(C.43)

Since the classical trust region constraint is used to define #
j, k

(⌘), the first condition is always satis-

fied since #
j, k

(⌘
j, k

) = 0. The second condition, called the gradient condition, is not always satisfied

a priori and relies critically on the construction of the reduced-order model. The strategy taken con-

structs the reduced-order model such that the reconstructed primal and sensitivity/adjoint solutions

exactly match the corresponding high-dimensional model quantity. This will obviously guarantee

'

j, k

(⌘
j, k

) = 0 and the gradient condition will be satisfied. Without repeating the details from

Section 5.1.2, the reduced-order model and its sensitivity/adjoint will be possess these interpola-

tion properties provided primal and sensitivity/adjoint minimum-residual reduced-order models are

used, the relationships between the reduced-order bases in (4.35) and (4.63) hold, and the trial basis

possesses the following properties

u(⌘
j, k

; µ̄
j

, ⌥
j

) 2 col(�
j, k

)

@u

@⌘
(⌘

j, k

; µ̄
j

, ⌥
j

) 2 col(�
j, k

)

⇥�

j, k

(u, µ)
@r

@u
(u, µ)T�(⌘

j, k

; µ̄
j

, ⌥
j

) 2 col(�
j, k

)

(C.44)

where µ = µ̄
j

+⌥
j

⌘ and u = u(µ). The conditions in (4.14), (4.35), and (4.63) completely specify

the test  
j, k

, sensitivity �@

j, k

, and adjoint ��

j, k

bases in terms of the trial basis �
j, k

and optimality

metrics⇥
j, k

, ⇥@

j, k

, ⇥�

j, k

. Therefore, the reduced-order model will possess the required interpolation

properties provided the trial basis is constructed such that (C.44) holds.

Remark. The requirement that the reduced-order model is exact at the trust region center leads

to the stronger condition '

j, k

(⌘
j, k

) = 0 than required by (3.15) and may result in wasted e↵ort.

The weaker condition in (3.15) can be enforced directly using partially converged solutions in the

construction of �
j, k

as detailed in Section 5.2; however, this is not considered in this section.

Before continuing with the construction of �
j, k

, the following notation is introduced to allow

the sensitivity and adjoint method to be treated simultaneously and compactly:

v̂(⌘; µ̄, ⌥) =

8
><

>:

@u

@⌘
(⌘; µ̄, ⌥) sensitivity method

⇥�

j, k

(u, µ)
@r

@u
(u, µ)T�(⌘; µ̄, ⌥) adjoint method

(C.45)
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where µ = µ̄
j

+⌥
j

⌘ and u = u(µ). Since the sensitivity and adjoint method are rarely employed

simultaneously the condition in (C.44) is weakened to

u(⌘
j, k

; µ̄
j

, ⌥
j

) 2 col(�
j, k

)

v̂(⌘
j, k

; µ̄
j

, ⌥
j

) 2 col(�
j, k

).
(C.46)

Next, define primal and dual snapshot matrices according to the recursive relationships

U
j, k

=
h
U

j�1, n

j�1

u(⌘
j, 0

, µ̄
j

, ⌥
j

) · · · u(⌘
j, k�1

, µ̄
j

, ⌥
j

)
i

V̂
j, k

=
h
V̂

j�1, n

j�1

v̂(⌘
j, 0

, µ̄
j

, ⌥
j

) · · · v̂(⌘
j, k�1

, µ̄
j

, ⌥
j

)
i (C.47)

where U�1, k

= ;, V̂�1, k

= ;, and n

j

is the number of inner iterations corresponding to outer

iteration j. Then, the reduced-order basis is defined according to the heterogeneous, span-preserving

variant of POD (Algorithm 7) as

�
j, k

= PODHSP(u(⌘
j, k

, µ̄
j

, ⌥
j

), U
j, k

, v̂(⌘
j, k

, µ̄
j

, ⌥
j

), V̂
j, k

). (C.48)

By construction, the basis satisfies (C.44) and possesses additional information to improve the para-

metric robustness of the reduced-order model. The complete inner iteration algorithm is provided

in Algorithm 18.
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Algorithm 18 Inner iteration: trust region method based on reduced-order models in reduced
parameter space

1: Initialization: Given

µ̄
j

, ⌥
j

, ⌘
j, 0

, U
j�1, n

j�1

, V̂
j�1, n

j�1

, �
j, 0

, 0 < � < 1, �
max

> 0, 0 < ⌘

1

< ⌘

2

< 1,

0 < 

#

< 1, 0 < 

'

, 0 < ! < 1, {r
k

}1
k=0

such that r
k

! 0

2: Model and constraint update: If previous model and constraint are su�cient for convergence

#

j, k�1

(⌘
j, k

)  
#

�
j, k

'

j, k�1

(⌘
j, k

)  
'

min{
��rm

j, k�1

(⌘
j, k

)
��
, �

j, k

},

re-use for the current iteration: m

j, k

(⌘) := m

j, k�1

(⌘) and #

j, k

(⌘) := #

j, k�1

(⌘). Otherwise,
evaluate primal and sensitivity or adjoint solution of high-dimensional model

u
j, k

:= u(µ
j, k

) v̂
j, k

:=
@u

@µ
(µ

j, k

) or ⇥�

j, k

(u(µ
j, k

), µ
j, k

)
@r

@u
(u(µ

j, k

), µ
j, k

)T�(µ
j, k

)

where µ
j, k

= µ̄
j

+⌥
j

⌘
j, k

and compute reduced-order basis via span-preserving variant of POD
(Algorithm 7)

�
j, k

= PODHSP(u
j, k

, U
j, k

, v̂
j, k

, V̂
j, k

),

define model and constraint as

m

j, k

(⌘) = f(�
j, k

u
r

(µ̄
j

+⌥
j

⌘; �
j, k

,  
j, k

), µ̄
j

+⌥
j

⌘)

#

j, k

(⌘) =
��r(�

j, k

u
r

(µ̄
j

+⌥
j

⌘
j, k

; �
j, k

,  
j, k

), µ̄
j

+⌥
j

⌘
j, k

)
��
⇥

j, k

+
��r(�

j, k

u
r

(µ̄
j

+⌥
j

⌘; �
j, k

,  
j, k

), µ̄
j

+⌥
j

⌘)
��
⇥

j, k

,

and update snapshot matrices

U
j, k+1

 
⇥
U

j�1, n

j�1

u
j, 0

· · · u
j, k

⇤
V̂

j, k+1

 
⇥
V̂

j�1, n

j�1

v̂
j, 0

· · · v̂
j, k

⇤
.

3: Step computation: Solve (exactly) the trust region subproblem

min
⌘2Rkµ

m

j, k

(⌘) subject to #

j, k

(⌘)  �
j, k

for a candidate, ⌘̂
j, k

, using interior-point method of Section 3.1.2.

4: Actual-to-predicted reduction: Compute actual-to-predicted reduction ratio

⇢

j, k

=

8
><

>:

1 if #

j, k

(⌘̂
j, k

)!  ⌘min{m
j, k

(⌘
j, k

)�m

j, k

(⌘̂
j, k

), r
k

}
F (µ̄

j

+⌥
j

⌘
j, k

)� F (µ̄
j

+⌥
j

⌘̂
j, k

)

m

j, k

(⌘
j, k

)�m

j, k

(⌘̂
j, k

)
otherwise

where ⌘ < min{⌘
1

, 1� ⌘
2

}
5: Step acceptance:

if ⇢

j, k

� ⌘
1

then ⌘
j, k+1

= ⌘̂
j, k

else ⌘
j, k+1

= ⌘
j, k

end if

6: Trust region update:

if ⇢

j, k

 ⌘
1

then �
k+1

2 (0, �#
j, k

(⌘̂
j, k

)] end if

if ⇢

j, k

2 (⌘
1

, ⌘

2

) then �
k+1

2 [�#
j, k

(⌘̂
j, k

),�
j, k

] end if

if ⇢

j, k

� ⌘
2

then �
k+1

2 [�
j, k

,�
max

] end if



Appendix D

Time-Dependent PDE-Constrained

Optimization under Periodicity

Constraints

This appendix summarizes the work in [211, 212].

D.1 Governing Equations and Discretization

This section is devoted to the treatment of conservation laws (2.9) on a parametrized, deforming

domain using an Arbitrary Lagrangian-Eulerian (ALE) description of the governing equations and

a brief discussion of a globally high-order numerical discretization of the ALE form of the system of

conservation laws that closely parallels that in Chapter 2. Subsequently, Section D.2 will develop

the corresponding fully discrete adjoint equations and the adjoint method for constructing gradients

of quantities of interest.

The methods introduced in this work are not necessarily limited to Partial Di↵erential Equations

(PDE) that can be written as conservation laws (D.1). In Section D.1.2, the chosen spatial dis-

cretization (discontinuous Galerkin Arbitrary Lagrangian-Eulerian method) is applied to the PDE,

resulting in a system of first-order ODEs, which is the point of departure for all adjoint-related

derivations. Time-dependent PDEs that are not conservation laws can be written similarly at the

semi-discrete level after application of an appropriate spatial discretization, e.g., a continuous fi-

nite element method for parabolic PDEs. In this work, the scope is limited to first-order temporal

systems, or those which are recast as such.

240
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Figure D.1: Time-dependent mapping between reference and physical domains.

D.1.1 System of Conservation Laws on Deforming Domain: Arbitrary

Lagrangian-Eulerian Description

Consider a general system of conservation laws, defined on a parametrized, deforming domain,

v(µ, t), written at the continuous level as

@U

@t

+r · F (U , rU) = 0 in v(µ, t) (D.1)

where the physical flux is decomposed into an inviscid and a viscous part F (U , rU) = F inv(U) +

F vis(U , rU), U(x,µ, t) is the solution of the system of conservation laws, t 2 (0, T ) represents

time, and µ 2 RNµ is a vector of parameters. This work will focus on the case where the domain

is parametrized by µ, although extension to other types of parameters, e.g., constants defining the

conservation law, is straightforward. The conservation law on a deforming domain is transformed

into a conservation law on a fixed reference domain through the introduction of a time-dependent

mapping between the physical and reference domains, resulting in an Arbitrary Lagrangian-Eulerian

description of the governing equations.

Denote the physical domain by v(µ, t) ⇢ Rn

sd and the fixed, reference domain by V ⇢ Rn

sd ,

where n
sd

is the number of spatial dimensions. At each time t, let G be a time-dependent di↵eomor-

phism between the reference domain and physical domain: x(X,µ, t) = G(X,µ, t), where X 2 V is

a point in the reference domain and x(X,µ, t) 2 v(µ, t) is the corresponding point in the physical

domain at time t and parameter configuration µ.

The transformed system of conservation laws from (D.1), under the mapping G, defined on the

reference domain takes the form

@U
X

@t

����
X

+r
X

· F
X

(U
X

, r
X

U
X

) = 0 (D.2)

where r
X

denotes spatial derivatives with respect to the reference variables, X. The transformed

state vector, U
X

, and its corresponding spatial gradient with respect to the reference configuration
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take the form

U
X

= gU , r
X

U
X

= g

�1U
X

@g

@X
+ grU · G, (D.3)

where G = r
X

G, g = det(G), v
G

=
@x

@t

=
@G
@t

, and the arguments have been dropped, for brevity.

The transformed fluxes are

F
X

(U
X

,r
X

U
X

) = F inv

X

(U
X

) + F vis

X

(U
X

,r
X

U
X

),

F inv

X

(U
X

) = gF inv(g�1U
X

)G�T �U
X

⌦G�1v
G

,

F vis

X

(U
X

,r
X

U
X

) = gF vis

✓
g

�1U
X

, g

�1


r

X

U
X

� g

�1U
X

@g

@X

�
G�1

◆
G�T

.

(D.4)

For details regarding the derivation of the transformed equations, the reader is referred to [152].

When integrated using inexact numerical schemes, this ALE formulation does not satisfy the

Geometric Conservation Law (GCL) [60, 152]. This is overcome by introducing an auxiliary variable

ḡ, defined as the solution of
@ḡ

@t

�r
X

·
�
gG�1v

G

�
= 0. (D.5)

The auxiliary variable, ḡ is used to modify the transformed conservation law according to

@U
¯

X

@t

����
X

+r
X

· F
¯

X

(U
¯

X

, r
X

U
¯

X

) = 0 (D.6)

where the GCL-transformed state variables are

U
¯

X

= ḡU , r
X

U
¯

X

= ḡ

�1U
¯

X

@ḡ

@X
+ ḡrU · G (D.7)

and the corresponding fluxes

F
¯

X

(U
¯

X

,r
X

U
¯

X

) = F inv

¯

X

(U
¯

X

) + F vis

¯

X

(U
¯

X

,r
X

U
¯
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),

F inv

¯

X

(U
¯

X

) = gF inv(ḡ�1U
¯

X

)G�T �U
¯

X

⌦G�1v
G

,

F vis

¯

X

(U
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,r
X

U
¯

X

) = gF vis

✓
ḡ

�1U
¯

X

, ḡ

�1


r

X

U
¯

X

� ḡ

�1U
¯

X

@ḡ

@X

�
G�1

◆
G�T

.

(D.8)

It was shown in [152] that the transformed equations (D.6) satisfy the GCL. In the next section, the

ALE description of the governing equations (D.2) and (D.6) will be converted to first-order form

and discretized via a high-order discontinuous Galerkin method.

D.1.2 Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Method

The ALE description of the conservation law without GCL augmentation will be considered first. To

proceed, the second-order system of partial di↵erential equations in (D.2) is converted to first-order
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form
@U

X

@t

����
X

+r
X

· F
X

(U
X

, Q
X

) = 0

Q
X

�r
X

U
X

= 0,

(D.9)

where Q
X

is introduced as an auxiliary variable to represent the spatial gradient of the U
X

. Equa-

tion (D.9) is discretized using a standard nodal discontinuous Galerkin finite element method [46],

which, after local elimination of the auxiliary variables Q
X

, leads to the following system of ODEs

M
X

@u
X

@t

= r
uX (u

X

,µ, t), (D.10)

where M
X

is the block-diagonal, symmetric, fixed mass matrix, u
X

is the vectorization of U
X

at

all nodes in the high-order mesh, and r
uX is the nonlinear function defining the DG discretization

of the inviscid and viscous fluxes.

The GCL augmentation is treated identically, i.e., conversion to first-order form and subsequent

application of the discontinuous Galerkin finite element method, where U
¯

X

is taken as the state

variable. The result is a system of ODEs corresponding to a high-order ALE scheme that satisfies

the GCL

M
¯g
@ḡ

@t

= r
¯g(µ, t)

M
X

@u
¯

X

@t

= r
u

¯X
(u

¯

X

, ḡ,µ, t)
(D.11)

where each term is defined according to their counterparts in (D.10). From the conservation law

defining ḡ (D.5), the corresponding flux is continuous, implying the physical flux gG�1v
G

can be

used as the numerical flux. This implies no information is required from neighboring elements and

(D.5) can be solved at the element level, i.e., statically condensed. Furthermore, the ḡ residual, r
¯g,

does not depend on ḡ itself since the physical flux gG�1v
G

is independent of ḡ.

