Voro++
v_compute.cc
Go to the documentation of this file.
1 // Voro++, a 3D cell-based Voronoi library
2 //
3 // Author : Chris H. Rycroft (LBL / UC Berkeley)
4 // Email : [email protected]
5 // Date : August 30th 2011
6 
7 /** \file v_compute.cc
8  * \brief Function implementantions for the voro_compute template. */
9 
10 #include "worklist.hh"
11 #include "v_compute.hh"
12 #include "rad_option.hh"
13 #include "container.hh"
14 #include "container_prd.hh"
15 
16 namespace voro {
17 
18 /** The class constructor initializes constants from the container class, and
19  * sets up the mask and queue used for Voronoi computations.
20  * \param[in] con_ a reference to the container class to use.
21  * \param[in] (hx_,hy_,hz_) the size of the mask to use. */
22 template<class c_class>
23 voro_compute<c_class>::voro_compute(c_class &con_,int hx_,int hy_,int hz_) :
24  con(con_), boxx(con_.boxx), boxy(con_.boxy), boxz(con_.boxz),
25  xsp(con_.xsp), ysp(con_.ysp), zsp(con_.zsp),
26  hx(hx_), hy(hy_), hz(hz_), hxy(hx_*hy_), hxyz(hxy*hz_), ps(con_.ps),
27  id(con_.id), p(con_.p), co(con_.co), bxsq(boxx*boxx+boxy*boxy+boxz*boxz),
28  mv(0), qu_size(3*(3+hxy+hz*(hx+hy))), wl(con_.wl), mrad(con_.mrad),
29  mask(new unsigned int[hxyz]), qu(new int[qu_size]), qu_l(qu+qu_size) {
30  reset_mask();
31 }
32 
33 /** Scans all of the particles within a block to see if any of them have a
34  * smaller distance to the given test vector. If one is found, the routine
35  * updates the minimum distance and store information about this particle.
36  * \param[in] ijk the index of the block.
37  * \param[in] (x,y,z) the test vector to consider (which may have already had a
38  * periodic displacement applied to it).
39  * \param[in] (di,dj,dk) the coordinates of the current block, to store if the
40  * particle record is updated.
41  * \param[in,out] w a reference to a particle record in which to store
42  * information about the particle whose Voronoi cell the
43  * vector is within.
44  * \param[in,out] mrs the current minimum distance, that may be updated if a
45  * closer particle is found. */
46 template<class c_class>
47 inline void voro_compute<c_class>::scan_all(int ijk,double x,double y,double z,int di,int dj,int dk,particle_record &w,double &mrs) {
48  double x1,y1,z1,rs;bool in_block=false;
49  for(int l=0;l<co[ijk];l++) {
50  x1=p[ijk][ps*l]-x;
51  y1=p[ijk][ps*l+1]-y;
52  z1=p[ijk][ps*l+2]-z;
53  rs=con.r_current_sub(x1*x1+y1*y1+z1*z1,ijk,l);
54  if(rs<mrs) {mrs=rs;w.l=l;in_block=true;}
55  }
56  if(in_block) {w.ijk=ijk;w.di=di;w.dj=dj,w.dk=dk;}
57 }
58 
59 /** Finds the Voronoi cell that given vector is within. For containers that are
60  * not radially dependent, this corresponds to findig the particle that is
61  * closest to the vector; for the radical tessellation containers, this
62  * corresponds to a finding the minimum weighted distance.
63  * \param[in] (x,y,z) the vector to consider.
64  * \param[in] (ci,cj,ck) the coordinates of the block that the test particle is
65  * in relative to the container data structure.
66  * \param[in] ijk the index of the block that the test particle is in.
67  * \param[out] w a reference to a particle record in which to store information
68  * about the particle whose Voronoi cell the vector is within.
