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Abstract

A high-order accurate implicit-mesh discontinuous Galerkin framework for wave propagation in single-phase and bi-
hase solids is presented. The framework belongs to the embedded-boundary techniques and its novelty regards the spatial
iscretization, which enables boundary and interface conditions to be enforced with high-order accuracy on curved embedded
eometries. High-order accuracy is achieved via high-order quadrature rules for implicitly-defined domains and boundaries,
hilst a cell-merging strategy addresses the presence of small cut cells. The framework is used to discretize the governing

quations of elastodynamics, written using a first-order hyperbolic momentum-strain formulation, and an exact Riemann solver
s employed to compute the numerical flux at the interface between dissimilar materials with general anisotropic properties.
he space-discretized equations are then advanced in time using explicit high-order Runge–Kutta algorithms. Several two- and

hree-dimensional numerical tests including dynamic adaptive mesh refinement are presented to demonstrate the high-order
ccuracy and the capability of the method in the elastodynamic analysis of single- and bi-phases solids containing complex
eometries.
2022 Elsevier B.V. All rights reserved.
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1. Introduction

The propagation of elastic waves is the subject of many research fields in science and engineering, such as
eophysics [1], structural health monitoring [2] and metamaterials design [3,4]. In these areas, computational
ethods are well-established tools, especially when complicated geometries and/or heterogeneous materials are

nvolved. However, a common burden in computational modeling is the generation of a high-quality mesh of the
omains of analysis, which often results in the most laborious part of the development of a numerical scheme [5].

Generally, there are two approaches to meshing irregular domains. A common approach is to use body-fitted
eshes, whereby the mesh elements are generated to conform to the boundaries of the domain; this approach can

e flexible in resolving complex geometrical features but often requires a non-trivial effort to provide high-quality
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elements and may become more demanding for moving meshes or dynamic adaptive mesh refinements. On the other
hand, one may use embedded-boundary (EB) methods, sometimes also referred to as cut-cell, immersed-boundary or
fictitious-domain methods, where a curved geometry is represented on a regular background grid and the boundaries
of the grid’s cells do not need to conform to the boundaries of the geometry; this facilitates a more algorithmic
or automated approach to mesh generation, data storage and adaptive mesh refinement (AMR), see e.g. Ref. [6,7].
Additionally, in EB methods, the majority of the mesh elements are regular elements and their properties (such as
the mass matrix, its inverse and/or the interpolation operator for AMR applications) can be routinely, efficiently and
accurately handled. However, it is clear that EB methods require additional considerations to handle the presence
of curved geometries, especially if high-order accuracy is desired.

One of the most widely employed numerical techniques in solid and structural dynamics is the Finite Element
ethod (FEM) [8–10]. FEM models are typically based on body-fitted meshing strategies but have also been

eveloped in combination with EB approaches. A notable example is the Finite Cell Method (FCM) [11–14] for
wo- and three-dimensional problems. In the FCM, the integrand functions used to evaluate all elemental quantities
f a standard FEM (such as the mass matrix, the stiffness matrix or the body forces) are multiplied by an indicator
unction ψ(x), which is introduced to define the embedded domain D as ψ(x) = 1 for x ∈ D and ψ(x) = ψ0,

with 0 < ψ0 ≪ 1, for x /∈ D . This approach simplifies the mesh generation procedure but requires suitable
integration schemes, or quadrature rules, for those elements where the indicator function jumps from 1 to ψ0 and
vice versa. In Ref. [15], the authors compared different integration approaches for the FCM and concluded that the
most effective strategy to compute the integrals was to partition the elements into quadtree or octree subgrids (in
2D or 3D, respectively) suitably refined in proximity of the embedded boundaries. Indeed, the accurate evaluation
of the elemental matrices in EB methods is not a simple task, particularly in 3D. The use of high-order quadrature
rules for cut cells is one of the key aspects of the method presented in this work, as discussed shortly.

Various modifications of and/or alternatives to the FEM have been proposed in the literature to reduce the meshing
effort. A few examples are the extended FEM [16,17] and the extended Ritz method [18], whereby the space of
basis functions is enriched to automatically account for the presence of embedded boundaries or interfaces, the
Virtual Element Method (VEM) [19], which allows the use of general (also non-convex) polygonal elements, or
the Boundary Element Method (BEM) [20,21], which is based on an integral formulation and allows solving the
equations of elastodynamics by discretizing the domain’s boundaries only.

The discontinuous Galerkin (DG) method has also proven to be a very powerful and flexible numerical technique
for solving different classes of PDEs [22,23]. In a DG method, the numerical solution is represented in a space
of polynomial basis functions that are discontinuous among the mesh elements. Then, the inter-element continuity,
the interface conditions between dissimilar materials and the boundary conditions are enforced in weak sense by
introducing suitable boundary integrals. This naturally enables high-order accuracy, the treatment of generally-
shaped elements and hp AMR with conventional and non-conventional (e.g. polytopic) mesh elements [24–28].
Moreover, unlike other numerical schemes based on continuous approximations, DG methods feature block-
structured mass matrices, which are highly desirable in explicit time-stepping schemes and parallel computations as
they can be easily inverted on an element-by-element basis. Thus, thanks to its discontinuous nature, the DG method
has been employed in combination with the EB approach for high-order accurate solution of elliptic PDEs [29,30],
incompressible and compressible fluid flow [31,32], and statics of thin structures with cut-outs [33], among
many other applications. However, in the context of solving elastodynamics problems, while the literature offers
several DG schemes using body-fitted meshes, which can be classified into those derived from the second-order
hyperbolic formulations [34–36], those derived from the first-order hyperbolic formulations [37–40] and unified
approaches [41], DG methods using embedded boundaries appear less investigated. Recently, Tavelli et al. [42]
proposed a diffused-interface DG scheme for elastic waves where, similar to the FCM, the curved geometry is
represented by an indicator function that takes value 1 within the solid and 0 outside the solid; as discussed by
the authors, their scheme is high-order accurate far from the embedded boundary but only first-order accurate in
the transition region of the indicator function, i.e. in proximity of the embedded boundary. Although high-order
accurate embedded-boundary methods for the 2D scalar wave equation [43] and the 2D acoustic equation [44] have
been developed, to the best of the authors’ knowledge, a high-order accurate embedded-boundary method for elastic
wave propagation in two- and three-dimensional geometries has not before been investigated in the literature.

In this work, we present high-order accurate DG methods for elastodynamics in embedded geometries. In prior
work, these kinds of DG methods have been successfully employed to model with high-order accuracy free-
surface flow and rigid body-fluid interaction in the incompressible regime [30,31,45,46], the static response of
2
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thin multilayered structures with cut-outs [33,47,48], gas dynamics problems [32]; here, the methods are extended
to model elastic waves propagating in single- and bi-phase solids characterized by general anisotropic behavior.
Geometries are represented via a level set function, whose zero-contour denotes either the curved boundary of a
single-phase solid or the interface between the phases of a two-phase solid. A key feature of the proposed approach is
the use of high-order quadrature rules for implicitly-defined domains and boundaries stemming from the intersection
between the grids and the level set function. These quadrature rules are generated using the algorithm developed
in Ref. [49] and enable the resolution of the embedded geometry as well as the enforcement of boundary and
interface conditions with high-order accuracy. To avoid the presence of arbitrarily small cut cells, which would lead
to overly restrictive times steps and ill-conditioned discrete operators, the framework developed in this work uses a
cell-merging technique, whereby those cells with a volume fraction smaller than a user-defined threshold are merged
with their neighbors. The DG method is used to discretize the governing equations of elastodynamics in space and
an exact Riemann solver [40] is employed to compute the numerical flux at the interface between materials with
dissimilar elastic properties. Meanwhile, explicit high-order Runge–Kutta algorithms [23] serve as time integrators.

The paper is organized as follows: Section 2 introduces the momentum-strain formulation of elastodynamics for
ingle- and bi-phase solids considered in this work; Section 3 presents the implicit-mesh discontinuous Galerkin
ramework including the generation of the implicitly-defined meshes, the weak form of the governing equations and
he hp adaptive mesh refinement; Section 4 demonstrates high-order accuracy and the capability of the method by
iscussing numerical results obtained for several two- and three-dimensional wave propagation problems in single-
nd bi-phase solids. Conclusions and discussions for further developments are given in Section 5.

. Elastodynamic formulation

.1. Geometry description

The geometry of a single-phase or a bi-phase solid is described implicitly by a level set function. Consider a
-dimensional rectangle R ⊂ Rd and its outer boundary ∂R. Consider also a level set function ϕ : R → R

and let R−
≡ {x ∈ R : ϕ(x) < 0} be the portion of R where ϕ is negative, R+

≡ {x ∈ R : ϕ(x) > 0} be
he portion of R where ϕ is positive and L ≡ {x ∈ R : ϕ(x) = 0} be the zero-contour of ϕ. Moreover, let
R−

≡ {x ∈ ∂R : ϕ(x) < 0} be the portion of ∂R where ϕ is negative and ∂R+
≡ {x ∈ ∂R : ϕ(x) > 0} be the

ortion of ∂R where ϕ is positive.
Then, we define the domain Dα and the boundary ∂Dα of a solid consisting of one phase α as Dα ≡ R− and

Dα ≡ Bα∪Lα , respectively, where Bα ≡ ∂R− and Lα ≡ L . Alternatively, for a bi-phase solid consisting of two
istinct phases α and β, we define the domain and the outer boundary of the phase α as Dα ≡ R− and Bα ≡ ∂R−,
espectively, the domain and the outer boundary of the phase β as Dβ ≡ R+ and Bβ ≡ ∂R+, respectively, and
he interface between the two phases as Lα,β ≡ L .