Since the equation for ḡ does not depend on u
¯

X

, it can be solved independently of the equation

for u
¯

X

. This enables ḡ to be considered an implicit function of µ, i.e., ḡ = ḡ(µ, t), through

application of the implicit function theorem. Then, (D.11) reduces to

M
X

@u
¯

X

@t

= r
u

¯X
(u

¯

X

, ḡ(µ, t),µ, t). (D.12)

Equations (D.10) and (D.12) are abstracted into the following system of ODEs

M
@u

@t

= r(u,µ, t), (D.13)

for convenience in the derivation of the fully discrete adjoint equations. Evaluation of the residual,

r, in (D.13) at parameter µ and time t requires evaluation of the mapping, x(µ, t) and ẋ(µ, t),

and ḡ(µ, t), if GCL augmentation is employed. The implicit dependence of ḡ on µ requires special

treatment when computing derivatives with respect to µ, which will be required in the adjoint

method (Section D.2). Treatment of such terms will be deferred to Section D.2.4.
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A convenient property of this DG-ALE scheme is that all computations are performed on the

reference domain which is independent of time and parameter. This implies that the mass matrix

of the ODE (D.13) is also time- and parameter-independent, which simplifies all adjoint compu-

tations introduced in Section D.2 as terms involving
@M

@u
and

@M

@µ
are identically zero. This,

in turn, simplifies the implementation of the adjoint method and translates to computational sav-

ings since contractions with these third-order tensor are not required; see [88] for a discretization

with parameter-dependent mass matrices and the corresponding adjoint derivation. In subsequent

sections, it will be assumed that the mass matrix is time- and parameter-independent.

The DG-ALE scheme outlined in this section constitutes a spatial discretization, which yields a

system of ODEs when applied to the PDE in (D.1). The semi-discrete form of the conservation law

is the point of departure for the remainder of this document. The subsequent development applies to

any system of ODEs of the form (D.13) without relying on the specific spatial discretization scheme

employed. The DG-ALE scheme was chosen to provide a high-order, stable spatial discretization of

the conservation law (D.1).

The diagonally implicit Runge-Kutta scheme introduced in Section 2.1.3 is applied to the system

of ODEs for a stable, high-order implicit discretization, repeated here for convenience

u(0) = u
0

(µ)

u(n) = u(n�1) +
sX

i=1

b

i

k
(n)

i

Mk
(n)

i

= �t

n

r
⇣
u
(n)

i

, µ, t

n�1

+ c

i

�t

n

⌘
,

(D.14)

for n = 1, . . . , N
t

and i = 1, . . . , s, where N

t

are the number of time steps in the temporal dis-

cretization and s is the number of stages in the DIRK scheme. The temporal domain, [0, T ] is

discretized into N

t

segments with endpoints {t
0

, t

1

, . . . , t

N

t

}, with the nth segment having length

�t

n

= t

n

� t

n�1

for n = 1, . . . , N
t

. Additionally, in (D.14), u(n)

i

is used to denote the approximation

of u(n) at the ith stage of time step n

u
(n)

i

= u
(n)

i

(u(n�1)

, k
(n)

1

, . . . , k(n)

s

) = u(n�1) +
iX

j=1

a

ij

k
(n)

j

. (D.15)

From (D.14), a complete time step requires the solution of a sequence of s nonlinear systems of

equation of size N

u

.

Finally, a solver-consistent discretization (Section 2.1.4) is applied to discretize output quantities

of interest that take the form

F(U ,µ, t) =

Z
t

0

Z

�
f(U ,µ, ⌧) dS d⌧ (D.16)
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to yield the update equations in (2.45) and the fully discrete quantity of interest

F (u(0)

, . . . , u(N

t

)

,k
(1)

1

, . . . ,k(N

t

)

s

)

in (2.46). The generalization to other types of quantities of interest, such as volumetric integrals and

instantaneous or pointwise quantities of interest, is immediate as the specific form of the quantity

of interest will be abstracted away at the fully discrete level. The form in (D.16) will be used in the

physical setup of the applications in Sections D.2.5–D.2.6.

D.2 Fully Discrete, Time-Dependent Adjoint Equations

The purpose of this section is to derive an expression for the total derivative of the discrete quantity

of interest F in (2.46), which can be expanded as

dF

dµ
=
@F

@µ
+

N

tX

n=0

@F

@u(n)

@u(n)

@µ
+

N

tX

n=1

sX

i=1

@F

@k
(n)

i

@k
(n)

i

@µ
, (D.17)

that depends on the sensitivities of the state variables,
@u(n)

@µ
and

@k
(n)

i

@µ
. Each of the N

µ

state

variable sensitivities is the solution of a linear evolution equation of the same dimension and number

of steps as the primal equation (D.14), rendering these quantities intractable to compute when N

µ

is

large. Elimination of the state variable sensitivities from (D.17) is accomplished through introduction

of the adjoint equations corresponding to the functional F , and the corresponding dual variables.

From the derivation of the adjoint equation in Section D.4.1, an expression for the reconstruction of

the gradient of F , independent of the state variables sensitivities, follows naturally. At this point,

it is emphasized that F represents any quantity of interest whose gradient is desired, such as the

optimization objective function or a constraint. This section concludes with a discussion of the

advantages of the fully discrete framework in the setting of the high-order numerical scheme.

Before proceeding to the derivation of the adjoint method, the following definitions are introduced

for the Runge-Kutta stage equations and state updates

r̃(0)(u(0)

, µ) = u(0) � u
0

(µ) = 0

r̃(n)(u(n�1)

, u(n)

, k
(n)

1

, . . . ,k(n)

s

, µ) = u(n) � u(n�1) �
sX

i=1

b

i

k
(i)

i

= 0

R
(n)

i

(u(n�1)

,k
(n)

1

, . . . ,k
(n)

i

,µ) = Mk
(n)

i

��t

n

r
⇣
u
(n)

i

, µ, t

n�1

+ c

i

�t

n

⌘
= 0

(D.18)

for n = 1, . . . , n and i = 1, . . . , s. Di↵erentiation of these expressions with respect to µ gives rise to
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the fully discrete sensitivity equations

@r̃(0)

@µ
+
@r̃(0)

@u(0)

@u(0)

@µ
= 0

@r̃(n)

@µ
+
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@u(n)
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+
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@u(n�1)
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+

sX
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(n)

p
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(n)

p
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= 0

@R
(n)

i
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+

@R
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i

@u(n�1)
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+

iX

j=1

@R
(n)

i
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(n)

j

@k
(n)

j

@µ
= 0

(D.19)

where n = 1, . . . , N
t

, i = 1, . . . , s, and arguments have been dropped.

D.2.1 Derivation

The derivation of the fully discrete adjoint equations corresponding to the quantity of interest, F ,

begins with the introduction of test variables

�(0)

, �(n)

, 
(n)

i

2 RNu (D.20)

for n = 1, . . . , N
t

and i = 1, . . . , s. To eliminate the state sensitivities from the expression for
dF

dµ
in

(D.17), multiply the sensitivity equations (D.19) by the test variables, integrate (sum in the discrete

setting) over the time domain, and subtract from the expression for the gradient in (D.17) to obtain

dF

dµ
=
@F

@µ
+

N

tX

n=0

@F

@u(n)
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j
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j
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3

5
.

(D.21)

The right side of the equality in (D.21) is an equivalent expression for
dF

dµ
for any value of the test

variables since the terms in the brackets are zero, i.e., the sensitivity equations. Re-arrangement of

terms in (D.21) leads to the following expression for
dF

dµ
, where the state variable sensitivities have
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been isolated
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(D.22)

The dual variables, �(n) and 
(n)

i

, which have remained arbitrary to this point, are chosen as the

solution to the following equations
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(D.23)

for n = 1, . . . , N
t

and i = 1, . . . , s. These are the fully discrete adjoint equations corresponding to

the primal evolution equations in (D.18) and quantity of interest F . Defining the dual variables as

the solution of the adjoint equations in (D.23), the expression for
dF

dµ
in (D.22) reduces to

dF

dµ
=
@F

@µ
�

N

tX

n=0
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T
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p
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, (D.24)

which is independent of the state sensitivities. Finally, elimination of the auxiliary variables, r̃(n)

and R
(n)

i

, in equations (D.23) and (D.24) through di↵erentiation of their expressions in (D.18) gives

rise to the adjoint equations
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for n = 1, . . . , N
t

and i = 1, . . . , s and the expression for gradient reconstruction, independent of

state sensitivities,

dF

dµ
=
@F

@µ
+ �(0)

T

@u
0

@µ
+

N

tX

n=1

�t

n

sX

i=1


(n)

i

T

@r

@µ
(u(n)

i

, µ, t

n�1

+ c

i

�t

n

), (D.26)

specialized to the case of a DIRK temporal discretization. From inspection of (D.26), it is clear

that the initial condition sensitivity
@u

0

@µ
is the only sensitivity term required to reconstruct

dF

dµ
.

The presence of this term does not destroy the e�ciency of the adjoint method for two reasons:

(a) only matrix-vector products with
@u

0

@µ

T

are required and (b) the parametrization of the initial

condition is either known analytically (uniform flow, zero freestream, independent of µ, etc) or is the

solution of some nonlinear system of equations (most likely the steady-state equations). In the first

case, �(0)

T

@u
0

@µ
can be computed analytically once �(0) is known. The next section details e�cient

computation of �(0)

T

@u
0

@µ
using the adjoint method of the steady-state problem.

D.2.2 Parametrization of Initial Condition

Suppose the initial condition u
0

(µ) is defined as the solution of the nonlinear system of equations—

whose Jacobian is invertible at u
0

(µ)—which is most likely the fully discrete steady-state form of

the governing equations

R(u
0

(µ),µ) = 0. (D.27)

Di↵erentiating with respect to the parameter µ leads to the expansion

dR

dµ
=
@R

@µ
+
@R

@u
0

@u
0

@µ
= 0, (D.28)

where arguments have been dropped for brevity. Assuming the Jacobian matrix is invertible, mul-

tiply the preceding equation by the �(0) and rearrange to obtain

��(0)

T

@u
0

@µ
=

"
@R

@u
0

�T

�(0)

#
T

@R

@µ
. (D.29)

This reveals the term �(0)

T

@u
0

@µ
can be computed at the cost of one linear system solve of the form

@R

@u
0

T

v = �(0) and an inner product vT

@R

@µ
. The only operation whose cost scales with the size

of µ is the evaluation of
@R

@µ
and subsequent inner product. Given this exposition on the fully

discrete, time-dependent adjoint method and the discrete adjoint method for computing �(0)

T

@u
0

@µ
,

a discussion is provided detailing the advantages of the fully discrete framework when computing

gradients of output quantities before discussing implementation details in Section D.2.4.
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D.2.3 Benefits of Fully Discrete Framework

In the context of optimization, the fully discrete adjoint method is advantageous compared to the

continuous or semi-discrete version as it is guaranteed that the resulting derivatives will be consistent

with the quantity of interest, F . This emanates from the fact that in the fully discrete setting, the

discretization errors are also di↵erentiated. This property is practically relevant as convergence

guarantees and convergence rates of many black-box optimizers are heavily dependent on consistent

gradients of optimization functionals.

Additionally, when Runge-Kutta schemes are chosen for the temporal discretization, the fully

discrete framework is particularly advantageous since the stages are rarely invariant with respect to

the direction of time, that is to say,

6 9i, j 2 {1, . . . , s} such that t

n�1

+ c

i

�t

n

= t

n

� c

j

�t

n

, (D.30)

where c is from the Butcher tableau. Temporal invariance of an Runge-Kutta scheme, as defined in

(D.30) is significant when computing adjoint variables. During the primal solve, u will be computed

at t
n

for n = 1, . . . , N and its stage values at t
n�1

+ c

i

�t

n

for n = 1, . . . , N and i = 1, . . . , s. If the

same RK scheme is applied to integrate the semi-discrete adjoint equations backward in time, the

primal solution will be required at t

n

� c

i

�t

n

for n = 1, . . . , N and i = 1, . . . , s. Due to condition

(D.30), the solution to the primal problem was not computed during the forward solve. Obtaining the

primal solution at this time requires interpolation, which complicates the implementation, degrades

the accuracy of the computed adjoint variables, and destroys discrete consistency of the computed

gradients. This issue does not arise in the fully discrete setting as only terms computed during the

primal solve appear in the adjoint equations, by construction.

The next section is devoted to detailing an e�cient and modular implementation of the fully

discrete adjoint method on deforming domains.

D.2.4 Implementation

Implementation of the fully discrete adjoint method introduced in Section D.2 relies on the compu-

tation of the following terms from the spatial discretization

M , r,
@r

@u
,

@r

@u

T

,

@r

@µ
, f

h

,

@f

h

@u
,

@f

h

@µ
. (D.31)

Here, M is the mass matrix of the semi-discrete conservation law, and r is the spatial residual

vector with derivatives
@r

@u
(Jacobian) and

@r

@µ
. As in the previous section, f

h

is the discretization

of the spatial integral of the output quantity of interest with derivatives
@f

h

@u
and

@f

h

@µ
. The mass

matrix, spatial flux, Jacobian of spatial flux, and output quantity are standard terms required by an

implicit solver and will not be considered further. The Jacobian transpose is explicitly mentioned as

additional implementational e↵ort is required when performing parallel matrix transposition. The
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derivatives with respect to µ are rarely required outside adjoint method computations and will be

considered further in subsequent sections. As indicated in Section D.1.2, all relevant derivatives of

the mass matrix are zero since it is independent of time, parameter, and state variable, which is an

artifact of the transformation to a fixed reference domain.

The parallel implementation of all semi-discrete quantities in (D.31) is performed using domain

decomposition, where each processor contains a subset of the elements in the mesh, including a halo

of elements to be communicated with neighbors [154]. Linear systems of the form

@r

@u
x = b

@r

@u

T

x = b

are solved in parallel using a GMRES solver with a block Incomplete-LU (ILU) preconditioner.

Given the availability of all terms in (D.31), the solution of the primal problem and integration

of the output quantity F is given in Algorithm 19. The solution of the corresponding fully discrete

adjoint equation, and reconstruction of the gradient of F , is given in Algorithm 20.

Algorithm 19 Primal Solution: Functional Evaluation

Input: Initial condition, u(0); parameter configuration, µ

Output: Integrated output quantity, F = F (N

t

)

h

, and primal state quantities, u(n) and k
(n)

i

for
n = 1, . . . , N

t

and i = 1, . . . , s

1: Initialize: F (0)

h

= 0
2: for n = 1, . . . , N

t

do
3: for i = 1, . . . , s do

4: Solve (D.14) for k(n)

i

Mk
(n)

i

= �tr
⇣
u
(n)

i

,µ, t
n�1

+ c

i

�t

⌘

where u
(n)

i

= u(n�1) +
P

i

j=1

a

ij

k
(n)

j

5: Write k
(n)

i

to disk
6: end for
7: Update u according to (D.14)

u(n) = u(n�1) +
sX

i=1

b

i

k
(n)

i

8: Update F
h

according to (2.45)

F (n)

h

= F (n�1)

h

+
sX

i=1

b

i

f

⇣
u
(n)

i

,µ, t
n�1

+ c

i

�t

n

⌘

9: Write u(n) to disk
10: end for

A well-documented implementational issue corresponding to the unsteady adjoint method per-

tains to storage and I/O demands. The adjoint equations are solved backward in time and require
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Algorithm 20 Dual Solution: Gradient Evaluation

Input: Primal state quantities, u(n) and k
(n)

i

for n = 1, . . . , N
t

and i = 1, . . . , s; initial condition

sensitivity,
@u(0)

@µ
; parameter configuration, µ

Output: Gradient of integrated output quantity,
dF

dµ
, and dual state quantities, �(n) and 

(n)

i

for

n = 1, . . . , N
t

and i = 1, . . . , s
1: Read primal solution u(N

t

) from disk

2: �(N

t

) =
@F

@u(N

t

)

T

3: Initial gradient of F with partial derivative and initial condition sensitivity

dF

dµ
=
@F

@µ
+ �(0)

T

@u
0

@µ

4: for n = N

t

, . . . , 1 do
5: Read primal solution u(n�1) from disk
6: for i = s, . . . , 1 do

7: Read primal solution k
(n)

i

from disk

8: Solve (D.25) for (n)

i

MT
(n)

i

=
@F

@k
(n)

i

T

+ b

i

�(n) +
sX

j=i

a

ji

�t

n

@r

@u
(u(n)

j

,µ, t
n�1

+ c

j

�t

n

)T(n)

j

9: Update
dF

dµ
according to (D.26)

dF

dµ
=

dF

dµ
+�t

n


(n)

i

T

@r

@µ
(u(n)

i

, µ, t

n�1

+ c

i

�t

n

)

10: end for
11: Update � according to (D.25)

�(n�1) = �(n) +
@F

@u(n�1)

T

+
sX

i=1

�t

n

@r

@u
(u(n)

i

,µ, t
i

+ c

i

�t

n

)T(n)

i

12: end for
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the solution of the primal problem at each of the corresponding steps/stages. Therefore, the adjoint

computations cannot begin until all primal states have been computed. Additionally, this implies

all primal states must be stored since they will be required in reverse order during the adjoint

computation. For most problems, storing all primal states in memory will be infeasible, requiring

disk I/O, which must be performed in parallel to ensure parallel scaling is maintained. There have

been a number of strategies to minimize the required I/O operations, such as local-in-time adjoint

strategies [206] and checkpointing [40, 90, 95]. For the DG-ALE method in this work, the cost of I/O

was not significant compared to the cost of assembly and solving the linearized system of equations.