69  * \param[out] mrs the minimum computed distance. */
70 template<class c_class>
71 void voro_compute<c_class>::find_voronoi_cell(double x,double y,double z,int ci,int cj,int ck,int ijk,particle_record &w,double &mrs) {
72  double qx=0,qy=0,qz=0,rs;
73  int i,j,k,di,dj,dk,ei,ej,ek,f,g,disp;
74  double fx,fy,fz,mxs,mys,mzs,*radp;
75  unsigned int q,*e,*mijk;
76 
77  // Init setup for parameters to return
78  w.ijk=-1;mrs=large_number;
79 
80  con.initialize_search(ci,cj,ck,ijk,i,j,k,disp);
81 
82  // Test all particles in the particle's local region first
83  scan_all(ijk,x,y,z,0,0,0,w,mrs);
84 
85  // Now compute the fractional position of the particle within its
86  // region and store it in (fx,fy,fz). We use this to compute an index
87  // (di,dj,dk) of which subregion the particle is within.
88  unsigned int m1,m2;
89  con.frac_pos(x,y,z,ci,cj,ck,fx,fy,fz);
90  di=int(fx*xsp*wl_fgrid);dj=int(fy*ysp*wl_fgrid);dk=int(fz*zsp*wl_fgrid);
91 
92  // The indices (di,dj,dk) tell us which worklist to use, to test the
93  // blocks in the optimal order. But we only store worklists for the
94  // eighth of the region where di, dj, and dk are all less than half the
95  // full grid. The rest of the cases are handled by symmetry. In this
96  // section, we detect for these cases, by reflecting high values of di,
97  // dj, and dk. For these cases, a mask is constructed in m1 and m2
98  // which is used to flip the worklist information when it is loaded.
99  if(di>=wl_hgrid) {
100  mxs=boxx-fx;
101  m1=127+(3<<21);m2=1+(1<<21);di=wl_fgrid-1-di;if(di<0) di=0;
102  } else {m1=m2=0;mxs=fx;}
103  if(dj>=wl_hgrid) {
104  mys=boxy-fy;
105  m1|=(127<<7)+(3<<24);m2|=(1<<7)+(1<<24);dj=wl_fgrid-1-dj;if(dj<0) dj=0;
106  } else mys=fy;
107  if(dk>=wl_hgrid) {
108  mzs=boxz-fz;
109  m1|=(127<<14)+(3<<27);m2|=(1<<14)+(1<<27);dk=wl_fgrid-1-dk;if(dk<0) dk=0;
110  } else mzs=fz;
111 
112  // Do a quick test to account for the case when the minimum radius is
113  // small enought that no other blocks need to be considered
114  rs=con.r_max_add(mrs);
115  if(mxs*mxs>rs&&mys*mys>rs&&mzs*mzs>rs) return;
116 
117  // Now compute which worklist we are going to use, and set radp and e to
118  // point at the right offsets
119  ijk=di+wl_hgrid*(dj+wl_hgrid*dk);
120  radp=mrad+ijk*wl_seq_length;
121  e=(const_cast<unsigned int*> (wl))+ijk*wl_seq_length;
122 
123  // Read in how many items in the worklist can be tested without having to
124  // worry about writing to the mask
125  f=e[0];g=0;
126  do {
127 
128  // If mrs is less than the minimum distance to any untested
129  // block, then we are done
130  if(con.r_max_add(mrs)<radp[g]) return;
131  g++;
132 
133  // Load in a block off the worklist, permute it with the
134  // symmetry mask, and decode its position. These are all
135  // integer bit operations so they should run very fast.
136  q=e[g];q^=m1;q+=m2;
137  di=q&127;di-=64;
138  dj=(q>>7)&127;dj-=64;
139  dk=(q>>14)&127;dk-=64;
140 
141  // Check that the worklist position is in range
142  ei=di+i;if(ei<0||ei>=hx) continue;
143  ej=dj+j;if(ej<0||ej>=hy) continue;
144  ek=dk+k;if(ek<0||ek>=hz) continue;
145 
146  // Call the compute_min_max_radius() function. This returns
147  // true if the minimum distance to the block is bigger than the
148  // current mrs, in which case we skip this block and move on.
149  // Otherwise, it computes the maximum distance to the block and
150  // returns it in crs.
151  if(compute_min_radius(di,dj,dk,fx,fy,fz,mrs)) continue;
152 
153  // Now compute which region we are going to loop over, adding a
154  // displacement for the periodic cases
155  ijk=con.region_index(ci,cj,ck,ei,ej,ek,qx,qy,qz,disp);
156 
157  // If mrs is bigger than the maximum distance to the block,
158  // then we have to test all particles in the block for
159  // intersections. Otherwise, we do additional checks and skip
160  // those particles which can't possibly intersect the block.