As an example, Fig. 1a shows a level set function ϕ defined over a square, while Fig. 1b shows the domain and
he boundaries of the corresponding two-dimensional single-phase solid, and Fig. 1c shows the domains, boundaries
nd interface of the corresponding two-dimensional bi-phase solid.

.2. Governing equations

The governing equations of linear elastodynamics can be stated using different formulations, which, on the basis
f the chosen set of primary variables, include the displacement formulation, see e.g. [9,10], the velocity-stress
ormulation, see e.g. [38], or the momentum-strain formulation, see e.g. [40]. Here, we use the momentum-strain
ormulation since it allows for the consideration of materials with space-dependent constitutive properties. In the
ollowing, the governing equations, the initial conditions and the boundary conditions, are written for the domain
α and its boundary ∂Dα , but are also valid for the domain Dβ and its boundary ∂Dβ , if one replaces the subscript
with β. However, note that both subscripts α and β appear explicitly in the equations governing the interface

onditions for bi-phase solids discussed at the end of this section.
Let vα and mα denote the velocity field and the momentum field, respectively, and let γ α and σ α denote the

train field and the stress field, respectively. In Rd , upon defining Nv ≡ d and Nσ ≡ d(d + 1)/2, vα and mα
re Nv-dimensional vectors, whereas γ α and σ α are Nσ -dimensional vectors containing the strain and the stress

3
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Fig. 1. (a) Sample level set function ϕ partitioning a square into a region where ϕ is negative and a region where ϕ is positive. (b)
Single-phase solid and (c) bi-phase solid implicitly defined using the level set function of figure (a).

components, respectively, in Voigt notation [50]; for example, in 2D we have γ α = (γα11, γα22, γα12)⊺, while in 3D
e have γ = (γα11, γα22, γα33, γα23, γα13, γα12)⊺, where •

⊺ denotes the transpose of •.
The domain Dα is characterized by the density ρα , such that mα = ραvα , and by the (positive-definite) Nσ × Nσ

atrix cα of elastic stiffness constants that links the stress and strain via the general Hooke’s law σ α = cαγ α .
hen, in the momentum-strain formulation, the governing equations of elastodynamics are written as the following
rst-order hyperbolic system of PDEs

∂Uα

∂t
+
∂Fαi

∂xi
= Sα. (1)

n Eq. (1) and in the remainder of the paper, the subscript i takes values in {1, . . . , d} and implies summation when
epeated, t is the time, and xi is the i th coordinate of the d-dimensional space location vector x. Additionally, Uα ,
Fαi and Sα are NU -dimensional vectors, with NU ≡ Nv + Nσ , representing the conserved variables, the fluxes in
he i direction and the source terms, respectively; they are defined as

Uα ≡

(
mα

γ α

)
, Fαi ≡

(
−I⊺i cαγ α
−ρ−1

α I i mα

)
and Sα ≡

(
ραbα

0

)
, (2)

here b is the d-dimensional vector of body forces and the matrices I i are given by

I1 ≡

⎡⎣ 1 0
0 0
0 1

⎤⎦ and I2 ≡

⎡⎣ 0 0
0 1
1 0

⎤⎦ , (3)

n 2D, and by

I1 ≡

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ , I2 ≡

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ and I3 ≡

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , (4)

n 3D.
Eq. (1) is assumed to be valid for (t, x) ∈ T × Dα , where T ≡ [0, T ] is the time interval and T is the final

ime, and is supplemented by initial, boundary and interface conditions. Initial conditions are given as

Uα = Uα0(x) for t = 0 and x ∈ Dα, (5)

here Uα0(x) contains the known values of Uα at t = 0.
Boundary conditions are prescribed at the outer boundary of the domain Dα . Here, we consider three types of
oundary conditions, namely (i) prescribed values of the velocity field v, (ii) prescribed values of the traction field t
4
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and (iii) absorbing boundary conditions, which are typical for elastodynamics problems of scientific and engineering
nterest including material characterization and damage detection. Prescribing the value of the velocity field v is

equivalent to prescribing the momentum field m as

mα = ραv for (t, x) ∈ T × ∂Dαv, (6)

where v is the prescribed value of the velocity field, which includes v = 0 in case of a fixed boundary, and ∂Dαv

is the portion of the outer boundary of Dα where v is prescribed. Prescribing the value of the traction field t is
expressed in terms of the strain γ α as

I⊺nα cαγ α = t for (t, x) ∈ T × ∂Dαt , (7)

here t is the prescribed value of the traction field, which includes t = 0 in case of a free boundary, ∂Dαt is the
portion of the outer boundary of Dα where t is prescribed and Inα ≡ nαi I i , being nαi the i th component of the

uter unit normal of ∂Dαt . Absorbing boundary conditions refer to a boundary that does not reflect the incoming
aves.
Finally, for bi-phase solids only, interface conditions are prescribed at the interface Lα,β . Here, we consider

erfect interface conditions, i.e. continuity of the velocity field and equilibrium of the traction field, which are
iven in terms of momentum and strain as follows{

ρ−1
α mα = ρ−1

β mβ

I⊺nα cαγ α + I⊺nβ cβγ β = 0 for (t, x) ∈ T × Lα,β . (8)

Within the present DG framework, the three types of boundary conditions (including the absorbing boundary
onditions) and the interface conditions are enforced via suitable definitions of the numerical flux as proposed by
han et al. [40]. The numerical flux is a key ingredient of DG formulations and will be introduced in Section 3.

. Implicit-mesh discontinuous Galerkin methods

.1. Implicitly-defined meshes

The discontinuous Galerkin method typically requires a suitable mesh of the domain under analysis. Here, we
se the implicitly-defined mesh technique [30–32], whereby the domain discretization is obtained by intersecting the
mplicitly-defined phases and a structured background grid that is easily generated for the rectangle R containing
he solid.

Consider a structured grid G ≡
⋃

j C j , where C j
≡ [x j

1 , x j
1 +h1]×· · ·× [x j

d , x j
d +hd ] ⊂ R is a d-dimensional

ectangular cell, j is the d-tuple identifying the location of the cell within the grid and x j
i and hi are the cell’s

ower end and the cell’s size in the i th direction, respectively. Each cell C is intersected with the implicitly-defined
hases of the solid and is classified on the basis of its volume fraction fα given by

fα ≡
1

VC

∫
C∩Dα

1 dV, (9)

where VC is the volume of the cell, that is VC = h1h2 in 2D and VC = h1h2h3 in 3D. Referring to the phase α,
ntire cells are those cells falling entirely inside Dα and having volume fraction fα = 1; empty cells are those cells
alling entirely outside Dα and having volume fraction fα = 0; large cells are those cells cut by L and having
olume fraction f < fα < 1; small cells are those cells cut by L and having volume fraction 0 < fα ≤ f . The

same classification is performed by intersecting the cells with the phase β in bi-phase solids. Henceforth, entire and
large cells are collectively referred to as primary cells.

In the classification above, the parameter f denotes a user-defined volume fraction threshold introduced to
dentify the small cells, i.e. those cells whose presence would lead to overly-small time-step restrictions and ill-
onditioned discrete operators. Here, to address the small-cell problem, we employ a cell-merging strategy whereby
mall cells are merged with their neighbors. In particular, each small cell is merged with one primary cell among
he neighboring cells of its 3 × 3 neighborhood, in 2D, or 3 × 3 × 3 neighborhood, in 3D. To select the neighbor
or merging, the neighboring cells are grouped in the following order: in 3D, we consider first the cells sharing a

ace with the small cell, second the cells sharing an edge with the small cell and third the cells sharing a corner with

5
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Fig. 2. Cell classification and implicitly-defined meshes for (a) the single-phase solid and (b) the bi-phase solid shown in Fig. 1 intersected
with a 4 × 4 background grid.

the small cell; within each group the neighboring cells are ordered according to their volume fraction. Then, the
neighbor targeted for merging is the first cell in the first non-empty group. In 2D, the search for the target neighbor
starts from the neighboring cells that share an edge with the small cell. A few comments are in order:

• Although each small cell is merged with one primary cell only, multiple small cells are allowed to target the
same primary cell, possibly leading to a cluster of multiple cells merged together.

• The cell-merging procedure is simple and cheap to implement, in both 2D and 3D. In essence, once the volume
fractions are precomputed (using the quadrature schemes discussed in Section 3.3), this algorithm entails a
simple sequence of logical boolean checks. As such, the merging procedure in 3D presents no unexpected
additional costs over the 2D case.