In this work, the 3DG software [150] was used for the high-order DG-ALE scheme. The tem-

poral discretization and unsteady adjoint method were implemented in the Model Order Reduction

Testbed (MORTestbed) [209, 210] code-base, which was used to wrap 3DG such that all data struc-

tures, and thus all parallel capabilities, were inherited.

Partial Derivatives of Residuals and Output Quantities

This section details computation of partial derivatives of the residual, r, and the output quantity, f
h

,

with respect to the parameter µ. The DG-ALE discretizations of Section D.1.2, with and without

GCL augmentation, are considered separately as the implicit dependence of ḡ on µ requires special

treatment.

Without GCL Augmentation

When the GCL augmentation is not considered, the dependence of r and f

h

on the parameter

µ is solely due to the domain parametrization. Therefore, the following expansion of the partial

derivatives with respect to µ is exploited

@r

@µ
=
@r

@x

@x

@µ
+
@r

@ẋ

@ẋ

@µ

@f

h

@µ
=
@f

h

@x

@x

@µ
+
@f

h

@ẋ

@ẋ

@µ
(D.32)

where
@x

@µ
and

@ẋ

@µ
are determined solely from the domain parametrization and the terms

@r

@x
,

@r

@ẋ
,

@f

h

@x
,

@f

h

@ẋ
(D.33)

are determined from the form of the governing equations and spatial discretization outlined in

Section D.1. From the expressions in (D.32), the terms in (D.33) are not explicitly required in

matrix form, rather matrix-vector products with
@x

@µ
and

@ẋ

@µ
from Section D.2.4 are required.

With GCL Augmentation

For the DG-ALE scheme with GCL augmentation, the dependence of r and f on the parameter

µ arises from two sources, the domain parametrization and the implicit dependence of ḡ on µ.

Therefore, the chain rule expansions in (D.32) must include an additional term to account for the
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dependence of ḡ on µ

@r

@µ
=
@r

@x

@x

@µ
+
@r

@ẋ

@ẋ

@µ
+
@r

@ḡ

@ḡ

@µ

@f

@µ
=
@f

@x

@x

@µ
+
@f

@ẋ

@ẋ

@µ
+
@f

@ḡ

@ḡ

@µ
. (D.34)

Similar to the previous section, the terms
@x

@µ
and

@ẋ

@µ
are determined solely from the domain

parametrization and
@r

@x
,

@r

@ẋ
,

@r

@ḡ
,

@f

@x
,

@f

@ẋ
,

@f

@ḡ
(D.35)

are determined from the form of the governing equations and spatial discretization in Section D.1.

The only remaining term
@ḡ

@µ
is defined as the solution of the following ODE

M
¯g
@

@t

✓
@ḡ

@µ

◆
=
@r

¯g

@µ
+
@r

¯g

@ḡ

@ḡ

@µ
=
@r

¯g

@µ
, (D.36)

obtained by direct di↵erentiation of (D.11). The last equality uses the fact that r
¯g is independent of

ḡ, which can be deduced from examination of the governing equation for ḡ (D.5). Equation (D.36)

is discretized with the same DIRK scheme used for the temporal discretization of the state equation.

Remark. The special treatment of ḡ detailed in this section, including integration of the sensitivity

equations (D.36), can be avoided by considering the ODEs in (D.11) directly without leveraging the

fact that the ḡ equation is independent of u
¯

X

. This implies the state vector will contain an additional

unknown for ḡ for each DG node. This increases the cost of a primal and dual solve, but simplifies

the adjoint derivation and implementation.

Time-Dependent, Parametrized Domain Deformation

A crucial component of the fully discrete adjoint method on deforming domains is a time-dependent

parametrization of the domain, amenable to parallel implementation. A parallel implementation

is required as domain deformation will involve operations on the entire computational mesh and

will be queried at every stage of each time step of both the primal and dual solves, according to

Algorithms 19 and 20. In this work, the domain parametrization is required to be su�ciently general

to handle shape deformation, as well as kinematic motion. Additionally, the domain deformation

must be su�ciently smooth to ensure su�cient regularity of the transformed solution, and the

spatial and temporal derivatives must be analytically available for fast, accurate computation of the

deformation gradient, G, and velocity, v
X

, of the mapping, G.
The domain deformation will be defined by the superposition of a rigid body motion and a

spatially varying deformation. To avoid large mesh velocities at the far-field, which could arise from

rigid rotations of the body, the blending maps of [152] are used. First, define a spatial configuration

consisting of a rigid body motion (Q(µ, t), v(µ, t)) and deformation ('(X,µ, t)) to the reference

domain

X 0 = Q(µ, t)X + v(µ, t) +'(X,µ, t), (D.37)
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which completely defines the physical motion of the body. This physical configuration is blended

with the reference configuration according to

x = (1� b(d(X)))X 0 + b(d(X))X (D.38)

where d(X) = kX �X
0

k � R

0

is the signed distance from the origin X
0

to the circle of radius R
0

centered at X
0

and

b(s) =

8
>>><

>>>:

0, if s < 0

1, if s > R

1

r(s/R
1

), otherwise

(D.39)

where r(s) = 3s2 � 2x3 for a cubic blending and r(s) = 10s3 � 15s4 + 6s5 for a quintic blending.

Spatial blending of this form ensures the desired physical motion of the body, X 0 is exactly achieved

within a radius R

0

of the origin. Further, there is no deformation outside a radius R

0

+ R

1

of the

origin. In the annulus about the origin with inner radius R
0

and outer radius R
0

+ R

1

, the spatial

configuration is blended smoothly between these two spatial configurations.

The specific form of Q(µ, t), v(µ, t), and '(X,µ, t) is problem-specific and will be deferred to

Sections D.2.5, D.2.6, D.4.4, D.4.5. Assuming these terms are known analytically, the specific form

of G =
@x

@X
, v

X

= ẋ =
@x

@t

,
@x

@µ
, and

@ẋ

@µ
can be easily computed.

In the next two sections, the high-order numerical discretization of a system of conservation laws

and corresponding adjoint method is applied to the isentropic compressible Navier-Stokes equa-

tions (2.24)-(2.25) to solve optimal control and shape optimization problems using gradient-based

optimization techniques. The DG-ALE scheme introduced in Section D.1 is used for the spatial dis-

cretization of the system of conservation laws with polynomial order p = 3 and a diagonally implicit

Runge-Kutta scheme for the temporal discretization. The DG-ALE scheme uses the Roe flux [169]

for the inviscid numerical flux and the Compact DG flux [150] for the viscous numerical flux. The

Butcher tableau for the three-stage, third-order DIRK scheme considered in this work is given in

Table D.1. The instantaneous quantities of interest for a body, defined by the surface �, take the

Table D.1: Butcher Tableau for 3-stage, 3rd order DIRK scheme [3]

↵ = 0.435866521508459, � = � 6↵

2�16↵+1

4

, ! = 6↵

2�20↵+5

4

.

↵ ↵

1+↵

2

1+↵

2

� ↵ ↵

1 � ! ↵

� ! ↵
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following form

F
x

(U ,µ, t) =

Z

�
f(U ,µ, t) · e

1

dS F
y

(U ,µ, t) =

Z

�
f(U ,µ, t) · e

2

dS

P(U ,µ, t) =

Z

�
f(U ,µ, t) · ẋ dS P

x

(U ,µ, t) =

Z

�
ẋf(U ,µ, t) · e

1

dS

P
y

(U ,µ, t) =

Z

�
ẏf(U ,µ, t) · e

2

dS P
✓

(U ,µ, t) = �
Z

�
✓̇f(U ,µ, t)⇥ (x� x

0

) dS

(D.40)

where f 2 Rn

sd is the force imparted by the fluid on the body, e
i

is the ith canonical basis vector

in Rn

sd , x and ẋ are the position and velocity of a point on the surface �, and x, y, ✓, ẋ, ẏ, ✓̇ define

the motion of the reference point, x
0

(the 1/3-chord of the airfoil, in this case); see Figure D.2. The

F
x

and F
y

terms correspond to the total x- and y-directed forces on the body and P is the total

power exerted on the body by the fluid. The total power P is broken into its translational, P
x

and

P
y

, and rotational, P
✓

, components. For a 2D rigid body motion, an additive relationship among

these terms holds

P(U ,µ, t) = P
x

(U ,µ, t) + P
y

(U ,µ, t) + P
✓

(U ,µ, t). (D.41)

The negative sign is included in the definition of P
✓

due to the clockwise definition of ✓ in Fig-

ure D.2. In the remainder of this document, a superscript h will be used to denote the high-order

DG approximation to these spatial integrals that constitute the instantaneous quantities of interest,

e.g., Ph(u,µ, t) is the high-order approximation of P(U ,µ, t), where u is the semi-discrete approxi-

mation of U . Temporal integration of the instantaneous quantities of interest leads to the integrated

quantities of interest

J
x

(U ,µ) =

Z
T

0

Z

�
f(U ,µ, t) · e

1

dS dt J
y

(U ,µ) =

Z
T

0

Z

�
f(U ,µ, t) · e

2

dS dt

W(U ,µ) =

Z
T

0

Z

�
f(U ,µ, t) · ẋ dS dt W

x

(U ,µ) =

Z
T

0

Z

�
ẋf(U ,µ, t) · e

1

dS dt

W
y

(U ,µ) =

Z
T

0

Z

�
ẏf(U ,µ, t) · e

2

dS dt W
✓

(U ,µ) = �
Z

T

0

Z

�
✓̇f(U ,µ, t)⇥ (x� x

0

) dS dt

(D.42)

which will be used as optimization functionals in subsequent sections. The terms J
x

and J
y

are

the x- and y-directed impulse the fluid exerts on the airfoil, respectively, W is the total work done

on the airfoil by the fluid, and W
x

, W
y

, and W
✓

are the translational and rotational components

of the total work. The fully discrete, high-order approximation of the integrated quantities of

interest (DG in space, DIRK in time) will be denoted with the corresponding Roman symbol, e.g.,

W (u(0)

, . . . ,u(N

t

)

,k
(n)

1

, . . . ,k
(n)

s

,µ) is the fully discrete approximation of W(U ,µ).
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D.2.5 Numerical Experiment: Energetically Optimal Trajectory of 2D

Airfoil in Compressible, Viscous Flow

In this section, the high-order, time-dependent PDE-constrained optimization framework introduced

in this document is applied to find the energetically optimal trajectory of a 2D NACA0012 airfoil with

chord length l = 1 and zero-thickness trailing edge. The governing equations are the 2D compressible,

isentropic Navier-Stokes equations. The mission of the airfoil is to move a distance of �1.5 units

x(t)
y(t)

θ(t)

l
l/3

Figure D.2: Airfoil kinematics

horizontally and 1.5 units vertically in T = 4 units of time, with the restriction that ✓(0) = ✓(T ) = 0,

i.e., the angle of attack at the initial and final time is zero. Additionally, to ensure smoothness of

the motion and avoid non-physical transients, ẋ(0) = ẋ(T ) = ẏ(0) = ẏ(T ) = ✓̇(0) = ✓̇(T ) = 0 are

enforced. The goal is to determine the trajectory x(t), y(t), ✓(t) of the airfoil that minimizes the

total energy required to complete the mission, i.e.,

minimize
U , µ

W(U ,µ)

subject to x(0) = ẋ(0) = ẋ(T ) = 0, x(T ) = �1.5

y(0) = ẏ(0) = ẏ(T ) = 0, y(T ) = 1.5

✓(0) = ✓(T ) = ✓̇(0) = ✓̇(T ) = 0

@U

@t

+r · F (U ,rU) = 0 in v(µ, t).

(D.43)

The trajectory of the airfoil—x(t), y(t), and ✓(t)—is discretized via clamped cubic splines with

m

x

+ 1, m
y

+ 1, and m

✓

+ 1 knots, respectively. The knots are uniformly spaced between 0 and

T in the t-dimension and the knot values are optimization parameters. Table D.2 summarizes

two parametrizations considered in this section: (PI) the translational degrees of freedom—x(t)

and y(t))—are frozen at their nominal value in Figure D.4 and the rotational degree of freedom—

✓(t)—is parametrized with a m

✓

+ 1-knot clamped cubic spline and (PII) all rigid body modes are

parametrized with clamped cubic splines. The 7 IDs in Table D.2 correspond to levels of refinement

of the given parametrization with ID = 1 being the coarsest parametrization and ID = 7 the finest.

With this parametrization of the airfoil kinematics, spatial and temporal discretization with the

high-order scheme of Section D.1 leads to the fully discrete version of the optimization problem in
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Table D.2: Summary of parametrizations considered in Section D.2.5. The number of clamped cubic
spline knots used to discretize x(t), y(t), and ✓(t) are m

x

+ 1, m
y

+ 1, and m

✓

, respectively. PI
freezes the rigid body translation (m

x

= m

y

= 0) and optimizes over only the rotation (m
✓

6= 0).
PII optimizes over all rigid body degrees of freedom (m

x

= m

y

= m

✓

6= 0).

PI PII

ID m

x

m

y

m

✓

N

µ

m

x

m

y

m

✓

N

µ

1 0 0 2 3 2 2 2 9
2 0 0 6 7 6 6 6 21
3 0 0 10 11 10 10 10 33
4 0 0 15 16 15 15 15 48
5 0 0 25 26 25 25 25 78
6 0 0 50 51 50 50 50 153
7 0 0 100 101 100 100 100 303

(D.43)

minimize
u

(0)

, ..., u

(N

t

)2RNu
,

k

(1)

1

, ..., k

(N

t

)

s

2RNu
,

µ2RNµ

W (u(0)

, . . . , u(N

t

)

, k
(1)

1

, . . . , k(N

t

)

s

, µ)

subject to x(0) = ẋ(0) = ẋ(T ) = 0, x(T ) = �1.5

y(0) = ẏ(0) = ẏ(T ) = 0, y(T ) = 1.5

✓(0) = ✓(T ) = ✓̇(0) = ✓̇(T ) = 0

u(0) = u
0

u(n) = u(n�1) +
sX

i=1

b

i

k
(n)

i

Mk
(n)

i

= �t

n

r
⇣
u
(n)

i

, µ, t

n�1

+ c

i

�t

n

⌘
.

