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Abstract. Erdős conjectured that 1, 4, and 256 are the only powers of two whose ternary representations consist solely of
0s and 1s. Sloane conjectured that, except for {20, 21, 22, 23, 24, 215}, every other power of two has at least one 0 in its ternary
representation. In this paper, numerical results are given in strong support of these conjectures. In particular, we verify both
conjectures for all 2n with n ≤ 2 · 345 ≈ 5.9× 1021. Our approach makes use of a simple recursive construction of numbers 2n

having prescribed patterns in their trailing ternary digits.
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1. Introduction. Circa 1978, Erdős [2] conjectured that the only powers of two which do not have
a 2 anywhere in their ternary representation are the numbers 20, 22, and 28. Gupta [3] verified this to be
the case for every 2n with n ≤ 4373. Extending this bound, a numerical study of Vardi [6] confirmed no
counterexamples exist for n ≤ 2 · 320 ≈ 7× 109. The conjecture remains open; see the additional references
and analysis of Lagarias [4]; see also Dimitrov & Howe [1] who study a closely related question and prove
that the only powers of two whose ternary representation contains no 2 and at most twenty-five 1s are the
aforementioned numbers, 20, 22, and 28.

Similar in spirit, Sloane [5] conjectured that, except for the numbers {20, 21, 22, 23, 24, 215}, every other
power of two contains a 0 somewhere in its ternary representation. Along the same lines, one may conjecture
that, for all but finite number of cases, every power of two contains a 1 somewhere in its ternary representation—
however, it is straightforward to show this is essentially equivalent to the conjecture of Erdős (the exceptional
cases being replaced by 21, 23, and 29).

One may summarize all three conjectures to say that, except for a handful of small, easily predictable
cases, every power of two has every possible digit somewhere in its ternary representation. Heuristically,
we anticipate this to be the case because the ternary digits of powers of two are expected to be essentially
random, implying that the chances of omitting a particular digit becomes vanishingly small as the overall digit
count increases. However, this is far from a proof; indeed, the conjectures represent examples of exponential
Diophantine equations for which few methods of attack have been found [1, 4].

In this note, numerical results are given in strong support of these conjectures. In particular, we
significantly extend prior verification bounds and confirm that the ternary representation of 2n contains
every possible ternary digit, for all 16 ≤ n ≤ 2 · 345 ≈ 5.9× 1021. Our approach focuses on examining the
trailing ternary digits of 2n, which can be efficiently calculated even for massive exponents. In particular, we
develop a recursive algorithm to construct numbers 2n having prescribed patterns in their trailing ternary
digits. For example, to find a potential counterexample to Erdős’s conjecture, one may directly enumerate
in increasing order the numbers 2n whose trailing digits are some combination of 0s and 1s. We note the
recursive algorithm shares some aspects with the sieving method of Gupta [3].

As part of our analysis, we also compute the smallest power of two which has no 0 in the last k digits
of its ternary expansion, for k = 1, 2, . . . (and similarly for trailing digits excluding 1 and 2). The results
agree very well with what one may expect supposing that the ternary digits of 2n are essentially rolls of a
three-sided die.

2. Notation. It is convenient to define a shorthand notation for the purposes of examining the trailing
ternary digits of a number: for integers a, b and k a positive integer, a ≡k b means a ≡ b (mod 3k). In
addition, dk(a) is defined as the kth ternary digit of a, with d1(a) being the least significant digit: more
precisely, if a =

∑n
i=0 ai3

i is the ternary representation of a, then dk(a) := ak−1. As a final piece of notation,
(· · · )3 indicates the digits in the ternary expansion of a number, e.g., 28 = (100111)3.

3. Method. A simple recursive construction of numbers 2n, having prescribed patterns in their trailing
ternary digits, is made possible via the results of the following lemma; its proof is elementary, and shares
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some aspects with the method of Gupta [3]. A self-contained proof of the lemma is deferred to the appendix
so as to simplify the presentation.

Lemma 3.1. For a positive integer k, define1 uk := 2 · 3k−1. Then

(i) uk is the smallest positive integer such that 2uk ≡k 1;

(ii) if i, j ∈ N and 2i ≡k 2j, then i and j differ by a multiple of uk;

(iii) if i, j ∈ N, the (k + 1)st ternary digit of 2iuk+j is related to that of 2j via

dk+1(2iuk+j) ≡ dk+1(2j) + i · d1(2j) (mod 3).