• The volume fraction threshold is chosen based on previous studies regarding implicit-mesh DG methods, see,
e.g., Refs. [30–32], which empirically show that values of threshold between 0.2 and 0.5 perform well in a wide
variety of circumstances including moving adaptively-refined meshes. For further theoretical and experimental
analyses on the effect of the volume fraction threshold in the context of embedded-boundary DG methods for
elliptic PDEs, the interested reader is also referred to Ref. [29].

• In general, it is possible that a small cell does not find a suitable neighboring cell for merging. This typically
happens when the interfacial/boundary geometry is unresolved, i.e., when it is so complex that the background
grid cannot properly resolve the geometric features. Unresolved geometries are not considered in the present
implementation. Instead, in all the presented numerical tests, the background grid is always chosen fine enough
that the proposed cell-merging strategy never fails.

Once the cell-merging procedure is completed, the cells of the grid consist of non-merged cells, i.e. the
rimary cells that have not been targeted during the merging process, merged cells, i.e. the union of small cells

and their merging neighbors, and empty cells. Then, the implicitly-defined mesh Mα of the phase α is written
α ≡

⋃N e
α

e=1 D e
α , where D e

α is the eth implicitly-defined mesh element of the phase α and N e
α is the number of

mesh elements. Finally, the implicitly-defined mesh M of a single-phase solid coincides with the implicitly-defined
esh of the phase α, i.e. M ≡ Mα , whereas, the implicitly-defined mesh M of a bi-phase solid is the collection of
esh elements of the phase α and the phase β, i.e. M ≡ Mα

⋃
Mβ . Ultimately, these implicitly-defined meshes

onsist of a collection of standard d-dimensional rectangular elements and a relatively smaller number of curved
lements that conform with the curvature of the zero-contour of the level set function.

Figs. 2 and 3 show a few implicitly-defined meshes obtained with the procedure described above. Fig. 2a
hows the classification of the cells of a 4 × 4 grid when intersected with the single-phase solid of Fig. 1b and
he corresponding implicitly-defined mesh; Fig. 2a also highlights an implicitly-defined element D e

α and its outer
oundary Be

α ∪ L e
α , intraphase boundary I e,e′

α shared with the neighboring element D e′

α , and outer unit normal
ne
α . Similarly, Fig. 2b shows the classification of the cells of a 4 × 4 grid when intersected with the bi-phase solid
f Fig. 1c and the corresponding implicitly-defined mesh; Fig. 2b also highlights an implicitly-defined element D e

α

nd its outer boundary Be
α , intraphase boundary I e,e′

α shared with the neighboring element D e′

α of the same phase,
e,e′ e′ e
nterface boundary Lα,β shared with the neighboring element Dβ of the phase β, and outer unit normal nα . Finally,

6
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Fig. 3. Examples of (a) a two-dimensional implicitly-defined mesh and (b) a three-dimensional implicitly-defined mesh where multiple small
ells are merged with the same cell.

ig. 3 shows a 2D example and a 3D example of implicitly-defined meshes where multiple small cells have targeted
he same nearby cell for merging.

.2. Discontinuous Galerkin formulation

Once the mesh of the domain is generated, discontinuous Galerkin formulations are derived by introducing of
suitable space of discontinuous basis functions and stating the governing equations in weak form. Here, given

hat the discretization is constructed using Cartesian grids and the majority of the mesh elements are standard
-dimensional rectangles, it is natural to define the local basis functions as tensor-product polynomials.

Let D e be a mesh element of M associated with the primary grid cell C j (and all the small cells that are merged
with C j ) and let Pe

hp be the space of tensor-product polynomials of degree p in the (hyper) rectangular volume
occupied by C j . Then, the space Vhp of discontinuous basis functions for the mesh M based on the grid G is

Vhp ≡
{
v : G → R | v|De ∈ Pe

hp, ∀D e
∈ M

}
, (10)

while the related space VN
hp of discontinuous polynomials vector fields is VN

hp ≡ (Vhp)N .
For a single-phase solid, the weak form of the governing equations is obtained by multiplying Eq. (1) by the

test functions V ∈ VNU
hp , integrating over a generic mesh element D e

α and performing integration by parts in space,
which yield∫

De
α

V ⊺ ∂Uα

∂t
dV =

∫
De
α

V ⊺SαdV +

∫
De
α

∂V ⊺

∂xi
Fαi dV −

∫
Be
α∪L e

α

V ⊺ F̂ndS −

∑
e′∈N e

α

∫
I e,e′
α

V ⊺ F̂ndS. (11)

Similarly, for a bi-phase solid, one obtains∫
De
α

V ⊺ ∂Uα

∂t
dV =

∫
De
α

V ⊺SαdV +

∫
De
α

∂V ⊺

∂xi
Fαi dV +

−

∫
Be
α

V ⊺ F̂ndS −

∑
e′∈N e

α

∫
I e,e′
α

V ⊺ F̂ndS −

∑
e′∈N e

α,β

∫
L e,e′
α,β

V ⊺ F̂ndS. (12)

Note that Eq. (12) is valid for a mesh element D e
β of Mβ if one switches the subscripts α and β and considers

that L e,e′

β,α coincides with L e,e′

α,β but has opposite unit normal. In Eqs. (11) and (12), N e
α denotes the set of mesh

elements of Mα that are neighbors of D e
α , N e

α,β denotes the set of mesh elements of Mβ that are neighbors of D e
α ,

and F̂n is the so-called numerical flux. The expression of F̂n depends on: the solution state Ue
α and the boundary

conditions at Be
α ∪ L e

α , the adjacent solution states Ue
α and Ue′

α of neighboring mesh elements of the same phase
at I e,e′

α , and the adjacent solution states Ue
α and Ue′

β of neighboring mesh elements of different phases at L e,e′

α,β . In

all cases mentioned above, the expression of the numerical flux used in this work is based on the exact Riemann

7
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solver developed by Zhan et al. [40] for anisotropic elastodynamics wherein adjacent elements are allowed to have
different values of density and/or elastic stiffness constants.

The final semidiscrete evolution equation is obtained by expressing U over each mesh element as a linear
combination of the spatial basis functions with time-dependent coefficients. Using a compact notation, this is written
as

U(t, x) = Be
α(x)Xe

α(t), for x ∈ D e
α, (13)

where Be
α is a NU × NU Np matrix containing the basis functions, Xe

α is the vector of coefficients of length NU Np

nd Np ≡ (1 + p)d is the number of basis functions. For a bi-phase solid, substituting Eq. (13) into Eq. (12) and
etting V range over the basis functions, one obtains

Me
αẊ

e
α =

∫
De
α

Be⊺
α SαdV +

∫
De
α

∂Be⊺
α

∂xi
Fαi dV −

∫
Be
α

Be⊺
α F̂ndS −

∑
e′∈N e

α

∫
I e,e′
α

Be⊺
α F̂ndS −

∑
e′∈N e

α,β

∫
L e,e′
α,β

Be⊺
α F̂ndS,

(14)

here the superimposed dot denotes the time derivative and Me
α is the mass matrix of the element D e

α given by

Me
α ≡

∫
De
α

Be⊺
α Be

αdV . (15)

n expression similar to the one given in Eq. (14) is obtained for single-phase solids if one substitutes Eq. (13)
nto Eq. (11).

.3. High-order quadrature rules for implicitly-defined elements

In Eqs. (14) and (15), several volumetric and boundary integrals need to be evaluated. For the entire elements
nd those cell boundaries that are not cut by the embedded boundaries, see e.g. Fig. 2, these integrals are evaluated
ith high-order accuracy using tensor-product Gauss–Legendre quadrature rules. Meanwhile, to retain the high-order

ccuracy of the method in proximity of the embedded boundaries, suitable high-order integration schemes should
e employed to evaluate the domains and boundary integrals of the cells cut by the zero-contour of the level set
unction. Here, we make use of the high-order accurate quadrature algorithms developed in [49]; an open-source
mplementation of these algorithms is also available [51]. A few examples of the kinds of quadrature schemes
roduced by these algorithms are shown in Fig. 4; it is worth stressing that the quadrature points are always inside
he domain of integration and the quadrature weights are always strictly positive. The interested reader is referred
o Ref. [49] for a detailed description of the algorithms generating the quadrature rules.

As a last comment, we note that some of the terms (e.g. the mass matrix) appearing in Eq. (14) involve
he evaluation of the integral of polynomial functions. By exploiting the properties of homogeneous functions
long with additional assumptions on the implicitly-defined geometry, these integrals may be transformed into
ower-dimensional ones, thus reducing the computational cost associated with the numerical quadrature, see
.g. Refs. [52,53]. However, this is in general not possible and full quadrature schemes are required to evaluate,
or example, the contribution of a non-polynomial source term or the integrals involving the numerical flux,
hich is obtained using the Riemann solver. Another possibility is to use quadrature compression techniques,

ee e.g., Ref. [54]; roughly speaking, these methods discard as many quadrature nodes as possible (modifying
he weights of the remaining nodes) while preserving quadrature accuracy on a predetermined class of integrand
unctions. These methods could be useful in cases of highly complex interfacial/boundary geometry, e.g., in handling
ub-grid feature. We note, however, in the present work, the quadrature algorithms of Ref. [49] always yielded
fficient quadrature schemes with small-to-moderate node counts. In particular, we have not faced any problems
oncerning large quadrature node counts for the kinds of problems we have applied these DG methods to.