(D.44)

Before considering the optimization problem (D.44), the proposed adjoint method for comput-

ing gradients of quantities of interest on the manifold of fully discrete, high-order solutions of the

conservation law (D.14) is verified against a fourth-order finite di↵erence approximation. The finite

di↵erence approximation to gradients on the aforementioned manifold requires finding the solution

of the fully-discretized governing equations at perturbations about the nominal parameter config-

uration in Figure D.4. To mitigate round-o↵s errors as much as possible in the finite di↵erence

computation, the number of time steps was reduced to 10 and only half of a period was simulated.

Figure D.3 shows the relative error between the gradients computed via the adjoint method and this

finite di↵erence approximation for a sweep of finite di↵erence intervals, ⌧ . A relative error on the

order of 10�10 is observed for a finite di↵erence step of ⌧ = 10�4. As expected, the error starts to

increase after ⌧ drops too small due to the trade-o↵ between finite di↵erence accuracy and roundo↵

error.

With this verification of the adjoint-based gradients, attention is turned to the optimization prob-

lem in (D.44). The optimization solver used in this section is L-BFGS-B [215], a bound-constrained,
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Figure D.3: Verification of adjoint-based gradient with fourth-order centered finite di↵erence approx-
imation, for a range of finite intervals, ⌧ , for the total work W—the objective function in (D.44)—for
parametrization PII (Table D.2). The computed gradient match the finite di↵erence approximation
to about 10 digits of accuracy before round-o↵ errors degrade the accuracy.

limited-memory BFGS algorithm. Figure D.4 contains the initial guess for the optimization prob-

lem in (D.44) as well as its solution under both parametrization, PI and PII, at the finest level of

refinement (ID = 7). The initial guess for the optimization problem is a pure translational motion

with ✓(t) = 0. The solution under parametrization PI freezes the translational motion at its nominal

value and incorporates rotational motion. The solution under parametrization PII increases the am-

plitude of the rotation, flattens the trajectory of x(t), and incorporates an overshoot in y(t) before

settling to the required location, as compared to the optimal solution corresponding to PI.

0 1 2 3 4

�1.5

�1

�0.5

0

time

x
(t
)

0 1 2 3 4

0

0.5

1

1.5

time

y
(t
)

0 1 2 3 4

�0.5

0

time

✓
(t
)

Figure D.4: Trajectories of x(t), y(t), and ✓(t) at initial guess ( ), solution of (D.44) under
parametrization PI ( ), and solution of (D.44) under parametrization PII ( ) for ID = 7.
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The instantaneous quantities of interest for the nominal trajectory and solution of (D.44) under

parametrizations PI and PII are included in Figure D.5. It is clear that the optimal solution under

both parametrizations result in a time history of the total power that is uniformly closer to 0 than

that at the nominal trajectory, which is expected since W is the objective function. With the

exception of the edges of the time interval, the total power time history for the optimal solution

under parametrization PII is uniformly closer to 0 than that of PI. The same observation holds for

the power due to the translational motion, Ph

x

and Ph

y

. Whereas the total power corresponding

to the nominal trajectory is due solely to the translational motion (since there is no rotation), the

optimal solutions exchange large amounts of translational power for a small amount of rotational

power. These observations can also be verified in Table D.3 which summarizes the optimal values

of the integrated quantities of interest.
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Figure D.5: Time history of instantaneous quantities of interest (x-directed force – Fh

x

(u,µ, t),
y-directed force – Fh

y

(u,µ, t), total power – Ph(u,µ, t), x-translational power – Ph

x

(u,µ, t), y-

translational power – Ph

y

(u,µ, t), rotational power – Ph

✓

(u,µ, t)) at initial guess ( ), solution of
(D.44) under parametrization PI ( ), and solution of (D.44) under parametrization PII ( ) for
ID = 7.
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The convergence of the total work, i.e., the objective function of the optimization problem, with

iterations of the optimization solver is summarized in Figure D.6 (left). Both parametrizations are

included and iterations are agglomerated over all IDs. The first iteration corresponds to a steepest

descent step, which causes an adverse jump in the objective value. The following iterations make

rapid progress toward the optimal solution, which is slowed as convergence is approached. The solver

requires additional iterations to converge the solution corresponding to parametrization PII, which

is expected due to the larger parameter space.

Next, convergence of the total work as the parameter space is refined is considered in Figure D.6

(right) and Table D.3. This implies the optimal trajectory among all twice continuously di↵erentiable

functions is being approached. For both parametrizations, the optimal value of the total work agrees

to 3 digits between IDs 6 and 7 (roughly a factor of 2 di↵erence in dimension of parameter spaces)

and 2 digits between IDs 3 and 7 (roughly a factor of 10 di↵erence in dimension of parameter spaces).
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0

iteration

W

101 102
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�0.15
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µ

W

Figure D.6: Left : Convergence of total work W with optimization iteration for parametrization PI
( ) and PII ( ) for ID = 7. Both optimization problems converge to a motion with significantly
lower required total work; PII finds a better motion than PI (in terms of total work) due to the
enlarged search space, at the cost of additional iterations. Each optimization iteration requires a
primal flow computation—to evaluate the quantities of interest—and its corresponding adjoint—
to evaluate the gradient of the quantity of interest. Right : Convergence of optimal value of total
work W as parameter space is refined for parametrization PI ( ) and PII ( ). This implies
convergence to an optimal, smooth trajectory that is not polluted by its discrete parametrization.

The motion of the airfoil and vorticity of the surrounding flow are shown in Figure D.7 (nominal

trajectory), Figure D.8 (optimal solution under parametrization PI), and Figure D.9 (optimal solu-

tion under parametrization PII). The flow corresponding to the nominal configuration experiences

flow separation and vortex shedding, which results in the relatively large amount of total energy to

complete the mission. Fixing the translational motion and optimizing over the rotation (PI) dra-

matically reduces the amount of shedding and consequently reduces the amount of work required.

Optimizing the entire rigid body motion (PII) further reduces the shedding and required work.
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Figure D.7: Flow vorticity around airfoil undergoing motion corresponding to initial guess for opti-
mization, i.e., pure heaving ( ). Flow separation o↵ leading edge implies a large amount of work
required to complete mission. Snapshots taken at times t = 0.0, 0.8, 1.6, 2.4, 3.2, 4.0.

Figure D.8: Flow vorticity around airfoil undergoing motion corresponding to optimal pitching
motion for fixed translational motion, i.e., solution of (D.44) under parametrization PI ( ). The
pitching motion greatly reduces the degree of flow separation and vortex shedding compared to
the initial guess, and requires less work to complete the mission. Snapshots taken at times t =
0.0, 0.8, 1.6, 2.4, 3.2, 4.0.
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Figure D.9: Flow vorticity around airfoil undergoing motion corresponding to optimal rigid body mo-
tion, i.e., solution of (D.44) under parametrization PII ( ). This rigid body motion further reduces
the degree of flow separation and required work to complete the mission. This motion di↵ers from
the solution of PI as it has a larger pitch amplitude and slightly overshoots the final vertical position
before settling to the required position. Snapshots taken at times t = 0.0, 0.8, 1.6, 2.4, 3.2, 4.0.

D.2.6 Numerical Experiment: Energetically Optimal Shape and Flapping

Motion of 2D Airfoil at Constant Impulse

In this section, the high-order, time-dependent PDE-constrained optimization framework introduced

in this document is applied to find the energetically optimal flapping motion, under an impulse

constraint, of a 2D NACA0012 airfoil (Figure D.10) with chord length l = 1 and zero-thickness

trailing edge. The governing equations are the 2D compressible, isentropic Navier-Stokes equations.

y(t)

θ(t)

l
l/3

c(t)

Figure D.10: Airfoil kinematics and deformation

The goal is to determine the flapping motion—y(t) and ✓(t)—and shape—c(t)—of the airfoil
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that minimizes the total energy such than a x-impulse of q is achieved, i.e.,

minimize
U , µ

W(U ,µ)

subject to J
x

(U ,µ) = q

@U

@t

+r · F (U , rU) = 0 in v(µ, t).

(D.45)

The flapping frequency is fixed at 0.2, which corresponds to a period of T = 5. Proper initialization

of the flow is the initial condition that results in a time-periodic flow [212] to completely avoid non-

physical transients and simulate representative, in-flight conditions; this experiment uses a crude

approximation that initializes the flow from the steady-state condition, simulates 3 periods of the

flapping motion, and integrates the quantities of interest over the last period only. The deformation

of the domain is determined from the value of c(t) using the spatial blending map of Section D.2.4

with

'(X,µ, t) =

"
0

2c(t)e�[(X�x

0

)·e
1

]

2

#
(D.46)

The trajectory of the airfoil—y(t), and ✓(t)—and its shape – c(t)—are discretized via cubic

splines with m

y

+1, m
✓

+1, and m

c

+1 knots, respectively, with boundary conditions that enforce

y(t) = �y(t+ T/2) ✓(t) = �✓(t+ T/2) c(t) = �c(t+ T/2). (D.47)

These boundary conditions1 for y(t), ✓(t), and c(t) correspond to a mirroring of the trajectory at

t = T/2 and implicitly enforces periodicity with period T . The knots are uniformly spaced between

0 and T in the t-dimension and the knot values are optimization parameters. Since the unsteady

simulation is initialized from the steady-state flow, non-zero velocities of the airfoil at t = 0 will

result in non-physical transients. These transients are avoided by blending the periodic cubic spline

smoothly to the zero function at the beginning of the time interval [193]. Let s
y

(t;µ), s
✓

(t;µ), and

s

c

(t;µ) denote the periodic cubic spline approximations. Then, the flapping and shape trajectories

are defined as

y(t) = b(t)s
y

(t;µ) ✓(t) = b(t)s
✓

(t;µ) c(t) = b(t)s
c

(t;µ), (D.48)

where b(t) = 1.0� e

�t

2

. Table D.4 summarizes two parametrizations considered in this section:

(FI) rigid body motion parametrized via cubic splines and shape fixed at nominal value and (FII) rigid

body motion and shape of airfoil parametrized via cubic splines. With this parametrization of the

airfoil kinematics and shape, spatial and temporal discretization with the high-order scheme of

1Periodic and mirrored cubic splines of this form with m + 1 knots only have m degrees of freedom since the
boundary condition prescribes the value of the m + 1 knot from the values of the others m.
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Table D.4: Summary of parametrizations considered in Section D.2.6. The number of periodic cubic
spline knots used to discretize y(t), ✓(t), and (̧t) are m

y

+ 1, m
✓

+ 1, and m

c

+ 1, respectively.
FI freezes the airfoil shape and considers only rigid body motions (m

y

= m

✓

6= 0,m
c

= 0). FII
parametrizes both shape and kinematic motion (m

y

= m

✓

= m

c

6= 0).

FI FII

m

y

m

✓

m

c

N

µ

m

y

m

✓

m

c

N

µ

4 4 0 6 4 4 4 9

Section D.1 leads to the fully discrete version of the optimization problem in (D.45)

minimize
u

(0)

, ..., u

(N

t

)2RNu
,

k

(1)

1

, ..., k

(N

t

)

s

2RNu
,

µ2RNµ

W (u(0)

, . . . , u(N

t

)

, k
(1)

1

, . . . , k(N

t

)

s

, µ)

subject to J

x

(u(0)

, . . . , u(N

t

)

, k
(1)

1

, . . . , k(N

t

)

s

, µ) = 0

u(0) = u
0

u(n) = u(n�1) +
sX

i=1

b

i

k
(n)

i

Mk
(n)

i

= �t

n

r
⇣
u
(n)

i

, µ, t

n�1

+ c

i

�t

n

⌘
.

(D.49)

Given the gradient verification from the previous section, attention is turned directly to the

optimization problem in (D.49) for various values of the impulse constraint, q. The optimization

solver used in this section is SNOPT [70], a nonlinearly constrained SQP method. Figure D.11

contains the initial guess for the optimization problem in (D.44) as well as its solution under both

parametrization, FI and FII. The initial guess for the optimization problem is a pure heaving motion

at a fixed shape, i.e., c(t) = ✓(t) = 0. The solution under parametrization PI freezes the shape at its

nominal configuration (NACA0012) and modifies the rigid body motion. Pitch is introduced for all

values of the impulse constraint and the amplitude of the heaving motion is decreased for q = 0.0, 1.0

and increased for q = 2.5. The solution under parametrization PII reduces the heaving amplitude

and slightly increases the pitch amplitude as compared to PI. It also introduces non-trivial camber.

The instantaneous quantities of interest—W and J

x

in this case—for the nominal motion and

shape and solution of (D.49) under parametrizations PI and PII are included in Figure D.12. It

is clear that the optimal solution under both parametrizations result in a time history of the total

power that is uniformly closer to 0 than that at the nominal trajectory, which is expected since W

is the objective function. It is also clear that larger values of the impulse constraint require more

power to complete the flapping motion. While it may not be clear from Figure D.12, the integration

of Fh

x

leads to an impulse that exactly conforms to the specified value of q. This can be seen more

clearly in Figure D.13. These observations can also be verified in Figure D.13 and Table D.5 that

summarizes the optimal values of the integrated quantities of interest.

Figure D.13 shows the convergence of the integrated quantities of interest with iterations in
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Figure D.11: Trajectories of y(t), ✓(t), and c(t) at initial guess ( ), solution of (D.49) under
parametrization FI (q = 0.0: , q = 1.0: , q = 2.5: ), and solution of (D.49) under
parametrization FII (q = 0.0: , q = 1.0: , q = 2.5: ) from Table D.4.
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Figure D.12: Time history of total power, Ph(u,µ, t), and x-directed force, Fh

x

(u,µ, t), imparted
onto foil by fluid at initial guess ( ), solution of (D.49) under parametrization FI (q = 0.0: ,
q = 1.0: , q = 2.5: ), and solution of (D.49) under parametrization FII (q = 0.0: ,
q = 1.0: , q = 2.5: ) from Table D.4.
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the optimization solver. The aforementioned observations can be verified by inspection of the final

iteration: all impulse constraints are satisfied, larger values of q require more work to achieve,

and morphing the shape of the airfoil allows for a slight reduction in the required work. After 20

iterations, the impulse constraint is satisfied for q = 0.0, 1.0 and reduction of the work has essentially

ceased, implying the optimization could have been terminated at that point. The case with q = 2.5

requires an additional 15 - 20 iterations to settle to a converged solution.

0 20 40 60
�10

�5

0

iteration

W

0 20 40 60

�2

�1

0

1

iteration

J

x

Figure D.13: Convergence of quantities of interest, W and J

x

, with optimization iteration for
parametrization FI (q = 0.0: , q = 1.0: , q = 2.5: ) and FII (q = 0.0: , q = 1.0: ,
q = 2.5: ) from Table D.4. Each optimization iteration requires the a primal flow computation—
to evaluate quantities of interest—and its corresponding adjoint—to evaluate the gradient of quan-
tities of interest.

The shape and motion of the airfoil and vorticity of the surrounding flow are shown in Figure D.14

(nominal), Figure D.15 (optimal solution under parametrization FI for q = 2.5), and Figure D.16

(optimal solution under parametrization FII for q = 2.5). The flow corresponding to the nominal

configuration experiences flow separation and vortex shedding, which results in the relatively large

amount of total energy to complete the flapping motion and does not satisfy the impulse constraint.

Fixing the shape and optimizing over the heaving and pitching motion (FI) dramatically reduces the

amount of shedding and consequently reduces the amount of work required. Optimizing the shape in

addition to the pitching and heaving motion (FII) further reduces the shedding and required work.