We demonstrate the recursive construction process by means of a generic five-digit example. (There is
nothing special about the digit count of five.) Suppose we have constructed a positive integer j < u5 such
that the last five ternary digits of 2j is abcde, for some fixed a, . . . , d ∈ {0, 1, 2} and e ∈ {1, 2}. Then, for
i ∈ {0, 1, 2}, we claim the numbers ji := iu5 + j are such that 2ji are the smallest possible powers of two
whose last six ternary digits are 0abcde, 1abcde, and 2abcde. (The order of these six-digit combinations, as i
iterates from 0 to 2, depends on e.) To see why, note that:

• Applying part (i) of the lemma with k = 5, observe that 2ji = (2u5)i2j ≡5 2j , and so the last five digits
are preserved.

• For i held fixed, suppose that ` is a positive integer such that ` < ji and 2` matches the last six digits of
2ji . Then, by part (ii) of the lemma, ji − ` is a positive multiple of u6, but this is impossible because
ji = iu5 + j < 2u5 + u5 = u6. Therefore, no such ` exists and consequently 2ji is the smallest possible
power of two whose trailing six digits match those of 2ji .

• Last, by part (iii), the sixth ternary digit of 2ji is equal (modulo 3) to the sixth digit of 2j plus 0, 1,
or 2 multiples of the last digit of 2j . The latter digit is either 1 or −1 (modulo 3), which means that,
irrespective of what the sixth digit of 2j is, we shall always obtain some arrangement of 0abcde, 1abcde,
and 2abcde for the last six digits of 2ji , as i iterates over {0, 1, 2}.
In general, we observe that adding multiples of uk to a number j < uk allow us to explicitly construct

powers of two whose last k digits match those of 2j and whose (k + 1)st digit is controlled; moreover, the
recursive approach builds powers of two in the smallest order possible. As an example application, we may
then use this approach to test the conjecture of Erdős, by starting with 20 (whose least significant digit is 1),
then generate the smallest powers of two whose trailing two digits are 01 and 11, then generate the smallest
powers of two whose trailing three digits are 001, 101, 011, and 111, etc. If any of these powers of two end
up containing solely 0s and 1s in their ternary representation, then a counterexample to the conjecture has
been discovered (provided it is not one of the trivial cases, of course); moreover, any such counterexample
must be constructable by this process.

An algorithm implementing this strategy is given in Algorithm 1. The input is k, the number of so-far-
constructed trailing digits, the unit uk defined by Lemma 3.1 and its corresponding power of two, along
with an integer j and its corresponding power of two. The parameter χ specifies the digit controlling the
recursive construction: if χ = 2 (resp., χ = 0), then Algorithm 1 generates powers of two whose trailing
k digits contain only 0s and 1s (resp., only 1s and 2s), thereby examining the conjecture of Erdős (resp.,
Sloane). In particular, for χ = 2, the recursion is initiated with the first power of two having k = 1 valid
digits, i.e., G2(k = 1, uk = 2, 2uk = 4, j = 0, 2j = 1). Meanwhile, for χ = 0, the recursion is initiated via
two base cases, G0(k = 1, uk = 2, 2uk = 4, j = 0, 2j = 1) and G0(k = 1, uk = 2, 2uk = 4, j = 1, 2j = 2). By
construction, the recursive algorithm is depth-first, with a maximum depth controlled by the user-defined
parameter K. A straightforward calculation shows that the total number of powers of two constructed by
the recursive algorithm is Θ(2K), and that every such power is less than 2uK . On the other hand, the total
number of powers of two less than 2uK is Θ(3K). In that sense, and in the context of testing the conjectures,
the recursive approach exponentially reduces the search space versus the more elementary method of simply
testing every power of two in increasing order.

Our implementation of Algorithm 1 includes the following aspects, mainly targeting its efficient execution:

1In fact, uk = ϕ(3k), where ϕ is the Euler totient function; Euler’s theorem implies that auk ≡ 1 (mod 3k) for any positive
integer a coprime to 3.
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Algorithm 1 Gχ(k, uk, 2uk , j, 2j).

1: Determine the first occurrence of digit χ in 2j .
2: if digit χ not found and j > 16 then
3: output j (nontrivial counterexample found)

4: if dk(2j) = χ then
5: return
6: if k ≥ K then
7: return
8: Compute 2uk+1 = (2uk )3.
9: Execute Gχ

(
k + 1, 3uk, 2

uk+1 , j, 2j
)
.

10: Execute Gχ
(
k + 1, 3uk, 2

uk+1 , j + uk, 2
j · 2uk

)
.

11: Execute Gχ
(
k + 1, 3uk, 2

uk+1 , j + 2uk, 2
j · (2uk )2

)
.

Fig. 1. Recursive generation of powers of two whose trailing k ternary digits are required to satisfy particular
conditions.