.4. hp Adaptive mesh refinement

Owing to the discontinuous nature of DG methods, the present implicit-mesh DG framework can naturally be

oupled to an hp adaptive mesh refinement strategy. To enable AMR capabilities, the framework is integrated

8
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g

Fig. 4. Examples of the location of the quadrature points obtained using the algorithm of Ref. [49]; in the images, the quadrature points
are colored according to their weight: light grays denote small weights while dark grays denote large weights.

Fig. 5. Illustration of an hp-AMR configuration where the implicitly-defined meshes are generated from a three-level hierarchy of structured
rids. The figure also sketches the operations performed by the interpolation operator Iℓ+1,ℓ and the restriction operator Rℓ,ℓ+1.

into AMReX [55], an open-source software library (https://amrex-codes.github.io) with functionalities for writing
massively parallel applications based on adaptive structured Cartesian grids. In AMReX, the AMR structure is
represented as a hierarchy of overlapping levels of refinement ranging from the level identified by ℓ = 0, which
contains the coarsest grid, to the level identified by ℓ = ℓfinest, which contains the finest grid. The grid at the level
ℓ = 0 is created at the beginning of the simulations and statically covers the entire domain of analysis; the grids at
the levels ℓ > 0 are created and destroyed dynamically based on user-defined refinement and coarsening criteria.
AMReX has been mainly employed in combination with finite volume schemes, see Ref. [55] and the references
therein, but recently has been extended to include the implicit-mesh DG framework, see Ref. [32]. Fig. 5 illustrates
a typical multi-level mesh supported by the present implementation, where the final mesh shown on the leftmost end
of the figure is obtained by overlapping three implicitly-defined meshes (the bottom row of images), which in turn
are generated from a three-level hierarchy of structured grids (the top row of images) according to the procedure
presented in Section 3.1. In the figure and in the remainder of the paper, the present AMR scheme is referred to as

hp-AMR since it allows the use of different polynomial orders at different levels.

9
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It is worth recalling some details about the operations associated with the use of adaptive mesh refinement, even
hough a thorough discussion regarding adaptive implicitly-defined meshes can be found in Refs. [30,56] as well
s Ref. [32].

The evolution of the hp-AMR levels is governed by tagging and un-tagging operations, whereby a two-value
ariable, or tag, is assigned to each cell at each level. The tag determines whether the cell should be replaced by
set of finer cells or whether the existing finer resolution is not further required at that location. Various criteria
ight be considered to assign and evolve the tags of the cells, with examples ranging from static manual tagging

o dynamic solution-dependent tagging. In this work, we evolve the tag of a generic cell on the basis of the DG
olution at that cell. More specifically, with reference to the cell classification introduced in Section 3.1, a primary
ell is tagged for refinement if the DG solution of the associated implicitly-defined element D e, which is identified

by the coefficients of the element’s basis functions contained in Xe, satisfies a condition of the form

ftag(Xe) > 0, (16)

where ftag is a user-defined function. Small cells do not have a DG solution directly associated with them but
inherit the DG solution of the primary cells with which they are merged; therefore, if a primary cell is tagged for
refinement so are all small cells that are merged with it. Empty cells are never tagged for refinement. In case of a
two-phase solid, oftentimes (typically in proximity of the embedded boundary) an element D e

α of the phase α with
DG solution Xe

α and an element D e′

β of the phase β with DG solution Xe′

β are associated with the same cell C ; in
such a case, Eq. (16) will involve both Xe

α and Xe′

β . We note that Eq. (16) is used not only for refinement but also
for coarsening. In fact, during the course of a numerical simulation, Eq. (16) is evaluated also for the cells covered
by a finer grid and, if the DG solution of an element associated with a primary cell C ceases to fulfill Eq. (16),
then all the finer cells covering the cell C and the merged small cells are removed.

When cells are refined or coarsened, the DG solution of the associated implicitly-defined elements must be
suitably interpolated at the finer level or restricted at the coarser level, respectively. These operations are linear,
local to the elements and can be implemented using matrix–vector products involving block-sparse operators. In
particular, consider a vector Xℓ containing the DG solution of all the implicitly-defined elements at level ℓ. Then,
as sketched in Fig. 5, the interpolation operator Iℓ+1,ℓ transfers the DG solution Xℓ of the coarse level ℓ to the DG
solution Xℓ+1 of the fine level ℓ+ 1. Formally, the interpolation operation can be written as

Xℓ+1 = Iℓ+1,ℓXℓ, (17)

where Iℓ+1,ℓ is a block-structured matrix computed via the Galerkin projection, so that, given a fine element D e′

ℓ+1

of level ℓ+ 1 and a coarse element D e
ℓ of level ℓ, the block Ie′,e

ℓ+1,ℓ is given by

Ie′,e
ℓ+1,ℓ ≡ (Me′

ℓ+1)−1
∫

De′
ℓ+1∩De

ℓ

Be′⊺
ℓ+1B

e
ℓ dV . (18)

o illustrate how Iℓ+1,ℓ acts on Xℓ, consider Fig. 6, which shows a two-element coarse mesh Mℓ ≡ {D1
ℓ ,D

2
ℓ }

generated from a 1 × 2 coarse grid and a five-element fine mesh Mℓ+1 ≡ {D1
ℓ+1,D

2
ℓ+1, . . . ,D

5
ℓ+1} generated from

2 × 4 grid that is obtained by refining the coarse grid with a refinement ratio of 2. Using Eq. (18) for the AMR
onfiguration of Fig. 6, Eq. (17) becomes⎛⎜⎜⎜⎜⎝

X1
ℓ+1

X2
ℓ+1

X3
ℓ+1

X4
ℓ+1

X5
ℓ+1

⎞⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎢⎣
I1,1
ℓ+1,ℓ 0
I2,1
ℓ+1,ℓ 0
I3,1
ℓ+1,ℓ 0
I4,1
ℓ+1,ℓ I4,2

ℓ+1,ℓ
0 I5,2

ℓ+1,ℓ

⎤⎥⎥⎥⎥⎥⎦
(

X1
ℓ

X2
ℓ

)
. (19)

t is interesting to note that Eq. (19) reflects the configurations of the meshes of Fig. 6, including the case of the
ne element D4

ℓ+1 that partially covers the two distinct coarse elements D1
ℓ and D2

ℓ .
The counterpart of the interpolation operation is the restriction operation, whereby the DG solution Xℓ+1 of the

ne level ℓ + 1 is transferred to the DG solution Xℓ of the coarse level ℓ. Similar to Eq. (17), this operation can
ormally be written as
Xℓ = Rℓ,ℓ+1Xℓ+1, (20)

10
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Fig. 6. Example of an hp-AMR configuration where the fine element D4
ℓ+1 partially covers the two coarse elements D1

ℓ and D2
ℓ .

here, using the Galerkin projection, the restriction operator Rℓ,ℓ+1 is related to the interpolation operator such
hat

Rℓ,ℓ+1 = M−1
ℓ I⊺ℓ+1,ℓMℓ+1, (21)

where Mℓ is the block-diagonal mass matrix of the implicitly-defined elements of the level ℓ.
It is worth noting that the interpolation and restriction operators defined via Eqs. (18) and (20), respectively,

are valid regardless of the choice of basis functions and, therefore, naturally enable the use of different polynomial
orders at different AMR levels. From an implementation viewpoint, the present DG scheme requires the evaluation
of the interpolation operators and the Cholesky decomposition of the mass matrices, while the restriction operator
can be applied on-the-fly using Eq. (21). Moreover, all standard (hyper) rectangular elements (which represent the
majority of the mesh elements) share the same mass matrix, which can be precomputed and stored at the beginning
of the simulations; the same applies to the interpolation operator between two standard elements of two different
AMR levels. Conversely, the mass matrices and the interpolation operators of the cut elements are in general unique
and are computed via Eqs. (15) and (18), respectively, using high-order quadrature rules.

3.5. Time-stepping

The last aspect of the numerical framework regards the time-stepping, i.e. the update in time of the coefficients of
the spatial basis functions. Whether a single-level or an hp-AMR scheme is considered, the time-evolution equation
for the coefficients Xe

α of a generic eth element D e
α belonging to the phase α can be written as

Me
αẊ

e
α = Ae

α(t,X), (22)

where Ae
α(t,X) stems from the evaluation of the right-hand side of Eq. (14) and X formally contains the coefficients

of all the mesh elements; note however that only the DG solution from the neighboring elements of D e
α is required to

compute Ae
α(t,X). Integration in time of Eq. (22) is performed via an explicit high-order Runge–Kutta algorithm [23]

matching the order of the highest spatial discretization among the mesh levels. As explicit time-integration schemes
are conditionally stable, at a generic level ℓ with mesh size hℓ and using a DG scheme with polynomial degree pℓ,
the maximum time step τℓ is subject to the following CFL condition

τℓ

hℓ
<

Cℓ f ℓ
c(1 + 2pℓ)

, (23)

here f ℓ is the volume fraction threshold triggering the cell-merging at the level ℓ and Cℓ is a constant smaller than
1 that does not depend on hℓ or pℓ; in all simulations presented in Section 4, f 0 = f 1 = 0.3 and C0 = C1 = 0.833.

oreover, in Eq. (23), c ≡ cα for single-phase solids or c ≡ max{cα, cβ} for bi-phase solids, where cα and cβ are
the maximal speeds of the elastic waves in the phases α and β, respectively. For isotropic solids, c coincides with
α

11
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the speed of the P-waves in the phase α. For general anisotropic solids, the wave speed depends on the direction
of propagation and, therefore, the maximum wave speed is evaluated as [50]

c2
α ≡ max

n
{eig(Γ α(n))}, (24)

where Γ α(n) ≡ ρ−1
α I⊺n cα In , In ≡ ni I i and eig(•) returns the eigenvalues of •.