The solution of FI and FII both satisfy the impulse constraint to greater than 8 digits of accuracy.

To conclude this section, a brief comparison of the optimal flapping motions found in this work are

compared to those found in the literature. From Figure D.11, the pitch of the foil leads its plunge

by approximately 90� in all optimal flapping motions, a result that was found in several works

that range from experimental and computational [191, 162, 158, 148]. The improved e�ciency is

largely due to a dramatic reduction in leading edge vortex shedding characteristic of pure heaving

motions (Figure D.14) [191, 158]. The specific pitching and heaving amplitudes were determined by

the optimizer such that the thrust constraint is satisfied; as the thrust requirement is increased, the

magnitude of the pitch and plunge increase and leading edge shedding o↵ the leading edge is induced

(Figure D.15) [148]. The time-dependent shape deformation slightly reduces the magnitude of the

vortices shedding o↵ the leading edge, which can be seen by comparing Figures D.15 and D.16.
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Figure D.14: Flow vorticity around flapping airfoil undergoing motion corresponding to initial
guess for optimization problem (D.49), i.e., pure heaving ( ). Flow separation o↵ leading
edge implies a large amount of work required for flapping motion. Snapshots taken at times
t = 9.75, 10.8, 11.85, 12.9, 13.95, 15.0.
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Figure D.15: Flow vorticity around flapping airfoil undergoing optimal rigid body motion corre-
sponding to the solution of (D.49) under parametrization FI. The x-directed impulse is J

x

= 2.5.
The pitching motion greatly reduces the degree of flow separation and vortex shedding compared
to the initial guess, and requires less work to complete the flapping motion and generate desired
impulse. Snapshots taken at times t = 9.75, 10.8, 11.85, 12.9, 13.95, 15.0.
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Figure D.16: Flow vorticity around flapping airfoil undergoing optimal deformation and kine-
matic motion, corresponding to the solution of (D.49) under parametrization FII. The x-directed
impulse is J

x

= 2.5. The morphing further reduces the flow separation and work required
to complete the flapping motion and generate desired impulse. Snapshots taken at times t =
9.75, 10.8, 11.85, 12.9, 13.95, 15.0.
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D.3 Computing Time-Periodic Solutions of Partial Di↵eren-

tial Equations

This section is devoted to the solution of partial di↵erential equations with time-periodicity con-

straints. This will largely be a review of existing work on the topic [131, 196, 7, 8, 201, 77], although

emphasis will be placed on equations that are parametrized and fully discretized. This will lead

to the main contribution of this work, the fully discrete adjoint equations corresponding to time-

periodic solutions of partial di↵erential equations and their use in computing gradients of quantities

of interest along the manifold of time-periodic solutions.

Consider the general, nonlinear, time-periodically constrained system of partial di↵erential equa-

tions, parametrized by the vector µ 2 RNµ ,

@U

@t

= L(U ,µ, t) in ⌦(µ, t)⇥ (0, T ]

U(x, 0) = U(x, T ),
(D.50)

whereL(·,µ, t) is a spatial di↵erential operator on the parametrized, time-dependent domain ⌦(µ, t) ⇢
Rn

sd . The boundary conditions have not been explicitly stated for brevity. This work will only con-

sider temporally first-order partial di↵erential equations, or those that have been recast as such.

Without loss of generality, consider a quantity of interest of the form

F(U ,µ) =

Z
T

0

Z

�(µ,t)

f(U ,µ, t) dS dt, (D.51)

where �(µ, t) ✓ @⌦(µ, t). The generalization to other types of quantities of interest, such as volu-

metric integrals and instantaneous or pointwise quantities of interest, is immediate as the specific

form of the quantity of interest will be abstracted away at the fully discrete level. The form in

(D.51) will be used in the physical setup of the applications in subsequent sections. In subsequent

sections, this quantity of interest will correspond to either the objective function or a constraint of

an optimization problem governed by a partial di↵erential equation and subject to a time-periodicity

requirement. After space-time discretization of (D.50) via the DG-ALE-DIRK scheme discussed in

Section D.1, the fully discrete equations are

u(n) = u(n�1) +
sX

i=1

b

i

k
(n)

i

Mk
(n)

i

= �t

n

r
⇣
u
(n)

i

, µ, t

n�1

+ c

i

�t

n

⌘
,

(D.52)

where u
(n)

i

is defined in (D.15) and the fully discrete quantity of interest is

F (u(0)

, . . . ,u(N

t

)

,k
(1)

1

, . . . ,k(N

t

)

s

). (D.53)
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Time-periodicity may then be expressed as the constraint

u(0) = u(N

t

)

, (D.54)

where N

t

is the time index of the cycle period.

The next section discusses methods for solving the fully discrete, time-periodically constrained

partial di↵erential equations. The periodicity constraint, i.e., u(0) = u(N

t

), turns the problem into

a nonlinear two-point boundary value problem, which eliminates the possibility of using traditional

evolution methods (since the initial conditions is unknown).

D.3.1 Numerical Solvers: Shooting Methods

This section provides a brief, non-exhaustive review of methods which have been introduced for

solving time-periodic partial di↵erential equations. A distinguishing feature of this work is that

we directly consider the fully discrete form of the governing equations, whereas previous work has

focused on the continuous [194] or semi-discrete [185] levels. The section will conclude with a

discussion of a Newton-Krylov shooting method using a purely matrix-free Krylov solver to solve

the linear systems of equations that arise, which extends the work in [77].

Define u(N

t

)(u
0

;µ) as the solution of the following initial-value problem

u(0) = u
0

u(n) = u(n�1) +
sX

i=1

b

i

k
(n)

i

Mk
(n)

i

= �t

n

r
⇣
u
(n)

i

, µ, t

n�1

+ c

i

�t

n

⌘
,

(D.55)

which can be solved using a traditional evolution algorithm that advances the solution from timestep

n to n+ 1. Notice that this overloads the notation introduced in Section 2.1.3, which defines u(N

t

)

as the discrete approximation of the time-periodic solution of the system of partial di↵erential

equations at the final time. Here, it is a nonlinear function that maps a state u
0

2 RNu to the state

u(N

t

)(u
0

;µ). It is clear that u
0

is the time-periodic initial condition of the fully discrete partial

di↵erential equation if it is a fixed point of u(N

t

)(·;µ), namely

u(N

t

)(u
0

;µ) = u
0

. (D.56)

Then, provided the mapping u
0

! u(N

t

)(u
0

;µ) is a contraction mapping, the Banach Fixed Point

Theorem implies the existence of the fixed point and provides a convergent algorithm for finding

it, see Algorithm 21. This is a convenient algorithm as it only relies on solution of the nonlinear

evolution equation (D.55), but is known to su↵er from poor convergence rates and lack of convergence

if the mapping under consideration is not a contraction.

Another class of solvers for time-periodically constrained partial di↵erential equations rely on
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Algorithm 21 Fixed Point Iteration Time-Periodic Solutions of PDE

Input: Initial guess for periodic initial condition, u
0

; parameter configuration, µ
Output: Periodic initial condition, u(0)

1: while
��u(N

t

)(u
0

;µ)� u
0

��
2

> ✏ do
2: Update

u
0

 u(N

t

)(u
0

;µ)

3: end while
4: Define periodic initial condition

u(0) = u
0

unconstrained, gradient-based optimization techniques. Define the function

j(u
0

) =
1

2

���u(N

t

)(u
0

;µ)� u
0

���
2

2

(D.57)

and consider the unconstrained optimization problem

minimize
u

0

2RNu
j(u

0

), (D.58)

which can be solved using gradient-based optimization techniques such as steepest descent, the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, or the limited-memory version of BFGS (L-

BFGS) [71, 215, 143]. The gradient of (D.57),
dj

du
0

, is usually computed using the adjoint method

since the large number of optimization variables, N
u

, renders the finite di↵erences method or the

linearized forward method impractical [78]. Throughout this work, the notation
d(·)
dµ

will be used to

denote the total derivative of a quantity of interest with respect to parameters—including the explicit

dependence as well as the implicit dependence through the solution of the governing equation—and

the partial derivative notation
@(·)
@µ

will be used elsewhere. The adjoint equations for the fully discrete

evolution equations in (D.55) corresponding to the quantity of interest, j(u
0

), with parameter u
0

are
�(N

t

) = u(N

t

)(u
0

;µ)� u
0

�(n�1) = �(n) +
sX

i=1

�t

n

@r

@u

⇣
u
(n)

i

, µ, t

n�1

+ c

i

�t

n

⌘
T


(n)

i

MT
(n)

i

= b

i

�(n) +
sX

j=i

a

ji

�t

n

@r

@u

⇣
u
(n)

j

, µ, t

n�1

+ c

j

�t

n

⌘
T


(n)

j

(D.59)

for n = 1, . . . , N
t

and i = 1, . . . , s. The gradient of j(u
0

) is reconstructed from the dual variables as

dF

dµ
= �(0)

T

+ u
0

� u(N

t

)(u
0

;µ). (D.60)

See [211] for the derivation. These methods have been used with considerable success to solve a

variety of time-periodic partial di↵erential equations, including the Benjamin-Ono equation [7], a
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wave-guide array mode-locked laser system [202], and the vortex sheet with surface tension [8]. Un-

fortunately, the underlying optimization algorithms su↵er from relatively slow convergence, requiring

many line-searches before becoming superlinear, and never achieve quadratic convergence.

An attractive alternative is to recast the fixed point iteration as a nonlinear system of equations

and use the Newton-Raphson method to reap the benefits of quadratic convergence. To this end,

define the nonlinear system of equations

R(u
0

) = u(N

t

)(u
0

;µ)� u
0

= 0 (D.61)

with Jacobian matrix

J(u
0

) =
@R

@u
0

(u
0

) =
@u(N

t

)

@u
0

(u
0

;µ)� I (D.62)

where I is the N

u

⇥N

u

identity matrix. The crucial component of the Newton-Raphson method is

the solution of a linear system of equations with the Jacobian (D.62), i.e., the solution of J(u
0

)x = b,

given u
0

2 RNu and b 2 RNu . A linear evolution equation defining
@u(N

t

)

@u
0

, i.e., the sensitivity of

the final state with respect to perturbations in the initial state, is introduced by linearizing the fully

discrete evolution equation in (D.55) about the primal state u(n), k(n)

i

with respect to the initial

state u
0

. Direct di↵erentiation of (D.55) with respect to u
0

leads to the forward sensitivity equations

@u(0)

@u
0

= I

@u(n)

@u
0

=
@u(n�1)

@u
0

+
sX

i=1

b

i

@k
(n)

i

@u
0

M
@k

(n)

i

@u
0

= �t

n

@r

@u

⇣
u
(n)

i

, µ, t

n�1

+ c

i

�t

n

⌘
2

4@u
(n�1)

@u
0

+
iX

j=1

a

ij

@k
(n)

j

@u
0

3

5
.

(D.63)

In general,
@u(N

t

)

@u
0

is a large (N
u

⇥ N

u

), dense matrix that requires the solution of N

u

linear

evolution equations to form. While it is true that the columns of the matrix can be solved in

parallel, formation and storage of this matrix may be impractical, particularly for the large-scale

computational fluid dynamics problems that motivate this work. For non-dissipative problems such

as standing waves in the free-surface Euler equations [201, 176], this is worth the expense since all

perturbation directions have to be explored (as opposed to letting the evolution over a cycle damp

out high frequency transients). But for viscous problems such as those studied in the numerical

experiments, solving the Newton-Raphson equations by Krylov subspace methods requires many

fewer iterations than there are columns of the Jacobian.

Formation and storage of
@u(N

t

)

@u
0

can be completely avoided if a matrix-free Krylov method [106]

is used to solve the linear systems arising in the Newton-Raphson method, i.e., J(u
0

)x = b. In this
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case, only matrix-vector products of the form

J(u
0

)v =
@R

@u
0

(u
0

)v =
@u(N

t

)

@u
0

(u
0

;µ)v � v (D.64)

for any v 2 RNu , are required. For e�ciency, these must be computed without explicitly forming the

matrix
@u(N

t

)

@u
0

. This is accomplished by considering the forward sensitivity equations in (D.63) in

the direction defined by v. Multiplying (D.63) by the vector v leads to the system of linear evolution

equations

@u(0)

@u
0

v = v

@u(n)

@u
0

v =
@u(n�1)

@u
0

v +
sX

i=1

b

i

@k
(n)

i

@u
0

v

M
@k

(n)

i

@u
0

v = �t

n

@r

@u

⇣
u
(n)

i

, µ, t

n�1

+ c

i

�t

n

⌘
2

4@u
(n�1)

@u
0

v +
iX

j=1

a

ij

@k
(n)

j

@u
0

v

3

5
.

(D.65)

These can be solved for
@u(n)

@u
0

· v and
@k

(n)

i

@u
0

· v directly, only requiring one linear evolution for each

v. Since the equations in (D.65) are linear, the underlying linear solver must be converged to high

accuracy if accurate sensitivities are to be obtained. This mitigates the speedup with respect to the

nonlinear, primal solves whose linear systems are usually solved to low precision. For the problems

considered in Section D.4.4–D.4.5, the primal equations were, on average, 2 times more expensive

than the sensitivity equations, even though 5 nonlinear iterations were required for convergence.

This implies the cost of evaluating R(u
0

) is approximately 2 times as expensive as a Jacobian-

vector product J(u
0

)v. The Newton-Krylov method, with Jacobian-vector products computed as

the solution of (D.65), is summarized in Algorithm 22. If the linear system of equations arising

at each iteration is solved to su�cient accuracy, this algorithm will converge quadratically. The

starting guess can be obtained by fixed point iteration (Algorithm 21), or, if solutions come in

families parametrized by an amplitude, by numerical continuation [76, 103, 53, 7, 8, 200, 176]. The

latter approach is particularly useful if the system is not dissipative and externally driven, as fixed

point iteration relies on transient modes being damped by the evolution equations, i.e., on the

periodic solution being stable and attracting.

Given this exposition on methods for computing time-periodic solutions of partial di↵erential

equations, we turn our attention to determining the stability of the corresponding periodic orbit.