• Except for line 1, all powers of two are computed in the cyclic group modulo 3κ for a fixed κ. In particular,
we have used a tailor-made, fixed precision integer type representing a κ = 54 digit ternary number. It
is implemented as a three-digit number in base 318, with each such digit represented by a conventional
32-bit unsigned integer (uint32_t in C++). This approach is particularly fast at computing the cubes
and multiplications in Algorithm 1.

• On line 1, we first query for the occurrence of digit χ in the fixed-precision 54-ternary digit number
representing 2j . (Here, the “first occurrence” essentially means min{i : di(j) = χ}.) Although sufficiently
rare, it can happen that no such digit occurs in these 54 digits, in which case we switch over to an
alternative algorithm. The alternative algorithm computes 2j (via exponentiation-by-squaring) in the
cycling group modulo 3` (using a similar ternary digit implementation as above), in progressively increasing
lengths `, until χ is found. In essence, this method tries to compute as few of the trailing digits of
2j as possible in order to find the digit χ; owing to the nature of the distribution of ternary digits of
powers of two, it is usually the case that not many additional digits are required. (We note that a
nontrivial counterexample to the conjectures would require ` to reach the full digit length of the ternary
representation of 2j , however this circumstance never occurred in our computational study.)

4. Results. Running on a modest 64-core compute server for a few days, the computational study in
this work applied a maximum recursion depth of K = 46. This corresponds to testing the conjectures of
Erdős and Sloane against all powers 2n such that n ≤ u46 = 2 · 346−1 ≈ 5.9× 1021. No counterexamples were
found.

As part of this study, trailing digit count “record breakers” were tracked. Specifically, for χ ∈ {0, 1, 2},
we define ρχ : N→ N such that

ρχ(k) = min{n ∈ N : 2n ≥ 3k−1 and χ occurs nowhere in the last k ternary digits of 2n}.

(In particular, the powers of two must have at least k ternary digits, i.e., 2n ≥ 3k−1.) As an example,
ρ2(100) = 710982592620911336; the last 110 ternary digits of 2710982592620911336 are(

0102020002100100100110011100110101011111010101010110010←↩
1000111001000101110010101011111010001110110001110111011

)
3
.

As another example, ρ0(100) = 388128961376647359; the last 110 digits of 2388128961376647359 are(
2021120020121121111112111222212121111112222122221212212←↩

1122111112221212212211111121221222222111222122221212122
)
3
.

It is straightforward to show that ρ1(k) = ρ2(k) + 1 for all k. This is because 2n ends in a sequence of 0s and
2s if and only if 2n−1 ends in a sequence of 0s and 1s; moreover, the maximal number of trailing non-1 digits
(for the former) and non-2 digits (for the latter) are exactly the same. As a result, we only consider ρ0 and
ρ2 in the following analysis.
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Fig. 2. Plots of ρ0 (resp., ρ2), defined as the smallest integer n such that the digit 0 (resp., 2) occurs nowhere
in the last k ternary digits of 2n. The arrow points to the instance where ρ2(k) = 201015414581294 for all
82 ≤ k ≤ 98.

Fig. 3. Length of the ternary representation of 2ρχ (being approximately ρχ log3 2) as a fraction of the expected
number of rolls of three-sided die required to generate an uninterrupted sequence of k non-χ digits (that average
roll count being 3( 3

2
)k − 3).

Fig. 2 plots ρ0 and ρ2 as a function of k. We observe that ρχ(k) grows approximately exponentially
with k. The longer horizontal steps correspond to the record breakers which have, roughly speaking, an
uncharacteristic number of trailing non-χ digits. One notable example is n = 201015414581294, which
corresponds to the smallest power of two having 82 trailing non-2 digits; this same example has, in fact, 98
trailing non-2 digits. On the other hand, the total number of ternary digits of this power of two is about
1.3× 1014, far exceeding this 98 digit count.

An alternative analysis comes from the heuristic that the ternary digits of powers of two are essentially
random. Imagining the digits of 2n, reading from right-to-left, are a random number generator implementing
the rolls of a three-sided die, we may ask how many rolls are necessary to generate an uninterrupted sequence
of k non-χ digits. Each non-χ digit has a probability of 2

3 , and a routine calculation shows that we need, on
average, 3( 3

2 )k − 3 total rolls to generate such a sequence. Of course, this is only an approximation given
that the digits of powers of two are entirely deterministic; in particular, the first and last digit of 2n is never
a 0, so this heuristic analysis could be slightly improved. Nevertheless, the expected roll count serves as an
estimate of what the total ternary digit length is expected to be. Corresponding to the record breakers, Fig. 3
plots the ternary digit length of 2n (being approximately n log3 2) as a fraction of the expected roll count. We
observe that, within zero to four of orders of magnitude, the digit counts of record breakers roughly match
the expected roll count. The example of n = 201015414581294, mentioned in the previous paragraph, is
uncharacteristic in the sense that for k = 98, we expect to require about 5.4× 1017 rolls, yet 2201015414581294

has only 1.3× 1014 ternary digits. Nevertheless, we observe in Fig. 3 that there is no reasonable indication of
finding any counterexamples to the conjectures: even the outlier record breakers are nowhere close to having
the entire string of digits devoid of χ.