Note that Eq. (23) assumes τℓ ∼ hℓ/(1 + 2pℓ); this is typical of explicit Runge–Kutta discontinuous Galerkin
chemes for first-order hyperbolic PDEs, where the order of the temporal discretization matches the order of the
patial discretization, see e.g. [57]. Finally, the time step τ of the Runge–Kutta algorithm is τ ≡ minℓ τℓ.

. Results

In this section, the capabilities of the presented implicit-mesh DG framework are assessed for two- and
hree-dimensional test cases involving wave propagation in single- and bi-phase elastic solids.

The numerical simulations use implicitly-defined meshes generated either from uniform grids with mesh size h
r from a two-level hp-AMR, where level 0 and level 1 have mesh size h0 and h1, respectively. For the simulations
sing the hp-AMR, the coarse level 0 is generated at the beginning of the simulation and is kept fixed, while the
ne level 1 is dynamically updated during the time evolution by refining the coarse cells with a refinement ratio r
uch that h1 = h0/r and the number of fine cells replacing a coarse cell is rd . Tensor-product Legendre polynomials
f degree p are employed to define the space Pe

hp, and thus the space Vhp introduced in Eq. (10); the corresponding
G scheme is denoted by DGp. We recall that the present hp-AMR strategy allows the use of different polynomial
rders for different AMR levels.

.1. Convergence analysis

Reported here are the results of several convergence tests on single- and bi-phase solids with isotropic, orthotropic
nd anisotropic constitutive behavior, in two and three-dimensions. For both the single-phase solid simulations and
he bi-phase solid simulations, we assume that the phases have density ρα = ρβ = ρ and stiffness cα = cβ = c. In
his section, all quantities are assumed non-dimensional. The considered isotropic solid has density ρ = 1, Young’s

odulus Y = 1 and Poisson’s ratio ν = 0.3. The considered orthotropic solid is a FCC Copper crystal [58] with
ensity ρ = 8.92 and non-zero elastic constants c11 = 168, c12 = 121, c44 = 75. In 2D, the constitutive behavior
f the considered anisotropic solid represents the in-plane behavior of a multilayered composite material [59] with
ensity ρ = 1.6 and stiffness matrix

c =

⎡⎣ 0.5637 0.2963 0.3158
0.5637 0.3158

Sym. 0.3111

⎤⎦ . (25)

n 3D, the considered anisotropic solid is an Olivine crystal [38,60] with density ρ = 1.0 and whose orthorhombic
xes are tilted and aligned with the directions [1, 1, 1], [−1, 1, 0] and [−1,−1, 2] such that the stiffness matrix in
he global reference system is

c =

⎡⎢⎢⎢⎢⎢⎢⎣
185.8 67.3 76.2 2.69 17.6 −5.44

170.0 62.67 4.62 −6.60 −6.53
219.8 3.08 30.48 −2.72

59.0 −1.905 2.83
Sym. 79.2 2.12

57.0

⎤⎥⎥⎥⎥⎥⎥⎦ . (26)

We start by constructing an exact solution of Eq. (1) with zero source term. Consider a plane-wave vector field
f the form

U(t, x) = Ũ sin(ωt − κi xi ), (27)

here κi is the i th component of the wave vector κ = (κ1, . . . , κd ), ω is the angular frequency and Ũ is a constant
ector. For a given choice of κ , by plugging Eq. (27) into Eq. (1) with Sα = 0, ω and Ũ are obtained as the
igenvalue and the eigenvector, respectively, of the eigenvalue problem

A Ũ = ωŨ, (28)
κ

12
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Fig. 7. (a) Geometry and boundary conditions for the single-phase solid employed in the 2D hp-convergence analysis. Error in (b) the
momentum component m1 and (c) the strain component γ11 obtained with an implicitly-defined mesh generated from an 82 background grid
and a DG3 scheme for the anisotropic material response.

where Aκ is NU × NU matrix given by

Aκ ≡

[
0 I⊺κ c

ρ−1 Iκ 0

]
and Iκ ≡ κi I i . (29)

here are in general NU couples {ωv, Ũv}, v = 1, . . . , NU , that are solution of Eq. (28); see Ref. [40] for more
etails about the eigenvalue properties of the matrix Aκ . Then, an exact solution Eq. (1) can be written as the
ollowing linear superposition of plane waves

Uexact(t, x) =

NU∑
v=1

Ũv sin(ωvt − κi xi ), (30)

here the vectors Ũv , v = 1, . . . , NU , are normalized to have unit amplitude. In all simulations, the exact solution
Uexact given in Eq. (30) is employed to set the initial conditions as Uα0(x) = Uβ0(x) = Uexact(0, x), while the

aximum eigenvalue ωmax ≡ maxv ωv determines the final time T of evolution as T = 2π/ωmax.
As the last ingredient of this convergence analysis, we introduce two error measures between the solution U

omputed via the present DG scheme and the exact solution Uexact given in Eq. (30). The error measures are

eL∞
(U,Uexact) ≡

∥U − Uexact
∥L∞

∥Uexact
∥L∞

and eL2 (U,Uexact) ≡

[
E(U − Uexact)

E(Uexact)

]1/2

, (31)

here the L∞ norm is evaluated by computing the maximum error at the quadrature points among all the
omponents of U and the eL2 error is evaluated by introducing an energy norm. In particular, let Eα(U) denote the
nergy associated with the solution U for the phase α given by

Eα(U) =
1
2

∫
Dα

(
ρ−1
α m⊺

αmα + γ ⊺
αcαγ α

)
dV ; (32)

then, in Eq. (31), E(U) = Eα(U) and E(U) = Eα(U) + Eβ(U) for single-phase and bi-phase solids, respectively.
Fig. 7a shows the geometry and the boundary conditions for the 2D single-phase solid case. The geometry

onsists of a square with a circular cavity and is defined in the background unit square [0, 1]2 by the level set
function

ϕ(x) = R2
− (x1 − o1)2

− (x2 − o2)2, (33)

where R = 0.25 and o1 = o2 = 0.5. A velocity field v is prescribed on the outer boundary Bα of the background
quare, whereas a traction field t is prescribed on the zero contour Lα of the level set function. The exact solution

Uexact is specified by κ = 2π cos(π/6) and κ = 2π sin(π/6) and is employed to evaluate the fields v and t at
1 2

13
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c

Fig. 8. (top row) eL∞
error and (bottom row) eL2 error for the 2D single-phase solid of Fig. 7 for different constitutive behaviors.

Fig. 9. (a) Geometry, boundary conditions and implicitly-defined mesh generated from an 83 background grid for the single-phase solid
employed in the 3D hp-convergence analysis. Error in (b) the momentum component m1 and (c) the strain component γ11 obtained with
the implicitly-defined mesh of figure (a) and a DG3 scheme for the anisotropic material response.

any (t, x) on the geometry’s boundaries. Figs. 7b and 7c show the error in the momentum component m1 and the
strain component γ11, respectively, when an 82 background grid and a DG3 scheme are employed for the anisotropic
material response case. The figures also display the implicitly-defined mesh generated from the background grid.
hp-convergence plots of the two error measures given in Eq. (31) for the 2D single-phase solid with isotropic,
orthotropic and anisotropic behavior are shown in Fig. 8.

Fig. 9a shows the geometry and the boundary conditions for the 3D single-phase solid case. The geometry
onsists of a sphere implicitly-defined in the background unit cube [0, 1]3 by the level set function

2 2 2 2
ϕ(x) = (x1 − o1) + (x2 − o2) + (x3 − o3) − R , (34)

14
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Fig. 10. (top row) eL∞
error and (bottom row) eL2 error for the 3D single-phase solid of Fig. 9 for different constitutive behaviors.

here R = 0.35 and o1 = o2 = o3 = 0.5. A traction field t is prescribed on sphere’s outer boundary using the
exact solution Uexact with κ1 = 2π cos(π/3) sin(π/6), κ2 = 2π sin(π/3) sin(π/6) and κ3 = 2π cos(π/6). Fig. 9a
lso shows the implicitly-defined generated from an 83 background grid and some of the implicitly-defined elements
n proximity of the embedded boundary. Figs. 9b and 9c show the error in the momentum component m1 and the
train component γ11, respectively, when the implicit-mesh of Fig. 9a and a DG3 scheme are employed for the
nisotropic material response case. The hp-convergence plots of the two error measures given in Eq. (31) for the
D single-phase solid with isotropic, orthotropic and anisotropic behavior are then reported in Fig. 10.