D.3.2 Stability of Periodic Orbits of Fully Discrete Partial Di↵erential

Equations

In this section, the concept of stability of a periodic orbit of fully discrete partial di↵erential equations

is introduced and a method for determining the stability of a periodic solution presented. Recall
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Algorithm 22 Newton-Krylov Shooting Method for Time-Periodic Solutions of PDE

Input: Initial guess for periodic initial condition, u
0

; parameter configuration, µ
Output: Periodic initial condition, u(0)

1: while
��u(N

t

)(u
0

;µ)� u
0

��
2

> ✏ do
2: Solve unsymmetric linear system of equations

@u(N

t

)

@u
0

(u
0

;µ) · �u = u(N

t

)(u
0

;µ)� u
0

using a matrix-free Krylov method with matrix-vector products

@u(N

t

)

@u
0

(u
0

;µ) · v

computed as the solution of the directional sensitivity equations (D.65)
3: Update solution

u
0

 u
0

��u

4: end while
5: Define periodic initial condition

u(0) = u
0

the interpretation of u(N

t

) as a function that propagates an initial condition u
0

to its final state

u(N

t

)(u
0

; µ). Let u⇤
0

(µ) be the time-periodic solution of the fully discrete partial di↵erential

equation in (D.52), (D.54) at parameter configuration µ, i.e., u⇤
0

(µ) = u(N

t

)(u⇤
0

; µ). A periodic

orbit is stable if there is a � > 0 such that

lim
n!1

���u(n·N
t

)(u⇤
0

(µ) +�u; µ)� u⇤
0

(µ)
��� = 0 (D.66)

if k�uk < �, where

u(n·N
t

)(u
0

; µ) = u(N

t

)(·; µ) � · · · � u(N

t

)(u
0

; µ). (D.67)

A Taylor expansion of u(N

t

) about the periodic solution leads to

u(N

t

)(u⇤
0

(µ); µ) = u⇤
0

(µ) +
@u(N

t

)

@u
0

(u⇤
0

(µ); µ) · �u+ O(k�uk2) (D.68)

where time-periodicity of u⇤
0

(µ) was used. Repeated application of (D.68) leads to

u(n·N
t

)(u⇤
0

(µ) +�u; µ) = u⇤
0

(µ) +


@u(N

t

)

@u
0

(u⇤
0

(µ); µ)

�
n

�u+ O(k�ukn+1). (D.69)

Taking � < 1, the stability criteria in (D.66) is satisfied if all eigenvalues of
@u(N

t

)

@u
0

(u⇤
0

(µ); µ) have

modulus strictly less than 1. In Section D.4.4, the stability of the periodic flow around a flapping

airfoil is verified using this method.
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D.4 Fully Discrete, Time-Periodic Adjoint Method

In this section, the adjoint equations corresponding to the fully discrete time-periodically constrained

partial di↵erential equations (D.52), (D.54) and quantity of interest F (u(0)

, . . . ,u(N

t

)

,k
(1)

1

, . . . ,k(N

t

)

s

,µ),

will be derived. For the remainder of this section, u(0)

, . . . ,u(N

t

)

,k
(1)

1

, . . . ,k(N

t

)

s

will be taken as

the time-periodic solution of the fully discrete partial di↵erential equations (D.52), (D.54) at pa-

rameter µ. The adjoint equations will be derived by linearizing the fully discrete equations about

this periodic solution. This highlights the importance of an e�cient periodic solver—the subject of

Section D.3.1—as it is a prerequisite for the adjoint method.

Before proceeding to the derivation of the adjoint equations, the following definitions are in-

troduced for the fully discrete time-periodic constraint and Runge-Kutta stage equations and state

updates

r̃(0)(u(0)

, u(N

t

)) = u(0) � u(N

t
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�t

n

⌘
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(D.70)

for n = 1, . . . , n and i = 1, . . . , s.

D.4.1 Derivation

The derivation of the fully discrete adjoint equations corresponding to the output functional, F ,

begins with the introduction of test variables

�(0)

, �(n)

, 
(n)

i

2 RNu (D.71)

for n = 1, . . . , N
t

and i = 1, . . . , s. Since u(0)

, . . . ,u(N

t

)

,k
(1)

1

, . . . ,k(N

t

)

s

are taken as the solution of

the fully discrete time-periodic problem in (D.70), the following identity holds, for any µ 2 RNµ ,

F = F + 0 = F � �(0)

T

r̃(0) �
N

tX

n=1

�(n)

T

r̃(n) �
N

tX
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(n)

i

T

R
(n)

i

(D.72)

for any value of the test functions �(n) and 
(n)

i

. In (D.72), arguments have been dropped for

brevity; it is understood that all terms are evaluated at the periodic solution of (D.52), (D.54) at

parameter µ. Since (D.70) holds for any µ 2 RNµ , provided u(0)

, . . . ,u(N

t

)

,k
(1)

1

, . . . ,k(N

t

)

s

is the
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corresponding periodic solution, di↵erentiation with respect to µ leads to
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Re-arrangement of terms in (D.73) such that the state variable sensitivities are isolated leads to the

following expression for
dF

dµ
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The dual variables, �(n) and 
(n)

i

, which have remained arbitrary to this point, are chosen such that

the bracketed terms in (D.74) vanish
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for n = 1, . . . , N
t

and i = 1, . . . , s. These are the fully discrete adjoint equations corresponding to the

time-periodic primal evolution equations in (D.70), discrete quantity of interest F , and parameter

µ. Defining the dual variables as the solution of the adjoint equations in (D.75), the expression for
dF

dµ
in (D.74) reduces to

dF
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=
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. (D.76)
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This provides a means of computing the total derivative
dF

dµ
without explicitly computing the large,

dense state sensitivities since the expression in (D.76) is independent of them. Direct di↵erentiation

of r̃(n) and R
(n)

i

from their definitions in (D.70) leads to the final form of the adjoint equations of

the fully discrete, time-periodically constrained partial di↵erential equations in (D.52), (D.54)
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for n = 1, . . . , N
t

and i = 1, . . . , s. Similarly, the total derivative of F , independent of state sensi-

tivities, takes the form
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From (D.77), it can be seen that the fully discrete adjoint equations take the form of a linear, two-

point boundary-value problem and cannot be solved directly as an evolution equation. D.6 proves

existence and uniqueness of solutions to (D.77). The next section will discuss solvers for the discrete

time-periodic adjoint equations in (D.77).

D.4.2 Numerical Solver: Matrix-Free Krylov Method

As the adjoint equations corresponding to the fully discrete time-periodic partial di↵erential equation

are linear, this section will consider matrix-free Krylov methods to solve them. Alternatively, any

of the methods discussed in Section D.3.1 could be used.

Define �(0)(�
N

t

;µ, t) as the solution of the linear, backward evolution equations
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which can be directly evolved, backward-in-time. Similar to Section D.3.1 this constitutes a notation

overload since �(0) 2 RNu is the initial solution of the adjoint equations corresponding to the fully

discrete periodic partial di↵erential equations, as well as the linear function that takes a state �
N

t

to �(0)(�
N

t

;µ). Then, �(0)(�
N

t

;µ) is the initial solution of (D.77) if the following linear equation
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is satisfied
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This is a linear system of equations of the form, Ax = b where

A =
@�(0)

@�
N

t

� I. (D.81)

The columns of the linear operator A can be formed by considering perturbations of (D.79) with

respect to the final state �
N

t

. Di↵erentiation of (D.79) with respect to �
N

t

leads to the adjoint

sensitivity equations
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Similar to the situation for the primal problem, the matrix
@�(0)

@�
N

t

is an N

u

⇥ N

u

dense matrix

that requires N

u

linear evolution equations to form. As this is impractical for large problems, a

matrix-free Krylov method is used to solve (D.80), which only requires matrix-vector products of

the form

Av =
@�(0)

@�
N

t

v � v. (D.83)

The first term in this matrix-vector product can be computed directly by considering the adjoint

sensitivity equations in a given direction v
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The equations in (D.84) can be solved for
@�(0)

@�
N

t

· v at the cost of one linear evolution solution for

each v. The adjoint sensitivity equations in (D.84) are independent of the quantity of interest, F . If

there are multiple quantities of interest, fast multiple right-hand side solvers [182, 38, 79] could be

used to solve Ax = b as the matrix A will be fixed and only the right-hand side varied. Furthermore,

the adjoint sensitivity equations in (D.84) and the adjoint equations in (D.79) are identical, with the
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exception of the terms
@F

@u(n�1)

and
@F

@k
(n)

i

. Therefore, the adjoint sensitivities are less expensive to

compute than the adjoint states and the savings becomes substantial when the number of parameters

in µ is large since
@F

@u(n�1)

and
@F

@k
(n)

i

become expensive to compute. Algorithm 23 below details

the use of a matrix-free GMRES method to solve (D.80) with matrix-vector products defined by

(D.84).

Algorithm 23 GMRES for Solution of Fully Discrete, Time-Periodic Adjoint PDE

Input: Initial guess for periodic adjoint final condition, �
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t

,0

; parameter configuration, µ; periodic

primal solution, u(0)
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v
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� v
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as the solution of the adjoint sensitivity equations (D.84)
6: for i = 1, . . . , j do
7: h
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= (w
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)
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v
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9: end for
10: h
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12: end for
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where e
1

is the first canonical until vector in RNu and H = {h
ij

}
1im+1,1jm

14: Update solution
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m
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=
⇥
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· · · v
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15: end while
16: Define adjoint periodic final condition
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t

) = �
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t

With the solution of the fully discrete primal and dual time-periodic problems fully specified,

from numerical discretization to solution algorithms, we close this section with an algorithm that

uses the fully discrete adjoint method to compute the gradient of the quantity of interest on the
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manifold of periodic solutions. First, the fully discrete time-periodic solution (D.52), (D.54) must be

computed, e.g., using a matrix-free Newton-Krylov method, to yield u(0)

, . . . ,u(N

t

)

,k
(1)

1

, . . . ,k(N
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s

.

Next, the corresponding fully discrete adjoint equations are defined about this periodic solution and

solved, e.g., using a matrix-free Krylov method, for �(0)

, . . . ,�(N

t

)

,
(1)

1

, . . . ,(N

t

)

s

. Finally, (D.78)

is used to reconstruct the desired gradient
dF

dµ
. This procedure is summarized in Algorithm 24.

Algorithm 24 Gradients on Manifold of Time-Periodic Solutions of PDEs

Input: Parameter configuration, µ, and fully discrete quantity of interest,

F (u(0)

, . . . ,u(N

t

)

,k
(1)

1

, . . . ,k
(N

t

)

s

)

Output: Gradient,
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dµ
, on manifold of time-periodic solutions

1: For parameter µ, compute time-periodic solution of fully discrete PDE in (D.52), (D.54), e.g.,
using the Newton-Krylov shooting method in Algorithm 22
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), compute adjoint solution of fully
discrete time-periodic PDE in (D.77), e.g., using GMRES shooting method in Algorithm 23
with matrix-vector products computed from the backward evolution of the adjoint sensitivity
equations in (D.84)
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3: Reconstruct
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dµ
using dual variables according to (D.78)

D.4.3 Generalized Reduced-Gradient Method for PDE Optimization with

Time-Periodicity Constraints

Consider the fully discrete time-dependent PDE-constrained optimization problem
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where F is a fully discrete output functional of the partial di↵erential equation and c is a vector

of such output functionals. The nested or Generalized Reduced-Gradient (GRG) approach to solve

(D.85) explicitly enforces the PDE constraint at each optimization iteration. The implicit function

theorem states that the solution of the discretized PDE, can be considered an implicit function of the
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parameter µ, i.e., u(n) = u(n)(µ) and k
(n)

i

= k
(n)

i

(µ). Strict enforcement of the discretized partial

di↵erential equation allows the PDE variables and equations to be removed from the optimization

problem

minimize
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(D.86)

To solve this optimization problem using gradient-based techniques, the terms
dF

dµ
and

dc

dµ
—

gradients of quantities of interest along the manifold of solutions of the PDE—are required. Depend-

ing on the relative number of variables in µ to the number of constraints in c, the direct or adjoint

method can be e�ciently used to compute these gradients without relying on finite di↵erences.

Now consider the optimization problem in (D.85) with the time-periodicity constraint added
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Strict enforcement of the time-periodic partial di↵erential equations leads to an application of the

implicit function theorem, similar to that above, i.e., u(n) = u(n)(µ) and k
(n)

i

= k
(n)

i

(µ), where u(n)

and k
(n)

i

are the time-periodic solution of the discrete partial di↵erential equations. This results in

an optimization problem identical to that in (D.86) with this new definition of u(n)(µ) and k
(n)

i

(µ).

The novel periodic adjoint method, derived in Section D.4.1, can be used to compute gradients along

the manifold of time-periodic solutions of the fully discrete PDE, i.e.
dF

dµ
and

dc

dµ
, for the use in

gradient-based optimization.

D.4.4 Numerical Experiment: Time-Periodic Solutions of the Compress-

ible Navier-Stokes Equations

In this section, the various solvers discussed in this document for determining primal and dual time-

periodic solutions of partial di↵erential equations are compared for a flapping airfoil in an isentropic,

viscous flow. The stability of the periodic orbit is verified by performing an eigenvalue analysis of
@u(N

t

)

@u
0

. The section closes with validation of the adjoint method, introduced for e�cient gradient

computation of quantities of interest, against a second-order finite di↵erence approximation.

Consider the NACA0012 airfoil in Figure D.27 immersed in an isentropic, viscous flow with

Reynolds and Mach number set to 1000 and 0.2, respectively. The kinematic motion of the foil is
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Figure D.17: Trajectories of h(µ, t) and ✓(µ, t) that define the motion of the airfoil in Figure D.27
and will be used to study primal and dual time-periodic solvers.

parametrized with a single Fourier mode, i.e.,
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The vector of parameters is fixed for the remainder of this section
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and corresponds to the motion in Figure D.17 with period T = 5. The mapping G(X, t) from the

fixed reference domain V to the physical domain ⌦(µ, t) takes the form of a parametrized rigid body

motion

G(X, t) = v(µ, t) +Q(µ, t)(X � x
0

) + x
0

, (D.90)

where x
0

is the location of pitching axis in the reference configuration (the 1/3 chord) and

Q(µ, t) =

"
cos ✓(µ, t) sin ✓(µ, t)

� sin ✓(µ, t) cos ✓(µ, t)

#
v(µ, t) =

"
0

h(µ, t)

#
.

The isentropic Navier-Stokes equations are discretized with the discontinuous Galerkin scheme of

Section D.1.2 using 978 triangular p = 3 elements. No-slip boundary conditions are imposed on

the airfoil wall and characteristic free-stream boundary conditions at the far-field. The temporal

discretization uses a third-order diagonally implicit Runge-Kutta solver with 100 equally spaced

steps to discretize a single period of the motion. The airfoil and surrounding fluid vorticity field

are shown in Figures D.18 and D.19 with the flow field initialized from steady-state flow and the

time-periodic initial condition, respectively. It is clear that the flow in Figure D.19 will seamlessly

transition between periods. The initialization from the steady-state solution in Figure D.18 will

introduce non-physcial transients into the flow as discussed in the next section.

First, the solvers introduced in Section D.3.1 are compared for di↵erent initial guesses for the

time-periodic initial condition. In the absence of any a priori information regarding the time-periodic



APPENDIX D. UNSTEADY, PERIODIC PDE-CONSTRAINED OPTIMIZATION 286

Figure D.18: Flow vorticity around heaving/pitching airfoil for simulation initialized from steady
state flow. Non-physical transients are introduced at the beginning of the time interval that re-
sult in non-trivial errors in integrated quantities of interests. Snapshots taken at times t =
0.0, 1.0, 2.0, 3.0, 4.0, 5.0.

Figure D.19: Time-periodic flow vorticity around heaving/pitching airfoil, i.e., initialized from pe-
riodic initial condition. The time-periodic initial condition ensures transients are not introduced
at the beginning of the simulation; the result is a seamless transition between periods, as would
be experienced in-flight, and trusted integrated quantities of interest. Snapshots taken at times
t = 0.0, 1.0, 2.0, 3.0, 4.0, 5.0.
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Figure D.20: Convergence comparison for numerical solvers for fully discrete time-periodically con-
strained partial di↵erential equations (D.52), (D.54), nonlinearly preconditioned with m fixed point
iterations. Left: m = 0, middle: m = 1, right: m = 5. Solvers: fixed point iteration ( ), steep-
est decent ( ), L-BFGS ( ), Newton-GMRES: � = 10�2 ( ), � = 10�3 ( ), � = 10�4

( ), where � is the GMRES convergence tolerance. The optimization algorithms (steepest decent
and L-BFGS) were not included in the m = 0 study due to lack of convergence issues.

solution, a reasonable initial guess is the steady-state flow. Since the problem under consideration

is being forced by an input—the periodic motion of the foil—a mechanism for improving the initial

guess is to simulate the flow field for m periods of the foil motion and use the final state of the

final period as the initial guess. This corresponds to using m iterations of fixed point iteration

(Algorithm 21) as a nonlinear preconditioner for the nonlinear system of equations (D.56) that

enforces time-periodicity of the flow.