161  scan_all(ijk,x-qx,y-qy,z-qz,di,dj,dk,w,mrs);
162  } while(g<f);
163 
164  // Update mask value and initialize queue
165  mv++;
166  if(mv==0) {reset_mask();mv=1;}
167  int *qu_s=qu,*qu_e=qu;
168 
169  while(g<wl_seq_length-1) {
170 
171  // If mrs is less than the minimum distance to any untested
172  // block, then we are done
173  if(con.r_max_add(mrs)<radp[g]) return;
174  g++;
175 
176  // Load in a block off the worklist, permute it with the
177  // symmetry mask, and decode its position. These are all
178  // integer bit operations so they should run very fast.
179  q=e[g];q^=m1;q+=m2;
180  di=q&127;di-=64;
181  dj=(q>>7)&127;dj-=64;
182  dk=(q>>14)&127;dk-=64;
183 
184  // Compute the position in the mask of the current block. If
185  // this lies outside the mask, then skip it. Otherwise, mark
186  // it.
187  ei=di+i;if(ei<0||ei>=hx) continue;
188  ej=dj+j;if(ej<0||ej>=hy) continue;
189  ek=dk+k;if(ek<0||ek>=hz) continue;
190  mijk=mask+ei+hx*(ej+hy*ek);
191  *mijk=mv;
192 
193  // Skip this block if it is further away than the current
194  // minimum radius
195  if(compute_min_radius(di,dj,dk,fx,fy,fz,mrs)) continue;
196 
197  // Now compute which region we are going to loop over, adding a
198  // displacement for the periodic cases
199  ijk=con.region_index(ci,cj,ck,ei,ej,ek,qx,qy,qz,disp);
200  scan_all(ijk,x-qx,y-qy,z-qz,di,dj,dk,w,mrs);
201 
202  if(qu_e>qu_l-18) add_list_memory(qu_s,qu_e);
203  scan_bits_mask_add(q,mijk,ei,ej,ek,qu_e);
204  }
205 
206  // Do a check to see if we've reached the radius cutoff
207  if(con.r_max_add(mrs)<radp[g]) return;
208 
209  // We were unable to completely compute the cell based on the blocks in
210  // the worklist, so now we have to go block by block, reading in items
211  // off the list
212  while(qu_s!=qu_e) {
213 
214  // Read the next entry of the queue
215  if(qu_s==qu_l) qu_s=qu;
216  ei=*(qu_s++);ej=*(qu_s++);ek=*(qu_s++);
217  di=ei-i;dj=ej-j;dk=ek-k;
218  if(compute_min_radius(di,dj,dk,fx,fy,fz,mrs)) continue;
219 
220  ijk=con.region_index(ci,cj,ck,ei,ej,ek,qx,qy,qz,disp);
221  scan_all(ijk,x-qx,y-qy,z-qz,di,dj,dk,w,mrs);
222 
223  // Test the neighbors of the current block, and add them to the
224  // block list if they haven't already been tested
225  if((qu_s<=qu_e?(qu_l-qu_e)+(qu_s-qu):qu_s-qu_e)<18) add_list_memory(qu_s,qu_e);
226  add_to_mask(ei,ej,ek,qu_e);
227  }
228 }
229 
230 /** Scans the six orthogonal neighbors of a given block and adds them to the
231  * queue if they haven't been considered already. It assumes that the queue
232  * will definitely have enough memory to add six entries at the end.
233  * \param[in] (ei,ej,ek) the block to consider.