Fig. 11a shows the geometry and the boundary conditions for the 2D two-phase solid case. The geometry is
eriodic and is defined in the background unit square [0, 1]2 by the level set function

ϕ(x) = cos(2πx1) cos(2πx2) − 1/8. (35)

eriodic boundary conditions are prescribed on the outer boundaries Bα and Bβ of the background square, whereas
erfect interface conditions as given in Eq. (8) are prescribed on Lα,β . The exact solution Uexact is specified by
κ1 = 2π and κ2 = 0. Figs. 11b and 11c show the error in the momentum component m1 and the strain component
γ11, respectively, when an 82 background grid and a DG3 scheme are employed for the anisotropic material response
case. The obtained hp-convergence plots for the isotropic, orthotropic and anisotropic behavior are reported in
Fig. 12.

Fig. 13a shows the geometry and the boundary conditions for the 3D two-phase solid case. The geometry is
periodic and is defined in the background unit cube [0, 1]3 by the level set function

ϕ(x) = − cos(2πx1) cos(2πx2) cos(2πx3) − 1/8. (36)

Periodic boundary conditions are prescribed on the outer boundaries Bα and Bβ of the background square,
whereas perfect interface conditions are prescribed on Lα,β . The exact solution Uexact is specified by κ1 = 2π and
κ2 = κ3 = 0. Figs. 13b and 13c display the implicitly-defined mesh of the phase α and the phase β, respectively,
generated from an 83 background grid. For this mesh, Figs. 14a and 14b show the error in the momentum component
m1 and the strain component γ11, respectively, when a DG3 scheme is employed for the anisotropic material response

case. Finally, the hp-convergence plots for the isotropic, orthotropic and anisotropic behavior are reported in Fig. 15.
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Fig. 11. (a) Geometry and boundary conditions for the bi-phase solid employed in the 2D hp-convergence analysis. Error in (b) the
momentum component m1 and (c) the strain component γ11 obtained with an implicitly-defined mesh generated from an 8 × 8 background
grid and a DG3 scheme for the anisotropic material response.

Fig. 12. (top row) eL∞
error and (bottom row) eL2 error for the 2D single-phase solid of Fig. 11 for different constitutive behaviors.

To conclude this part of the numerical results, we observe that in all simulations the error between the exact
solution and the numerical solution in the extended elements is mildly larger than the error in the regular (hyper)
rectangular elements, see for example Fig. 9c or Fig. 14c. This has also been observed for other applications of
the present implicit-mesh DG approaches [30–32] and is an expected behavior if one considers that the extended
elements are in general larger and geometrically less regular than the (hyper) rectangular elements. However, as
shown by all the hp-convergence plots, and consistently with previous observations [30–32], the present implicit-
mesh DG method provides a high-order accurate solution of the elastodynamics problem demonstrated by a O(h p+a)
16
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o

Fig. 13. (a) Geometry and boundary conditions for the bi-phase solid employed in the 3D hp-convergence analysis. Implicitly-defined mesh

f (b) the phase α and (c) the phase β generated from an 8 × 8 × 8 background grid for the solid of figure (a).

Fig. 14. Error in (a) the momentum component m1 and (b) the strain component γ11 obtained with the implicitly-defined mesh of Fig. 13
and a DG3 scheme for the anisotropic material response.

convergence rate in the energy norm, with a ranging from 0.8 to 1.2, and by a O(h p+a) convergence rate in the
L∞ norm, with a ranging from 0.1 to 1.1. We note that these results, showing high-order accuracy in both the
maximum and energy norms, demonstrates the method yields low numerical dispersion and dissipation errors. The
dispersion analysis of Ref. [61] offers another approach for examining these effects.

4.2. Lamb’s problem

In this section, we consider a classical problem in elastodynamics, namely the Lamb’s problem, which admits
an exact solution [62,63] and has been used to assess various numerical models, see e.g. Refs. [42,64,65]. The
problem consists of evaluating the distribution of the mechanical fields due to a concentrated force that is applied
perpendicular to an infinite free surface, i.e. with zero-traction boundary conditions. The well-known distinctive
feature of this problem is the appearance of the Rayleigh waves, which travel along the free surface of the domain
but not in its depth.

Following the problem setup of Refs. [42,64,65], the 2D geometry is implicitly-defined in the background
rectangle R = [0, 4000 m] × [0, 3000 m] by the level set function

ϕ(x) = x − H − tan(ϑ)x , (37)
2 1
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Fig. 15. (top row) eL∞
error and (bottom row) eL2 error for the 3D single-phase solid of Fig. 13 for different constitutive behaviors.

Fig. 16. Geometry and boundary conditions for (a) the 2D and (b) the 3D Lamb’s problem. In the figures, s denotes the location of the
ource point where the concentrated force is applied whereas r denotes the location of the receiver where the elastodynamic response is
easured.

here H = 2000 m and ϑ = 10◦. We note that the problem may be stated in a reference system that is aligned
ith the free surface and the elastic domain may be straightforwardly meshed with a simple structured grid without

nvolving implicitly-defined elements; nevertheless, this setup is a common benchmark problem, including to assess
B approaches, see, e.g., Ref. [42]. In 3D, we consider a simple extension of the 2D case, whereby the geometry is

mplicitly-defined in the background prism R = [0, 4000 m] × [0, 4000 m] × [0, 3000 m] by the level set function

ϕ(x) = x3 − H − tan(ϑ1)x1 − tan(ϑ2)x2, (38)

here H = 2000 m, ϑ1 = 10◦ and ϑ1 = 5◦. The 2D geometry and the 3D geometry are displayed in 16a and
Fig. 16b, respectively. In both figures, the point s denotes the location of the force and the point r denotes the

location of a receiver where the resulting elastodynamic response is measured; in 2D, the source point and the

18
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Fig. 17. Comparison between the analytical solution [62] and the DG solution for the 2D Lamb’s problem in terms of (a) horizontal velocity
component v1 and (b) vertical velocity component v2 evaluated at the surface receiver r denoted by the black dot in Fig. 16a.

receiver are located at s = (s1, s2) and r = (r1, r2), where s1 = 1720 m, r1 = 2694.96 m and s2 and r2 are
obtained via Eq. (37); in 3D, the source point and the receiver are located at s = (s1, s2, s3) and r = (r1, r2, r4),
where s1 = s2 = 1720 m, r1 = r2 = 2694.96 m and s3 and r3 are obtained via Eq. (38). The elastic domain is an
isotropic solid with density ρα = 2200.0 kg/m3 and elastic properties determined by the velocity of the P-waves
cP = 3200.0 m/s and the velocity of the S-waves cS = 1847.5 m/s. Traction-free boundary conditions, i.e. t = 0,
re prescribed on Lα whereas absorbing boundary conditions are prescribed on Bα . The final time of the simulation
s T = 1 s. Finally, the concentrated force is modeled by setting ραbα in the source term Sα , see Eq. (2), as

ραbα = Rw(t)δ(x − s)û, (39)

here û is the unit vector perpendicular to Lα , δ(x) is the Dirac delta function, and Rw(t) is the Ricker wavelet
efined as

Rw(t) ≡ a1

(
1
2

+ a2(t − t0)2
)

ea2(t−t0)2
(40)

eing a1 = −2000 kg/(m2s2), a2 = −π2 f 2
c , fc = 14.5 Hz, t0 = 0.08 s.

In 2D, we consider three implicitly-defined meshes generated from uniform grids and an implicitly-defined mesh
ssociated with a two-level hp-AMR scheme. The three uniform meshes are generated from a 64 × 48 grid, a
28 × 96 grid and a 256 × 192 grid, and use a DG3 scheme. For the AMR test problem, level ℓ = 0 uses a
4 × 48 grid and a DG1 scheme, whereas level ℓ = 1 uses a DG3 scheme and is dynamically generated from
evel ℓ = 0 via a refinement ratio r = 4; it follows that the hp-AMR has the same effective resolution of the
nest uniform mesh. To evolve the cell tagging, the function ftag introduced in Eq. (16) implements the following
nergy-based threshold as

ftag ≡ Ee
α − E0, (41)

here Ee
α denotes the energy associated with the solution Ue

α for the element D e
α , i.e. it is computed via Eq. (32)

here Dα is replaced by D e
α , and E0 is a threshold value chosen to be E0 = 10−12 J. We remark that much more

ophisticated refinement/coarsening criteria for DG methods exist in the literature, see for example Ref. [66] where
he authors use a criterion involving the DG solution and its derivatives in space; in this work we use a simpler
riterion tuned such that the propagating waves are resolved by the DG3 scheme while the remaining parts of the
omain are resolved by the DG1 scheme.

For the considered meshes, the values of the velocity components v1 and v2 measured at the receiver r of Fig. 16a
re reported as functions of time in Figs. 17a and 17b, respectively. The plots show the expected convergence of
he DG solution with respect to the number of mesh elements, and thus the mesh size, and the comparison between

he numerical solution and the analytical solution [62], which is well recovered by the present scheme.
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Fig. 18. Snapshots of the vertical velocity component v2 at the time instants t = 0.3 s, 0.6 s and 1.0 s for the 2D Lamb’s problem. (left
olumn) Uniform background grid. (right column) Two-level hp-AMR. In the right column, the stepped lines denote the boundary of the
MR level ℓ = 1.