Figure D.20 and Table D.6 compare the solvers under consideration for di↵erent levels of nonlinear

preconditioning. Regardless of nonlinear preconditioning, the Newton-GMRES solver converges most

rapidly for a range of linear system tolerances from 10�2 to 10�4 and the optimization algorithms

(steepest decent and L-BFGS) converge most slowly. In fact, without any nonlinear preconditioning

the optimization algorithms fail to make progress toward the optimal solution and were not included

in the figure. Nonlinear preconditioning helps the Newton-GMRES algorithm most substantially,

particularly with m = 5, as this appears to place the initial guess close enough to the solution that

quadratic convergence is obtained from the outset. This causes the number of Newton iterations to

be reduced from 8 or 9 to 3 or 4. From Table D.6, this does not save many primal solvers—since

the nonlinear preconditioning requires primal solves—but requires far fewer linear system solves and

therefore fewer sensitivity solutions. Figure D.21 isolates the Newton-GMRES solver (for m = 0, i.e.,

the case without preconditioning) to highlight convergence rates for di↵erent GMRES tolerances. It

also shows the convergence of GMRES for each nonlinear iteration and each tolerance considered.

As expected, more GMRES iterations are required near convergence as it becomes more di�cult to

reduce the linear residual the prescribed orders of magnitude.



APPENDIX D. UNSTEADY, PERIODIC PDE-CONSTRAINED OPTIMIZATION 288

T
ab

le
D
.6
:
T
ab

le
su
m
m
ar
iz
in
g
p
er
fo
rm

an
ce

of
nu

m
er
ic
al

so
lv
er
s
fo
r
fu
ll
y
d
is
cr
et
e
ti
m
e-
p
er
io
d
ic

p
ar
ti
al

d
i↵
er
en
ti
al

eq
u
at
io
n
s,

co
n
si
d
er
in
g

n
on

li
n
ea
r
p
re
co
n
d
it
io
n
in
g
vi
a
m

fi
xe
d
p
oi
nt

it
er
at
io
n
s.

m
=

0
� � u

(
N

t

)

�
u
0

� � 2

P
ri
m
al

S
ol
ve
s
(D

.5
5)

S
en
si
ti
vi
ty

S
ol
ve
s
(D

.6
3)

A
d
jo
in
t
S
ol
ve
s
(D

.2
5)

F
ix
ed

P
oi
nt

It
er
at
io
n

8.
10
e-
07

90
0

0
N
ew

to
n
-K

ry
lo
v
(1
0�

2

)
4.
41
e-
08

9
12
8

0
N
ew

to
n
-K

ry
lo
v
(1
0�

3

)
1.
60
e-
08

8
15
6

0
N
ew

to
n
-K

ry
lo
v
(1
0�

4

)
4.
85
e-
10

8
22
0

0

m
=

1
� � u

(
N

t

)

�
u
0

� � 2

P
ri
m
al

S
ol
ve
s
(D

.5
5)

S
en
si
ti
vi
ty

S
ol
ve
s
(D

.6
3)

A
d
jo
in
t
S
ol
ve
s
(D

.2
5)

F
ix
ed

P
oi
nt

It
er
at
io
n

8.
10
e-
07

90
0

0
S
te
ep

es
t
D
ec
en
t

6.
09
e+

00
12
1

0
12
1

L
-B

F
G
S

1.
36
e+

00
12
1

0
12
1

N
ew

to
n
-K

ry
lo
v
(1
0�

2

)
1.
96
e-
08

8
10
4

0
N
ew

to
n
-K

ry
lo
v
(1
0�

3

)
2.
69
e-
08

7
11
6

0
N
ew

to
n
-K

ry
lo
v
(1
0�

4

)
1.
77
e-
09

7
14
9

0

m
=

5
� � u

(
N

t

)

�
u
0

� � 2

P
ri
m
al

S
ol
ve
s
(D

.5
5)

S
en
si
ti
vi
ty

S
ol
ve
s
(D

.6
3)

A
d
jo
in
t
S
ol
ve
s
(D

.2
5)

F
ix
ed

P
oi
nt

It
er
at
io
n

8.
10
e-
07

90
0

0
S
te
ep

es
t
D
ec
en
t

4.
65
e-
01

12
5

0
12
5

L
-B

F
G
S

7.
40
e-
02

12
5

0
12
5

N
ew

to
n
-K

ry
lo
v
(1
0�

2

)
3.
50
e-
08

10
92

0
N
ew

to
n
-K

ry
lo
v
(1
0�

3

)
7.
18
e-
08

9
88

0
N
ew

to
n
-K

ry
lo
v
(1
0�

4

)
5.
61
e-
09

9
12
1

0



APPENDIX D. UNSTEADY, PERIODIC PDE-CONSTRAINED OPTIMIZATION 289

0 2 4 6 8
10�10

10�7

10�4

10�1

102

iterations (primal solves)

� � u
(
N

t

)

�
u
0

� � 2

0 20 40
10�10

10�7

10�4

10�1

102

iterations (linearized solves)

kJ
x
�
r
k 2

Figure D.21: Linear and nonlinear convergence of Newton-GMRES method for determining fully
discrete time-periodic solutions with various linear system tolerances, �, i.e., kJx�Rk < �, where
r and J are defined in (D.61) and (D.62). Tolerances considered: � = 10�2 ( ), � = 10�3 ( ),
� = 10�4 ( ).

The time history of the instantaneous quantities of interest in Figure D.22 illustrate the non-

physical transients that result from initializing the flow with the steady-state solution. While the

transients mostly vanish after a single Newton iteration, the trajectories of these quantities of inter-

est do not coincide with those of the true time-periodic solution. The error between the integrated

quantities of interest—W and J

x

—at the time-periodic flow versus intermediate iterations is shown

in Figure D.23. Comparing Figures D.20 and D.23, it can be seen that a tolerance of 10�8 on
��u(N

t

) � u(0)

��
2

leads to an accuracy of 10�6 in the integrated quantities of the time-periodic solu-

tion.

Next, the stability of the periodic orbit is verified by considering the eigenvalues of
@u(N

t

)

@u
0

,

0 2 4

�4

�2

0

time

P
h

0 2 4
�1.5
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�0.5

0

time

F
h

x

Figure D.22: Time history of power, Fh

x

(u,µ, t), and x-directed force, Ph(u,µ, t), after k Newton-
GMRES iterations (linear system convergence tolerance � = 10�2) starting from steady-state.
Values of k: 0 ( ), 1 ( ), and 8 ( ).
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Figure D.23: Convergence of fully discrete quantities of interest to their values at the time-periodic
solution, W

⇤ and J

⇤
x

, for various solvers, without nonlinear preconditioning. Solvers: Newton-
GMRES: � = 10�2 ( ), � = 10�3 ( ), � = 10�4 ( ), where � is the GMRES convergence
tolerance.

evaluated at the time-periodic solution. As discussed in Section D.3.2 and many prior works [47, 112],

the periodic orbit is stable if all eigenvalues of this matrix have modulus less than unity. Figure D.24

shows that the 200 eigenvalues of largest modulus lie within the unit circle in the complex plane;

thus, the periodic orbit is stable for this problem.

�1 �0.5 0 0.5 1
�1

�0.5

0

0.5

1

<(�)

=(
�
)

Figure D.24: First 200 eigenvalues ( ) of @u

(N

t

)

@u

0

—evaluated at periodic solution—with largest mag-
nitude. All eigenvalues lie in unit circle, thus the periodic orbit is stable.

This completes the discussion of the primal time-periodic problem and attention is turned to the

dual, or adjoint, problem. First, a brief comparison of two potential solvers—fixed point iteration

and GMRES—for the periodic adjoint equation is provided. In contrast to the primal problem, there

is a less pronounced di↵erence between the convergence of fixed point iteration and the Krylov solver
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Figure D.25: GMRES convergence for determining solution of adjoint equations corresponding to
fully discrete time-periodic partial di↵erential equation, i.e., a linear two-point boundary value prob-

lem. A defined in (D.81), b
1

=
@W

@u(N

t

)

, and b
2

=
@J

x

@u(N

t

)

from (D.80), where W is fully discrete

approximation of the total work done by fluid on airfoil and J

x

is the x-directed impulse. Solvers:
fixed point iteration ( ) and GMRES ( ). The linearization is performed about the time-
periodic solution obtained with Newton-Krylov (� = 10�4) method.

in the dual problem. Figure D.25 shows the convergence history for two di↵erent right-hand sides

of Ax = b, each corresponding to the adjoint method for a di↵erent quantity of interest. However,

it should be noted that the iterations for the GMRES solver are cheaper than those of the fixed

point solver as the terms
@F

@µ
—which may be expensive if µ is a large vector—are not computed.

Therefore, the GMRES algorithm is superior to fixed point iterations as there are fewer required

iterations, each of which is cheaper.

Finally, the adjoint method for computing gradients of quantities of interest on the manifold of

time-periodic solutions of the partial di↵erential equations is verified against a second-order finite

di↵erence approximations. The finite di↵erence approximation to gradients on the aforementioned

manifold requires finding the time-periodic solution of the governing equations at perturbations about

the nominal parameter configuration in (D.89). Figure D.26 shows the relative error between the

gradients computed via the adjoint method in Algorithm 24 to this finite di↵erence approximation

for a sweep of finite di↵erence intervals, ⌧ . To realize the sub-10�6 finite di↵erence errors in the

time-periodic gradient, tolerances of 10�12 were used for the primal and dual time-periodic solutions.

As expected, the error starts to increase after ⌧ drops too small due to the trade-o↵ between finite

di↵erence accuracy and round-o↵ error.

Given this exposition on solvers for time-periodically constrained partial di↵erential equations,

we turn our attention to deriving the corresponding fully discrete adjoint equations.
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Figure D.26: Verification of periodic adjoint-based gradient with second-order centered finite dif-
ference approximation, for a range of finite intervals, ⌧ . The computed gradient match the finite
di↵erence approximation to nearly 7 digits before round-o↵ errors degrade the accuracy.

Table D.7: Comparison of non-zero derivatives of total energy, W , and x-impulse, J
x

, computed
with the adjoint method and a second-order finite di↵erence approximation with step size ⌧ = 10�6.

@W

@A

h

@W

@!

h

@W

@A

✓

@W

@c

✓

Adjoint -2.30919016e+01 -2.593579090e+01 -7.99568107e+00 5.881595017e-01
Finite di↵erence -2.30919013e+01 -2.593579395e+01 -7.99568151e+00 5.881594917e-01

@J

x

@A

h

@J

x

@!

h

@J

x

@A

✓

@J

x

@c

✓

Adjoint -1.85436790e-01 -1.029830753e-01 6.72970822e+00 1.270106907e-02
Finite di↵erence -1.85436774e-01 -1.029834126e-01 6.72970891e+00 1.270112956e-02
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D.4.5 Numerical Experiment: Energetically Optimal Flapping with Thrust

and Time-Periodicity Constraints

This section will apply the novel, fully discrete, periodic adjoint method to solve an optimal con-

trol problem governed by the time-periodically constrained isentropic compressible Naiver-Stokes

equations. The system of PDEs is discretized using a nodal discontinuous Galerkin (DG) method

on unstructured meshes of triangles, with polynomial degrees 3 within each element. The viscous

fluxes are chosen according to the compact DG method [150] method, and our implementation

is fully implicit with exact Jacobian matrices and a range of parallel iterative solvers [153]. The

resulting semi-discrete system has the form of our general system of ODEs (D.13). All partial

derivatives of the semi-discrete governing equations and corresponding quantities of interest, namely
@r

@u
,

@r

@µ
,

@f

h

@u
,

@f

h

@µ
are computed via automatic symbolic di↵erentiation at the element-level with

the MAPLE software [126] and subsequent assembly. The semi-discrete quantity of interest f

h

is

defined as the approximation of

Z

�(µ, t)

f(U , µ, t) dS in (D.51) using the DG shape functions and

required, along with the temporal discretization scheme, to compute the discrete output functional

F in (D.53). Additional details regarding computation of the partial derivatives with respect to µ

in the case of a parametrized, deforming domain are provided in Section D.2.4 and [211].

x(t)
y(t)

θ(t)

l
l/3

Figure D.27: Kinematic description of body under consideration, NACA0012 airfoil (right).

The remainder of this section will consider the time-periodic solution and optimization of a

flapping NACA0012 airfoil, shown in Figure D.27. Two quantities of interest that will be considered

are the total work exerted by the fluid on the airfoil, W, and the impulse in the x-direction imparted

on the airfoil by the fluid, J
x

, which take the form

W(U ,µ) =

Z
T

0

Z

�
f(U ,µ, t) ·ẋ dS dt and J

x

(U ,µ) =

Z
T

0

Z

�
f(U ,µ, t) ·e

1

dS dt (D.91)

In this case, � is the surface of the airfoil, e
1

2 Rn

sd is the 1st canonical unit vector, f(U ,µ, t) 2 Rn

sd

is the instantaneous force that the fluid exerts on the airfoil, and ẋ is the pointwise velocity of airfoil.

The solver-consistent discretization, discussed in Section 2.1.4 and [211], of these quantities results in

the fully discrete approximationsW (u(0)

, . . . ,u(N

t

)

,k
(1)

1

, . . . ,k
(N

t

)

s

,µ) and J

x

(u(0)

, . . . ,u(N

t

)

,k
(1)

1

, . . . ,k
(N

t

)

s

,µ).
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The instantaneous quantities of interest corresponding to those in (D.91) are the power and x-

directed force the fluid exerts on the airfoil, which take the form

P(U ,µ, t) =

Z

�
f(U ,µ, t) · ẋ dS and F

x

(U ,µ, t) =

Z

�
f(U ,µ, t) · e

1

dS.

Define Ph(u,µ, t) and Fh

x

(u,µ, t) as the solver-consistent semi-discretization of these instantaneous

quantities of interest.

In this section, the periodic adjoint method is used to solve an optimal control problem with time-

periodicity constraints using gradient-based optimization techniques. The optimization problem is

to determine the energetically optimal flapping motion of the NACA0012 airfoil in isentropic, viscous

flow—over a single representative, in-flight period—such that the x-directed impulse on the body is

identically 0. The continuous form of the optimal control problem is given as

minimize
U , µ

W(U ,µ)

subject to J
x

(U ,µ) = 0

U(x, 0) = U(x, T )

@U

@t

+r · F (U , rU) = 0 in ⌦(µ, t).

(D.92)

After spatial and temporal discretization via the high-order discontinuous Galerkin and diagonally

implicit Runge-Kutta schemes in Section 2.1.3, the continuous optimization problem in (D.92) is

replaced with its fully discrete counterpart

minimize
u

(0)

, ..., u

(N

t

)2RNu
,

k

(1)

1

, ..., k

(N

t

)

s

2RNu
,

µ2RNµ

W (u(0)

, . . . , u(N

t

)

, k
(1)

1

, . . . , k(N

t

)

s

, µ)

subject to J

x

(u(0)

, . . . , u(N

t

)

, k
(1)

1

, . . . , k(N

t

)

s

, µ) = 0

u(0) = u(N

t

)

u(n) = u(n�1) +
sX

i=1

b

i

k
(n)

i

Mk
(n)

i

= �t

n

r
⇣
u
(n)

i

, µ, t

n�1

+ c

i

�t

n

⌘
.