234  * \param[in,out] qu_e a pointer to the end of the queue. */
235 template<class c_class>
236 inline void voro_compute<c_class>::add_to_mask(int ei,int ej,int ek,int *&qu_e) {
237  unsigned int *mijk=mask+ei+hx*(ej+hy*ek);
238  if(ek>0) if(*(mijk-hxy)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mijk-hxy)=mv;*(qu_e++)=ei;*(qu_e++)=ej;*(qu_e++)=ek-1;}
239  if(ej>0) if(*(mijk-hx)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mijk-hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej-1;*(qu_e++)=ek;}
240  if(ei>0) if(*(mijk-1)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mijk-1)=mv;*(qu_e++)=ei-1;*(qu_e++)=ej;*(qu_e++)=ek;}
241  if(ei<hx-1) if(*(mijk+1)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mijk+1)=mv;*(qu_e++)=ei+1;*(qu_e++)=ej;*(qu_e++)=ek;}
242  if(ej<hy-1) if(*(mijk+hx)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mijk+hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej+1;*(qu_e++)=ek;}
243  if(ek<hz-1) if(*(mijk+hxy)!=mv) {if(qu_e==qu_l) qu_e=qu;*(mijk+hxy)=mv;*(qu_e++)=ei;*(qu_e++)=ej;*(qu_e++)=ek+1;}
244 }
245 
246 /** Scans a worklist entry and adds any blocks to the queue
247  * \param[in] (ei,ej,ek) the block to consider.
248  * \param[in,out] qu_e a pointer to the end of the queue. */
249 template<class c_class>
250 inline void voro_compute<c_class>::scan_bits_mask_add(unsigned int q,unsigned int *mijk,int ei,int ej,int ek,int *&qu_e) {
251  const unsigned int b1=1<<21,b2=1<<22,b3=1<<24,b4=1<<25,b5=1<<27,b6=1<<28;
252  if((q&b2)==b2) {
253  if(ei>0) {*(mijk-1)=mv;*(qu_e++)=ei-1;*(qu_e++)=ej;*(qu_e++)=ek;}
254  if((q&b1)==0&&ei<hx-1) {*(mijk+1)=mv;*(qu_e++)=ei+1;*(qu_e++)=ej;*(qu_e++)=ek;}
255  } else if((q&b1)==b1&&ei<hx-1) {*(mijk+1)=mv;*(qu_e++)=ei+1;*(qu_e++)=ej;*(qu_e++)=ek;}
256  if((q&b4)==b4) {
257  if(ej>0) {*(mijk-hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej-1;*(qu_e++)=ek;}
258  if((q&b3)==0&&ej<hy-1) {*(mijk+hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej+1;*(qu_e++)=ek;}
259  } else if((q&b3)==b3&&ej<hy-1) {*(mijk+hx)=mv;*(qu_e++)=ei;*(qu_e++)=ej+1;*(qu_e++)=ek;}
260  if((q&b6)==b6) {
261  if(ek>0) {*(mijk-hxy)=mv;*(qu_e++)=ei;*(qu_e++)=ej;*(qu_e++)=ek-1;}
262  if((q&b5)==0&&ek<hz-1) {*(mijk+hxy)=mv;*(qu_e++)=ei;*(qu_e++)=ej;*(qu_e++)=ek+1;}
263  } else if((q&b5)==b5&&ek<hz-1) {*(mijk+hxy)=mv;*(qu_e++)=ei;*(qu_e++)=ej;*(qu_e++)=ek+1;}
264 }
265 
266 /** This routine computes a Voronoi cell for a single particle in the
267  * container. It can be called by the user, but is also forms the core part of
268  * several of the main functions, such as store_cell_volumes(), print_all(),
269  * and the drawing routines. The algorithm constructs the cell by testing over
270  * the neighbors of the particle, working outwards until it reaches those
271  * particles which could not possibly intersect the cell. For maximum
272  * efficiency, this algorithm is divided into three parts. In the first
273  * section, the algorithm tests over the blocks which are in the immediate
274  * vicinity of the particle, by making use of one of the precomputed worklists.
275  * The code then continues to test blocks on the worklist, but also begins to
276  * construct a list of neighboring blocks outside the worklist which may need
277  * to be test. In the third section, the routine starts testing these
278  * neighboring blocks, evaluating whether or not a particle in them could
279  * possibly intersect the cell. For blocks that intersect the cell, it tests
280  * the particles in that block, and then adds the block neighbors to the list
281  * of potential places to consider.
282  * \param[in,out] c a reference to a voronoicell object.
283  * \param[in] ijk the index of the block that the test particle is in.
284  * \param[in] s the index of the particle within the test block.