A clearer view of the wave structure generated by the concentrated force is displayed in Fig. 18, where the
istribution of the velocity component v2 is displayed at the time instants t = 0.3 s, 0.6 s and 1.0 s. The left column
f the figure shows the results computed with the finest uniform grid, whereas the right column shows the results
omputed with the hp-AMR strategy; the same results are obtained with the two numerical setups. Moreover, in
ither case, it is possible to distinguish the larger semicircle of the P-waves, which at t = 1.0 s have almost left the
omain of analysis, the smaller semicircle of the S-waves, which are traveling slower than the P-waves but have a
imilar spatial distribution, and the Rayleigh waves, which are traveling attached to the free surface at a speed that
s slightly slower than that of the S-waves.

In 3D, guided by the 2D results, we consider only an implicitly-defined mesh associated with a two-level hp-
MR scheme. The level ℓ = 0 uses a 64 × 64 × 48 grid and a DG1 scheme, whereas level ℓ = 1 uses a DG3

cheme and is dynamically generated from level ℓ = 0 via a refinement ratio r = 4. Cell tagging is performed
sing Eq. (41) where E = 10−18 J.
0
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Fig. 19. Comparison between the analytical solution [63] and the DG solution for the 3D Lamb’s problem in terms of (a) horizontal velocity
component v1 and (b) vertical velocity component v3 evaluated at the surface receiver r denoted by the black dot in Fig. 16b.

The values of the velocity components v1 and v3 measured at the receiver r of Fig. 16b are reported as functions
of time in Figs. 19a and 19b, respectively. As in prior tests, the DG solution matches well with the exact solution.
Meanwhile, the left column of Fig. 20 shows the arrangement of the AMR level ℓ = 1 at the time instants t = 0.3 s,
0.6 s and 1.0 s, while the right column of Fig. 20 shows the distribution of the velocity component v3 and the location
of the P-, S- and Rayleigh waves at the same time instants.

4.3. Single interface problem

Another classical problem in elastodynamics that has been modeled using different numerical methods, see
e.g. Refs. [8,38,67], regards the evaluation of the wave structure caused by a concentrated force acting in proximity
of the interface between an isotropic solid and an orthotropic solid. In the literature, the interface is typically aligned
with the global reference system, i.e., the interface is perfectly horizontal or vertical; here, we instead place the
interface on an angle in order to yield non-trivial implicitly-defined mesh geometry, similar to the case of the
Lamb’s problem discussed in Section 4.2. The geometry is depicted in Fig. 21 and is defined in the background
square R = [−0.33 m, 0.33 m]2 by the level set function

ϕ(x) = cos(ϑ)x1 + sin(ϑ)x2 (42)

where ϑ = 10◦. Fig. 21 also shows the location of the source point s = (s1, s2) where the concentrated force is
applied, the location of four receiver points r1, r2, r3 and r4, where the mechanical signals are evaluated, and a
ocal reference system that is aligned with the interface between the two phases. In this local reference system,
he coordinates of the source and receiver points are sη = −0.02 m, sξ = 0, r1η = −0.105 m, r2η = −0.035 m,
3η = −0.01 m, r4η = 0.105 m, and r1ξ = r2ξ = r3ξ = r4ξ = −0.08 m. The phase α and the phase β are an
rthorhombic solid and an isotropic solid, respectively, whose properties are ρα = ρβ = 7100 kg/m3 and

cα =

⎡⎣ 165.0 50.0 0
62.0 0

Sym. 39.6

⎤⎦ GPa and cβ =

⎡⎣ 165.0 85.8 0
165.0 0

Sym. 39.6

⎤⎦ GPa, (43)

here the elastic components are referred to the local reference system. Perfect-interface conditions are prescribed
n Lα,β whereas absorbing boundary conditions are prescribed on Bα and Bβ . The final time of the simulation is

T = 100 µs. Finally, the concentrated force is modeled by setting ραbα according to Eq. (39), where û here is the
nit vector parallel to Lα,β and the parameters of the Ricker wavelet Rw(t) are a1 = 1012 kg/(m2s2), a2 = −π2 f 2

c ,
fc = 170.0 kHz, t0 = 6 µs.

We consider an implicitly-defined mesh generated from a 2562 uniform grid as well as one associated with a
2
wo-level hp-AMR scheme. In the AMR case, level ℓ = 0 uses a 64 grid and a DG1 scheme, whereas level ℓ = 1
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Fig. 20. Snapshots of (left column) the boundary of the AMR level ℓ = 1 and (right column) the vertical velocity component v3 at the
time instants t = 0.3 s, 0.6 s and 1.0 s for the 3D Lamb’s problem. In the right column, the stepped lines denote the trace of AMR level
ℓ = 1 on the domain boundaries.

uses a DG3 scheme and is dynamically generated from level ℓ = 0 via a refinement ratio r = 4. Similar to the
Lamb’s problem in 2D, the hp-AMR has the same effective resolution of the uniform mesh. To evolve the cell
tagging, the function ftag introduced in Eq. (16) implements the following energy-based threshold

ftag ≡ max{Ee
α, Ee

β} − E0, (44)

where E0 = 104 J and it is clear that Ee
α = 0 if the element D e

α is empty.
Figs. 22a to 22d report the velocity component vη at the receiver locations r1 to r4, respectively, and show that

he results obtained with the uniform mesh and the results obtained with the hp-AMR are overlapping and match
ery well with the reference solution [8]. Finally, the wave structure generated by the concentrated force is displayed

n Fig. 23 at the time instants t = 30 µs, 60 µs and 100 µs in terms of the velocity component vη. From the figures,
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Fig. 21. Geometry and boundary conditions for the single interface problem.

Fig. 22. Comparison between the reference solution [8] and the present formulation for the single interface problem in terms of the velocity
omponent vη evaluated at the receivers (a) r1, (b) r2, (c) r3 and (d) r4 denoted by the black dots in Fig. 21.

ne can clearly observe the structure of the isotropic waves (characterized by semicircles) and the structure of the
rthotropic waves, which propagate faster along the direction perpendicular to the interface and slower along the
irection parallel to the interface. Fig. 23 also shows that the selected tagging criterion allows the hp-AMR scheme
o reproduce the solution obtained with the uniform mesh.
23
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Fig. 23. Snapshots of the velocity component vη at the time instants t = 30 µs, 60 µs and 100 µs for the single-interface interface problem.
(left column) Uniform background grid. (right column) Two-level hp-AMR. In the right column, the stepped lines denote the boundaries
between the hp-AMR levels.
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Fig. 24. (Left) Geometry, initial conditions and boundary conditions for the 2D structured solid problem. (Right) Closeup on the geometry
nd the implicitly-defined mesh of the unit-cell.

.4. Structured solids

We conclude the numerical results by discussing the application of the present implicit-mesh DG framework to
he analysis of an elastic wave propagating through a structured solid. The solid is referred to as structured because

it is made of a periodically repeating structure, or unit cell, whose characteristic dimensions are smaller than the
dimensions of the solid itself. This scenario is common in the area of metamaterial design, where one is interested
in obtaining non-conventional macroscopic elastodynamic properties for the solid, such as negative refractive index
or negative effective density [68,69], by changing the geometric features and/or by coupling dissimilar materials at
the scale the unit cell. Note that the aim of this section is not to provide an investigation of a structured solid in
the context of metamaterials but to use the structured solid as an example of a (mildly) complex geometry where
the elastodynamic problem can be solved with high-order accuracy in time and space by means of the present
framework. For this last set of tests, we also consider non-dimensional units.

The geometry for the considered 2D case is displayed in Fig. 24. The solid consists of two homogeneous ends
and a central structured region, whose unit cell is displayed in the right-hand side of Fig. 24. To construct the
geometry, we consider three level set functions:

ϕ1(x) = | sin(π (x1 − x2 − 1/2))| − W, ϕ2(x) = | sin(π (x1 + x2 − 1/2))| − W (45a)

and

ϕ3(x) = (L − x1)(x1 − 2L), (45b)

which are combined together to introduce a unique level set function as

ϕ(x) = 1 −

[
max

(
0, 1 −

ϕ1(x)
δ1

)]δ2
−

[
max

(
0, 1 −

ϕ2(x)
δ1

)]δ2
−

[
max

(
0, 1 −

ϕ3(x)
δ1

)]δ2
. (46)

n Eqs. (45), the functions ϕ1 and ϕ2 define the lattice structure of the unit cell, with W controlling the width of
he unit cell’s struts, and the function ϕ3 controls the location of the transition between the homogeneous ends and
he structured region. Meanwhile, Eq. (46) provides a way to blend multiple level set functions where the positive
arameters δ1 and δ2 control the sharpness of the transition among the level set functions; in particular, a low value
f δ1 and a high value of δ2 make the transition sharper whereas a high value of δ1 and a low value of δ2 make the
ransition smoother. Here, we use L = 5, W = 0.4, δ1 = 0.2 and δ2 = 2.