5. Conclusions. By way of a recursive algorithm and extensive computation, we studied here the two
conjectures of Erdős and Sloane. These conjectures essentially state that, except for small number of trivial
cases, every power of two has all possible digits somewhere in its ternary representation. The recursive
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algorithm explicitly constructs powers of two such that their trailing digits satisfy a certain requirement, e.g.,
consist solely of 0s and 1s. Testing these conjectures against all powers 2n with n ≤ 2 · 345 ≈ 5.9× 1021, no
counterexamples were found. This extends an earlier study by Vardi [6] which considered n ≤ 2 ·320 ≈ 7×109.
As part of the analysis, two “record breaking” integer sequences were defined: these record the smallest
powers of two having no 0 (resp., 2) in the last k digits of its ternary representation, for k = 1, 2, . . .. These
integer sequences have been entered into the OEIS as A351927 and A351928.

Appendix A. Proof of Lemma 3.1. We begin with a few elementary observations:

(a) Suppose the last k ≥ 2 ternary digits of an integer x are (a[0]k−21)3 with a ∈ {0, 1, 2}. (Here and in
the following, the notation [ · ]` means ` copies of the indicated digit.) Then, for some exponent i ∈ N,
we have that xi ≡ (a · 3k−1 + 1)i ≡ ai · 3k−1 + 1 (mod 3k), as shown by a simple application of the
binomial theorem.

(b) For a positive integer k, the last k + 1 ternary digits of 2uk are (1[0]k−11)3. A simple inductive proof is
as follows. Suppose the result holds for some k ≥ 2 (the base cases with k ∈ {1, 2} are trivial to verify).
Then 2uk − 1 = (3x+ 1)3k for some non-negative integer x, and so

2uk+1 = (2uk)3 =
(
(2uk − 1) + 1

)3
= (2uk − 1)3 + 3(2uk − 1)2 + 3(2uk − 1) + 1

≡ 3k+1 + 1 (mod 3k+2),

as required.

Applying these observations, the proof of Lemma 3.1 is as follows.

(i) For k ≥ 2, assume by induction that uk−1 is the smallest positive integer j such that 2j ≡k−1 1, and let
` be the smallest positive integer such that 2` ≡k 1. This number clearly satisfies 2` ≡k−1 1, and so if
` = auk−1 + b with a, b ∈ N and 0 ≤ b < uk−1, we see that (2uk−1)a2b ≡k−1 1. This linear congruence
problem has a unique solution, namely 2b ≡k−1 1, which by the inductive hypothesis implies b = 0,
and so ` is a multiple of uk−1. By observation (b) above, ` cannot equal uk−1 because the kth digit of
2uk−1 is 1. Further, ` cannot equal 2uk−1 because the square of 2uk−1 has kth digit equal to 2. The
next multiple of uk−1 satisfies all requirements, and so ` = 3uk−1 = uk, as claimed. (Note: the base
cases of the inductive argument trivially hold by elementary computation.)

(ii) Suppose i, j ∈ N are such that 2i ≡k 2j . Without loss of generality, suppose i < j. Then 2i2j−i = 2j

yields a linear congruence (2i mod 3k)(2j−i mod 3k) ≡ 2j (mod 3k). Since the gcd of (2i mod 3k) and
3k is unity, there is exactly one solution to the linear congruence, namely 2j−i ≡k 1. Now suppose
j − i = auk + b with a, b ∈ N and 0 ≤ b < uk; since 2j−i = (2uk)a2b ≡k 1 and 2uk ≡k 1, again by
uniqueness of the linear congruence problem, we find that 2b ≡k 1. Part (i) then implies b = 0, and so i
and j differ by a multiple of uk, as claimed.

(iii) Suppose i, j ∈ N. Note that 2iuk+j ≡k+1 (2uk mod 3k+1)i2j (mod 3k+1). By observations (a) and (b),
the trailing k + 1 ternary digits of the first term are

(
[i mod 3][0]k−11

)
3
. It is then a straightforward

application of long multiplication to show that, modulo three, the (k + 1)st digit of 2iuk+j is equal to
the sum of the (k + 1)st digit of 2j plus i times the first digit of 2j , as claimed.
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