285  * \param[in] (ci,cj,ck) the coordinates of the block that the test particle is
286  * in relative to the container data structure.
287  * \return False if the Voronoi cell was completely removed during the
288  * computation and has zero volume, true otherwise. */
289 template<class c_class>
290 template<class v_cell>
291 bool voro_compute<c_class>::compute_cell(v_cell &c,int ijk,int s,int ci,int cj,int ck) {
292  static const int count_list[8]={7,11,15,19,26,35,45,59},*count_e=count_list+8;
293  double x,y,z,x1,y1,z1,qx=0,qy=0,qz=0;
294  double xlo,ylo,zlo,xhi,yhi,zhi,x2,y2,z2,rs;
295  int i,j,k,di,dj,dk,ei,ej,ek,f,g,l,disp;
296  double fx,fy,fz,gxs,gys,gzs,*radp;
297  unsigned int q,*e,*mijk;
298 
299  if(!con.initialize_voronoicell(c,ijk,s,ci,cj,ck,i,j,k,x,y,z,disp)) return false;
300  con.r_init(ijk,s);
301 
302  // Initialize the Voronoi cell to fill the entire container
303  double crs,mrs;
304 
305  int next_count=3,*count_p=(const_cast<int*> (count_list));
306 
307  // Test all particles in the particle's local region first
308  for(l=0;l<s;l++) {
309  x1=p[ijk][ps*l]-x;
310  y1=p[ijk][ps*l+1]-y;
311  z1=p[ijk][ps*l+2]-z;
312  rs=con.r_scale(x1*x1+y1*y1+z1*z1,ijk,l);
313  if(!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false;
314  }
315  l++;
316  while(l<co[ijk]) {
317  x1=p[ijk][ps*l]-x;
318  y1=p[ijk][ps*l+1]-y;
319  z1=p[ijk][ps*l+2]-z;
320  rs=con.r_scale(x1*x1+y1*y1+z1*z1,ijk,l);
321  if(!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false;
322  l++;
323  }
324 
325  // Now compute the maximum distance squared from the cell center to a
326  // vertex. This is used to cut off the calculation since we only need
327  // to test out to twice this range.
328  mrs=c.max_radius_squared();
329 
330  // Now compute the fractional position of the particle within its
331  // region and store it in (fx,fy,fz). We use this to compute an index
332  // (di,dj,dk) of which subregion the particle is within.
333  unsigned int m1,m2;
334  con.frac_pos(x,y,z,ci,cj,ck,fx,fy,fz);
335  di=int(fx*xsp*wl_fgrid);dj=int(fy*ysp*wl_fgrid);dk=int(fz*zsp*wl_fgrid);
336 
337  // The indices (di,dj,dk) tell us which worklist to use, to test the
338  // blocks in the optimal order. But we only store worklists for the
339  // eighth of the region where di, dj, and dk are all less than half the
340  // full grid. The rest of the cases are handled by symmetry. In this
341  // section, we detect for these cases, by reflecting high values of di,
342  // dj, and dk. For these cases, a mask is constructed in m1 and m2
343  // which is used to flip the worklist information when it is loaded.
344  if(di>=wl_hgrid) {
345  gxs=fx;
346  m1=127+(3<<21);m2=1+(1<<21);di=wl_fgrid-1-di;if(di<0) di=0;
347  } else {m1=m2=0;gxs=boxx-fx;}
348  if(dj>=wl_hgrid) {
349  gys=fy;
350  m1|=(127<<7)+(3<<24);m2|=(1<<7)+(1<<24);dj=wl_fgrid-1-dj;if(dj<0) dj=0;
351  } else gys=boxy-fy;
352  if(dk>=wl_hgrid) {
353  gzs=fz;
354  m1|=(127<<14)+(3<<27);m2|=(1<<14)+(1<<27);dk=wl_fgrid-1-dk;if(dk<0) dk=0;
355  } else gzs=boxz-fz;
356  gxs*=gxs;gys*=gys;gzs*=gzs;
357 
358  // Now compute which worklist we are going to use, and set radp and e to
359  // point at the right offsets
360  ijk=di+wl_hgrid*(dj+wl_hgrid*dk);
361  radp=mrad+ijk*wl_seq_length;
362  e=(const_cast<unsigned int*> (wl))+ijk*wl_seq_length;
363 
364  // Read in how many items in the worklist can be tested without having to
365  // worry about writing to the mask
366  f=e[0];g=0;
367  do {
368 
369  // At the intervals specified by count_list, we recompute the
370  // maximum radius squared
371  if(g==next_count) {
372  mrs=c.max_radius_squared();
373  if(count_p!=count_e) next_count=*(count_p++);
374  }
375 
376  // If mrs is less than the minimum distance to any untested
377  // block, then we are done
378  if(con.r_ctest(radp[g],mrs)) return true;
379  g++;
380 
381  // Load in a block off the worklist, permute it with the
382  // symmetry mask, and decode its position. These are all
383  // integer bit operations so they should run very fast.