The geometry is periodic along the x2 direction and, owing to its periodicity, the numerical problem is setup in
he background rectangle R = [0, 3L] × [0, 1] where the implicitly-defined mesh is generated from a background
rid consisting of 480×32 cells. The implicitly-defined mesh is partially shown in the right-hand side of Fig. 24 for
he unit cell. Absorbing boundary conditions are prescribed at x1 = 0 and x1 = 3L , periodic boundary conditions
re prescribed at x2 = 0 and x2 = 1, and zero-traction boundary conditions are prescribed on the zero-contour Lα

f the level set function ϕ. Absorbing and periodic boundary conditions are chosen to minimize the reflection of

he elastic waves from the background rectangle’s boundaries while zero-traction boundary conditions are typical of
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Fig. 25. (Left) Geometry, initial conditions and boundary conditions for the 3D structured solid problem. (Right) Closeup on the geometry
nd the implicitly-defined mesh of the unit-cell.

ingle-phase metamaterials; different types of boundary condition could also be considered, especially if finite-size
pecimens are to be modeled. The solid is assumed isotropic with density ρ = 1 and elastic constants defined by

the velocity of the P-waves cP = 1 and the velocity of the S-waves cS = 0.56. Initial conditions are prescribed as

Uα0 = Ũe−25(x1−2.5)2
, (47)

where Ũ is the eigenvector solution of Eq. (28) with κ = (1, 0) and ω = cP ; this initiates a wave that propagates
from the homogeneous end of the solid to the structured region along the direction of the positive x1 axis.

Similar to the 2D case, the considered 3D solid consists of two homogeneous ends and a central structured region
as shown in Fig. 25. The unit cell is a Schwarz diamond [70] and is displayed in the right-hand side of Fig. 24.
Consider the following functions:

ϕ1(x) = sin(ξ1) sin(ξ2) sin(ξ3) + sin(ξ1) cos(ξ2) cos(ξ3) + cos(ξ1) cos(ξ2) sin(ξ3) + cos(ξ1) cos(ξ2) cos(ξ3), (48a)

ith ξ1 ≡ 2πx1, ξ2 ≡ 2πx2 and ξ3 ≡ 2πx3, and

ϕ2(x) =

{
x1/L − 1 if x1 < 3L/2
2 − x1/L if x1 ≥ 3L/2,

(48b)

here L = 5. Then, to construct the whole geometry, we define the following level set function

ϕ(x) = w(x)
(
1/2 − ϕ1(x)

)(
1/2 + ϕ1(x)

)
+

(
1 − w(x)

)
ϕ2(x), (49)

here w(x) is a function controlling the transition between the homogeneous region and the structured region and
s given by

w(x) =
1
π

[atan(50(x1 − L)) − atan(50(x1 − 2L))] . (50)

The numerical setup of the 3D problem is similar to the numerical setup of the 2D problem: the 3D geometry
is periodic along the x2 and the x3 directions, and the implicitly-defined mesh is generated from a background grid
consisting of 480 × 32 × 32 cells in the background prism R = [0, 3L] × [0, 1] × [0, 1]. The right-hand side of
Fig. 25 shows the resulting implicitly-defined mesh corresponding to the unit cell. Absorbing boundary conditions
are prescribed at x1 = 0 and x1 = 3L , periodic boundary conditions are prescribed at x2 = 0 and x2 = 1 and
at x3 = 0 and x3 = 1, and zero-traction boundary conditions are prescribed on the zero-contour Lα of the level
set function ϕ. The same elastic properties for the 2D case are employed, while initial conditions are given as in
Eq. (47) where Ũ is the eigenvector solution of the 3D version of Eq. (28) with κ = (1, 0, 0) and ω = cP .

Figs. 26 and 27 show a few snapshots of the velocity component v1 at the time instants t = 2.5, 7.5, 12.5, 17.5
and 22.5 for the 2D setup and the 3D setup, respectively. In both cases, it is possible to observe that part of the wave
gets reflected by the structured region and part of it gets transmitted, whilst a complex distribution of the mechanical
field is induced by the geometry of the structured solid. Moreover, upon recalling that the length of the structured
26



V. Gulizzi and R. Saye Computer Methods in Applied Mechanics and Engineering 395 (2022) 114971

r
t
m
i
p

Fig. 26. Snapshots of the velocity component v1 at the time instants t = 2.5, 7.5, 12.5, 17.5 and 22.5 for the 2D structured solid problem.

egion is L = 5 and the wave travels at cP = 1, it is interesting to notice that, between t = 2.5 and t = 7.5,
he wave is not able to propagate from the beginning to the structured region to its end. This means that, from a

acroscopic viewpoint, the geometry of the structured region is responsible for slowing down the wave speed. This
s one example of several well-known features of metamaterials. In the context of metamaterials, it would be also
ossible to analyze the frequency content of the reflected signal and of the transmitted signal and to investigate the
27
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Fig. 27. Snapshots of the velocity component v1 at the time instants t = 2.5, 7.5, 12.5, 17.5 and 22.5 for the 3D structured solid problem.

top-band properties of the structured solid, which might be considered as a filter for elastic waves. However, these
spects are outside the scope of this paper and the application of the present framework to the analysis and design
f metamaterials will be discussed elsewhere.

. Conclusions

We have presented a discontinuous Galerkin framework for modeling wave propagation in single-phase and bi-
hase elastic solid with complex geometries and general anisotropic constitutive behavior. The framework belongs
o embedded-boundary methods and is referred to as implicit-mesh DG method because it is based on the use
f structured grids where the curved geometries are represented implicitly via level set functions and the domain
28
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discretization is generated by intersecting the level set functions with the grid cells, while a suitable cell-merging
technique avoids the presence of overly small cut cells. The novelty of the method regards the space discretization
and, in particular, the use of high-order accurate quadrature rules for implicitly-defined domains and boundaries,
which allow resolving the presence of the embedded geometries as well as enforcing boundary and interface
conditions with high-order accuracy.

Various numerical tests have been considered and discussed, including several hp-convergence analyses in 2D and
3D and for single- and bi-phase solids, a few case studies involving 2D and 3D hp-AMR, as well as an application
of the present method to the analysis of waves propagating in 2D and 3D structured solids. The results demonstrate
that the method achieves high-order accuracy in the maximum norm and is capable of dealing with implicitly-defined
curved geometries, whilst taking advantage of the ease of generation and manipulation of structured grids.

The approach also offers several avenues of further research in the area of elastodynamics. First, we recall that
the present DG method has been employed to model waves in linear elastic solids with spatially constant elastic
properties. Therefore, a natural extension of the method would be to consider space-varying material properties so
as to model functionally-graded materials with complex geometries; similarly, the method could be extended to
account for viscoelastic attenuation [71], non-linear elastic waves [72], or additional kinds of material properties
and interface conditions, such as those typical of elastic–acoustic coupling, see e.g. [39,40]. Second, it is worth
noting that the implicitly-defined technique has been successfully employed for the solution of elliptic PDEs in
combination with Local DG methods [73] or Interior Penalty DG methods [33]; therefore, the proposed approach
may naturally be extended to the solution of elastodynamics in its primal form, see e.g. [41]. Third, we remark
that the numerical tests feature a smooth geometry implicitly defined by a smooth level set function, including
for the case of the structured solids wherein multiple level set functions were blended together to form a unique
level set function; nevertheless, this does not represent a requirement (or limitation) for the present implicit-mesh
DG framework, which can be used in combination with more complex geometry definitions, provided that the
corresponding quadrature rules be available. To this end, one possibility is to leverage the high-order accurate
quadrature algorithms recently developed in Ref. [74], which can handle various kinds of complex geometry, such
as intersecting/overlapping domains containing corners, junctions, tunnels, and multiple components, among other
kinds of interfacial features. This would allow extending the present approach to the modeling of engineering
components, which are typically characterized by more complex geometrical features than the ones considered
in this work. Finally, we note that we have not thoroughly discussed here the performance of the implementation;
nevertheless, upon recalling that the proposed approach is a fully explicit scheme, a few comments regarding the
computational cost are worth mentioning:

• When a static mesh is employed, all quantities related to the implicitly-defined mesh may be precomputed
and stored at the beginning of the simulations; these include the quadrature nodes and weights of the elements
and element boundaries, the mass matrix given in Eq. (15) and, for static hp-AMR schemes, the interpolation
operator given in Eq. (18). Then, the computational cost of the proposed scheme is in general linear in the
number of mesh elements and linear in the number of time steps.

• In case of dynamic meshes, even though the aforementioned quantities are computed at each regridding,
i.e. every time the mesh is updated, profiling experiment reveals that the cost of constructing the implicitly-
defined mesh is still negligible compared to the evaluation of the right-hand side of Eq. (22). When combined
with the smaller number of mesh elements required by adaptively refined meshes, this confirms the benefits
of hp-AMR schemes.

• In addition to the points above, another important contributing factor to the computational cost of the method
is the inter-processor communication time for parallel simulations and/or the host-device communication time
for simulations run using modern accelerators, such as general-purpose graphical processing units. In such
cases, the computational cost of data movement is mainly related to the distribution of the computational load
and the memory layout among the processors, whose design naturally impacts the efficiency of the numerical
scheme.
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