(D.93)

The physical and numerical setup are identical to that in Section D.4.4 with the exception of the

kinematic parametrization. Instead of a single Fourier mode, the kinematic motion is parametrized

by cubic splines with 5 equally spaced knots and boundary conditions that enforce

h(µ, t) = �h(µ, t+ T/2)

✓(µ, t) = �✓(µ, t+ T/2)
(D.94)

where t is time and T = 5 is the fixed period of the flapping motion. The vector of parameters,
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µ—used as optimization parameters—are the knots of the cubic splines. This leads to N

µ

= 8 pa-

rameters; 4 knots for the motion of h(µ, t) and ✓(µ, t)2. Notice that (D.94) enforces the trajectories

of h(µ, t) and ✓(µ, t) in [T/2, T ] to be the mirror of those in [0, T/2], which implicitly enforces

periodicity with period T . The mapping G from the reference to physical domain required for the

DG-ALE formulation is defined in (D.90) with the new definition of h(µ, t) and ✓(µ, t) with periodic

cubic splines.

The optimization problem in (D.93) is solved using the extension of the nested framework for

PDE-constrained optimization, or generalized reduced-gradient method, introduced in Section D.4.3.

The solvers introduced in Section D.3.1 will be used to determine the time-periodic flow around the

airfoil. Given the results in the previous section, the Newton-GMRES method with a tolerance of

� = 10�3, warm-started from m = 5 fixed-point iterations is employed. The flow is deemed to be

periodic if ���u(0) � u(N

t

)

���
2

 10�10

. (D.95)

The periodic flow is used to compute quantities of interest—the total work and x-impulse. Then,

the periodic adjoint method will be used to compute gradients of the quantities of interest along

the manifold of time-periodic solutions of the governing equation. GMRES is used to solve the dual

linear, periodic adjoint equations with a tolerance of � = 10�4. Since there are two quantities of

interest, two periodic adjoint solves must be performed at each optimization iteration. Finally, the

quantities of interest and their gradients are passed to an optimization solver—SNOPT [70] is used

in this work—and progress is made toward a local minimum.

The initial condition for the optimization solver is shown in Figure D.28; the heaving motion is

a sinusoid with amplitude 1 and there is no pitch—pure heaving motion. The vorticity snapshots in

Figure D.31 show this motion induces a fairly violent flow with shedding vortices. The corresponding

time history of the power, Ph(u,µ, t), and x-directed force, Fh

x

(u,µ, t), imparted onto the airfoil

by the fluid are shown in Figure D.29. After 16 periodic optimization iterations, the first-order

optimality conditions have been reduced by two orders of magnitude. From Figure D.28, the optimal

airfoil motion is a combination of heaving and pitching. From the initial guess, the amplitude of

the heaving motion has been reduced by more than a factor of two and the pitching amplitude

increased to 18.7�. The convergence history for the optimization solver is given in Figure D.30. At

the optimal solution, the total work required to perform the flapping motion is more than an order of

magnitude smaller than at the initial guess (pure heaving). Figures D.31 and D.32 show snapshots

of the flow in time at the initial, purely heaving motion and the optimal flapping motion. From

these figures, it is clear that the flow corresponding to the optimal motion is relatively benign with

no shedding vortices, which explains the reduction in required work. The e�ciency of combined

pitching and heaving has been repeatedly observed experimentally [191, 162, 158] and the phase

angle of approximately 90� between pitching and heaving, as observed in Figure D.28, has also been

observed in experiments [191, 162, 158, 148]. The specific pitching and heaving amplitudes were

2There are only 4 degrees of freedom since the mirror boundary condition in (D.94) prescribes the value of one of
the knots given the other four.
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Figure D.28: Trajectories of h(µ, t) and ✓(µ, t) at initial guess ( ) and optimal solution ( )
for optimization problem in (D.93).
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Figure D.29: Time history of the power, Ph(u,µ, t), and x-directed force, Fh

x

(u,µ, t), imparted onto
foil by fluid at initial guess ( ) and optimal solution ( ) for optimization problem in (D.93).

determined by the optimizer such that the thrust constraint is satisfied; if the thrust requirement

was increased, these magnitudes would increase and result in a more violent flow field, eventually

leading to vortex shedding [191, 211].
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Figure D.30: Convergence of quantities of interest, W and J

x

, with optimization iteration. Each
optimization iteration requires a periodic flow computation and its corresponding adjoint to evaluate
the quantities of interest and their gradients.

Figure D.31: Trajectory of airfoil and flow vorticity at initial guess for optimization (pure heaving
motion, see Figure D.28). Snapshots taken at times t = 0.0, 1.0, 2.0, 3.0, 4.0, 5.0.
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Figure D.32: Trajectory of airfoil and flow vorticity at energetically optimal, zero-impulse flapping
motion (see Figure D.28). Snapshots taken at times t = 0.0, 1.0, 2.0, 3.0, 4.0, 5.0.

D.5 Conclusion

This appendix discussed a fully discrete framework for computing time-periodic solutions of partial

di↵erential equations. The discussion included the spatio-temporal discretization of the governing

equations and a slew of time-periodic shooting solvers, including optimization-based and Newton-

Krylov methods. These shooting methods consider the state at the final time to be a nonlinear

function of the initial condition and solve u(N

t

)(u
0

) = u
0

using Newton-Raphson iterations or

optimization techniques to minimize its norm. The linear system of equations, arising in the Newton-

Raphson iterations, were solved using matrix-free GMRES with matrix-vector products computed

as the solution of the linearized, sensitivity equations (with appropriate initial condition). The

adjoint method was used to compute the gradients in the gradient-based optimization solvers. These

periodic solvers were used to compute the time-periodic flow around a flapping airfoil in isentropic,

compressible, viscous flow, and their performance compared. The Newton-Krylov solver exhibits

superior convergence to the optimization-based shooting methods, even when inexact tolerances

were used on the linear system solves, and fully leverages quality starting guesses. An eigenvalue

analysis is provided to show the periodic orbit of the flapping problem is stable.

The main contribution of the document is the derivation of the adjoint equations corresponding

to the fully discrete time-periodically constraint partial di↵erential equations. As opposed to the

backward-in-time evolution equations, these equations constitute a linear, two-point boundary value

problem that is provably solvable. The corresponding adjoint method was introduced for computing

exact gradients of quantities of interest along the manifold of time-periodic solutions of the discrete

conservation law. The gradients were verified against a second-order finite di↵erence approxima-

tion. These quantities of interest and their gradients were used in the context of gradient-based
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optimization to solve an optimal control problem with time-periodicity constraints, among others.

In particular, the energetically optimal flapping motion of a 2D airfoil in time-periodic, isentropic,

compressible, viscous flow that generates a prescribed time-averaged thrust is sought. The proposed

framework improves the nominal flapping motion by reducing the flapping energy nearly an order

of magnitude and exactly satisfies the thrust constraint.

While this work is an initial step toward problems of engineering and scientific relevance, addi-

tional development will be required to solve truly impactful problems. One extension of this work is

the development of robust solvers for determining nearly time-periodic solutions of problems where

a time-periodic solution does not exist, but exhibits quasi-cyclic behavior. An example of such a

problem is the 3D turbulent flow around periodically driven bodies such as helicopter and windmill

blades. Another extension will be the development of faster numerical solvers to reduce the cost

of computing time-periodic solutions or solving optimization problems with time-periodicity con-

straints. For example, economical, matrix-free preconditioners could result in non-trivial speedups

for the Newton-Krylov time-periodicity solver and Krylov solver for the periodic adjoint equations.

Model order reduction techniques could dramatically reduce the cost of computing the solution of

the primal partial di↵erential equations, and consequently the entire time-periodic solver.

D.6 Existence and Uniqueness of Solutions of the Adjoint

Equations of the Fully Discrete, Time-Periodically Con-

strained Partial Di↵erential Equations

This section proves existence and uniqueness of solutions of the adjoint equations of the fully dis-

crete, time-periodically constrained partial di↵erential equation. The strategy is to show the linear

operator that encapsulates them is the transpose of the linear operator that defines the fully discrete,

sensitivity equations, which is assumed non-singular at a time-periodic solution.

Consider the initial-value problem (D.55), with the initial condition parametrized by µ,

u(0) = u
0

(µ)
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The fully discrete adjoint equations corresponding to the primal equation in (D.96) and the discrete
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and the gradient of the quantity of interest can be reconstructed as
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where ⌫(n) and ⌧
(n)

i

are the Lagrange multipliers. These equations can be obtained using an identical

derivation to that in Section D.4.1; see [211]. At this point, take F = vTu(N

t

) and µ = u
0

for a

fixed, arbitrary vector v 2 RNu . For this selection of F and µ, the above equations reduce to
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and
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dµ
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The equations in (D.99) defining ⌫(0) are identical to those in (D.79) defining
@�(0)
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N
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, which leads to

the relation
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for any v. Thus, it can be concluded that
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Since the Jacobian of the time-periodic residual,
@u(N

t

)

@u
0

� I, is non-singular at a time-periodic

solution, the matrix defining the linear, two-point boundary value problem,
@�(0)

@�
N

t

� I must also

be non-singular. Thus, a solution of the linear, two-point boundary value problem exists and is

unique.
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[16] Jernej Barbič and Doug L James. Real-time subspace integration for St. Venant-Kirchho↵

deformable models. In ACM transactions on graphics (TOG), volume 24, pages 982–990.

ACM, 2005.

[17] Maxime Barrault, Yvon Maday, Ngoc Cuong Nguyen, and Anthony T Patera. An empirical

interpolation method: application to e�cient reduced-basis discretization of partial di↵erential

equations. Comptes Rendus Mathematique, 339(9):667–672, 2004.

[18] Volker Barthelmann, Erich Novak, and Klaus Ritter. High dimensional polynomial interpola-

tion on sparse grids. Advances in Computational Mathematics, 12(4):273–288, 2000.

[19] Ted Belytschko, Wing Kam Liu, Brian Moran, and Khalil Elkhodary. Nonlinear Finite Ele-

ments for Continua and Structures. John wiley & sons, 2013.

[20] Martin Philip Bendsoe and Ole Sigmund. Topology Optimization: Theory, Methods, and

Applications. Springer Science & Business Media, 2013.

[21] Gal Berkooz, Philip Holmes, and John L Lumley. The proper orthogonal decomposition in the

analysis of turbulent flows. Annual Review of Fluid Mechanics, 25(1):539–575, 1993.

[22] A Borz̀ı, V Schulz, C Schillings, and G Von Winckel. On the treatment of distributed uncer-

tainties in PDE-constrained optimization. GAMM-Mitteilungen, 33(2):230–246, 2010.

[23] Alfio Borz̀ı. Multigrid and sparse-grid schemes for elliptic control problems with random

coe�cients. Computing and Visualization in Science, 13(4):153–160, 2010.

[24] Alfio Borz̀ı and G von Winckel. Multigrid methods and sparse-grid collocation techniques

for parabolic optimal control problems with random coe�cients. SIAM Journal on Scientific

Computing, 31(3):2172–2192, 2009.



BIBLIOGRAPHY 303

[25] Matthew Brand. Incremental singular value decomposition of uncertain data with missing

values. In European Conference on Computer Vision, pages 707–720. Springer, 2002.

[26] Matthew Brand. Fast low-rank modifications of the thin singular value decomposition. Linear

Algebra and its Applications, 415(1):20–30, 2006.

[27] Martin Dietrich Buhmann. Radial basis functions. Acta Numerica 2000, 9:1–38, 2000.

[28] T. Bui-Thanh, K. Willcox, and O. Ghattas. Model reduction for large-scale systems with high-

dimensional parametric input space. SIAM Journal on Scientific Computing, 30(6):3270–3288,

2008.

[29] Hans-Joachim Bungartz and Michael Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.

[30] Yanzhao Cao, MY Hussaini, and HONGTAO Yang. Numerical optimization of radiated engine

noise with uncertain wavenumbers. International Journal of Numerical Analysis and Modeling,

4(3-4):392–401, 2007.

[31] Kevin Carlberg, Charbel Bou-Mosleh, and Charbel Farhat. E�cient non-linear model reduc-

tion via a least-squares petrov–galerkin projection and compressive tensor approximations.

International Journal for Numerical Methods in Engineering, 86(2):155–181, 2011.

[32] Kevin Carlberg and Charbel Farhat. A low-cost, goal-oriented compact proper orthogonal

decompositionbasis for model reduction of static systems. International Journal for Numerical

Methods in Engineering, 86(3):381–402, 2011.

[33] Kevin Thomas Carlberg. Model reduction of nonlinear mechanical systems via optimal projec-

tion and tensor approximation. PhD thesis, Stanford University, 2011.

[34] Richard G Carter. Numerical optimization in Hilbert space using inexact function and gradient

evaluations. 1989.

[35] Richard G Carter. On the global convergence of trust region algorithms using inexact gradient

information. SIAM Journal on Numerical Analysis, 28(1):251–265, 1991.

[36] Richard G Carter. Numerical experience with a class of algorithms for nonlinear optimization

using inexact function and gradient information. SIAM Journal on Scientific Computing,

14(2):368–388, 1993.

[37] ASL Chan. The design of Michell optimum structures. Technical report, College of Aeronautics

Cranfield, 1960.

[38] Tony F Chan and Wing Lok Wan. Analysis of projection methods for solving linear systems

with multiple right-hand sides. SIAM Journal on Scientific Computing, 18(6):1698–1721, 1997.

[39] Peter C Chang and S Chi Liu. Recent research in nondestructive evaluation of civil infrastruc-

tures. Journal of Materials in Civil Engineering, 15(3):298–304, 2003.



BIBLIOGRAPHY 304

[40] I Charpentier. Checkpointing schemes for adjoint codes: Application to the meteorological

model Meso-NH. SIAM Journal on Scientific Computing, 22(6):2135–2151, 2001.

[41] Saifon Chaturantabut and Danny C Sorensen. Nonlinear model reduction via discrete empirical

interpolation. SIAM Journal on Scientific Computing, 32(5):2737–2764, 2010.

[42] Peng Chen and Alfio Quarteroni. Weighted reduced basis method for stochastic optimal control

problems with elliptic PDE constraint. SIAM/ASA Journal on Uncertainty Quantification,

2(1):364–396, 2014.

[43] Peng Chen and Alfio Quarteroni. A new algorithm for high-dimensional uncertainty quan-

tification based on dimension-adaptive sparse grid approximation and reduced basis methods.

Journal of Computational Physics, 298:176–193, 2015.

[44] Peng Chen, Alfio Quarteroni, and Gianluigi Rozza. Multilevel and weighted reduced basis

method for stochastic optimal control problems constrained by Stokes equations. Numerische

Mathematik, pages 1–36, 2013.

[45] Jintai Chung and GM Hulbert. A time integration algorithm for structural dynamics with

improved numerical dissipation: the generalized-↵ method. Journal of applied mechanics,

60(2):371–375, 1993.

[46] Bernardo Cockburn and Chi-Wang Shu. Runge–Kutta discontinuous Galerkin methods for

convection-dominated problems. Journal of Scientific Computing, 16(3):173–261, 2001.

[47] Earl A Coddington and Norman Levinson. Theory of Ordinary Di↵erential Equations. Tata

McGraw-Hill Education, 1955.

[48] Andrew R Conn, Nicholas IM Gould, and Ph L Toint. Trust Region Methods, volume 1. SIAM,

2000.

[49] Arnaud Debussche, Marco Fuhrman, and Gianmario Tessitore. Optimal control of a stochastic

heat equation with boundary-noise and boundary-control. ESAIM: Control, Optimisation and

Calculus of Variations, 13(01):178–205, 2007.

[50] Jean-Antoine Désidéri and Ales Janka. Multilevel shape parameterization for aerodynamic

optimization: Application to drag and noise reduction of transonic/supersonic business jet.

In Proceedings of the European Congress on Computational Methods in Applied Sciences and

Engineering, ECCOMAS 2004, 2004.
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