384  q=e[g];q^=m1;q+=m2;
385  di=q&127;di-=64;
386  dj=(q>>7)&127;dj-=64;
387  dk=(q>>14)&127;dk-=64;
388 
389  // Check that the worklist position is in range
390  ei=di+i;if(ei<0||ei>=hx) continue;
391  ej=dj+j;if(ej<0||ej>=hy) continue;
392  ek=dk+k;if(ek<0||ek>=hz) continue;
393 
394  // Call the compute_min_max_radius() function. This returns
395  // true if the minimum distance to the block is bigger than the
396  // current mrs, in which case we skip this block and move on.
397  // Otherwise, it computes the maximum distance to the block and
398  // returns it in crs.
399  if(compute_min_max_radius(di,dj,dk,fx,fy,fz,gxs,gys,gzs,crs,mrs)) continue;
400 
401  // Now compute which region we are going to loop over, adding a
402  // displacement for the periodic cases
403  ijk=con.region_index(ci,cj,ck,ei,ej,ek,qx,qy,qz,disp);
404 
405  // If mrs is bigger than the maximum distance to the block,
406  // then we have to test all particles in the block for
407  // intersections. Otherwise, we do additional checks and skip
408  // those particles which can't possibly intersect the block.
409  if(co[ijk]>0) {
410  l=0;x2=x-qx;y2=y-qy;z2=z-qz;
411  if(!con.r_ctest(crs,mrs)) {
412  do {
413  x1=p[ijk][ps*l]-x2;
414  y1=p[ijk][ps*l+1]-y2;
415  z1=p[ijk][ps*l+2]-z2;
416  rs=con.r_scale(x1*x1+y1*y1+z1*z1,ijk,l);
417  if(!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false;
418  l++;
419  } while (l<co[ijk]);
420  } else {
421  do {
422  x1=p[ijk][ps*l]-x2;
423  y1=p[ijk][ps*l+1]-y2;
424  z1=p[ijk][ps*l+2]-z2;
425  rs=x1*x1+y1*y1+z1*z1;
426  if(con.r_scale_check(rs,mrs,ijk,l)&&!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false;
427  l++;
428  } while (l<co[ijk]);
429  }
430  }
431  } while(g<f);
432 
433  // If we reach here, we were unable to compute the entire cell using
434  // the first part of the worklist. This section of the algorithm
435  // continues the worklist, but it now starts preparing the mask that we
436  // need if we end up going block by block. We do the same as before,
437  // but we put a mark down on the mask for every block that's tested.
438  // The worklist also contains information about which neighbors of each
439  // block are not also on the worklist, and we start storing those
440  // points in a list in case we have to go block by block. Update the
441  // mask counter, and if it wraps around then reset the whole mask; that
442  // will only happen once every 2^32 tries.
443  mv++;
444  if(mv==0) {reset_mask();mv=1;}
445 
446  // Set the queue pointers
447  int *qu_s=qu,*qu_e=qu;
448 
449  while(g<wl_seq_length-1) {
450 
451  // At the intervals specified by count_list, we recompute the
452  // maximum radius squared
453  if(g==next_count) {
454  mrs=c.max_radius_squared();
455  if(count_p!=count_e) next_count=*(count_p++);
456  }
457 
458  // If mrs is less than the minimum distance to any untested
459  // block, then we are done
460  if(con.r_ctest(radp[g],mrs)) return true;
461  g++;
462 
463  // Load in a block off the worklist, permute it with the
464  // symmetry mask, and decode its position. These are all
465  // integer bit operations so they should run very fast.
466  q=e[g];q^=m1;q+=m2;
467  di=q&127;di-=64;
468  dj=(q>>7)&127;dj-=64;
469  dk=(q>>14)&127;dk-=64;
470 
471  // Compute the position in the mask of the current block. If
472  // this lies outside the mask, then skip it. Otherwise, mark
473  // it.
474  ei=di+i;if(ei<0||ei>=hx) continue;
475  ej=dj+j;if(ej<0||ej>=hy) continue;
476  ek=dk+k;if(ek<0||ek>=hz) continue;
477  mijk=mask+ei+hx*(ej+hy*ek);
478  *mijk=mv;
479 
480  // Call the compute_min_max_radius() function. This returns
481  // true if the minimum distance to the block is bigger than the
482  // current mrs, in which case we skip this block and move on.
483  // Otherwise, it computes the maximum distance to the block and
484  // returns it in crs.
485  if(compute_min_max_radius(di,dj,dk,fx,fy,fz,gxs,gys,gzs,crs,mrs)) continue;
486 
487  // Now compute which region we are going to loop over, adding a
488  // displacement for the periodic cases
489  ijk=con.region_index(ci,cj,ck,ei,ej,ek,qx,qy,qz,disp);
490 
491  // If mrs is bigger than the maximum distance to the block,
492  // then we have to test all particles in the block for
493  // intersections. Otherwise, we do additional checks and skip
494  // those particles which can't possibly intersect the block.
495  if(co[ijk]>0) {
496  l=0;x2=x-qx;y2=y-qy;z2=z-qz;
497  if(!con.r_ctest(crs,mrs)) {
498  do {
499  x1=p[ijk][ps*l]-x2;
500  y1=p[ijk][ps*l+1]-y2;
501  z1=p[ijk][ps*l+2]-z2;
502  rs=con.r_scale(x1*x1+y1*y1+z1*z1,ijk,l);
503  if(!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false;
504  l++;
505  } while (l<co[ijk]);
506  } else {
507  do {
508  x1=p[ijk][ps*l]-x2;
509  y1=p[ijk][ps*l+1]-y2;
510  z1=p[ijk][ps*l+2]-z2;
511  rs=x1*x1+y1*y1+z1*z1;
512  if(con.r_scale_check(rs,mrs,ijk,l)&&!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false;
513  l++;
514  } while (l<co[ijk]);
515  }
516  }
517 
518  // If there might not be enough memory on the list for these
519  // additions, then add more
520  if(qu_e>qu_l-18) add_list_memory(qu_s,qu_e);
521 
522  // Test the parts of the worklist element which tell us what
523  // neighbors of this block are not on the worklist. Store them
524  // on the block list, and mark the mask.
525  scan_bits_mask_add(q,mijk,ei,ej,ek,qu_e);
526  }
527 
528  // Do a check to see if we've reached the radius cutoff
529  if(con.r_ctest(radp[g],mrs)) return true;
530 
531  // We were unable to completely compute the cell based on the blocks in
532  // the worklist, so now we have to go block by block, reading in items
533  // off the list
534  while(qu_s!=qu_e) {
535 
536  // If we reached the end of the list memory loop back to the
537  // start
538  if(qu_s==qu_l) qu_s=qu;
539 
540  // Read in a block off the list, and compute the upper and lower
541  // coordinates in each of the three dimensions
542  ei=*(qu_s++);ej=*(qu_s++);ek=*(qu_s++);
543  xlo=(ei-i)*boxx-fx;xhi=xlo+boxx;
544  ylo=(ej-j)*boxy-fy;yhi=ylo+boxy;
545  zlo=(ek-k)*boxz-fz;zhi=zlo+boxz;
546 
547  // Carry out plane tests to see if any particle in this block
548  // could possibly intersect the cell
549  if(ei>i) {
550  if(ej>j) {
551  if(ek>k) {if(corner_test(c,xlo,ylo,zlo,xhi,yhi,zhi)) continue;}
552  else if(ek<k) {if(corner_test(c,xlo,ylo,zhi,xhi,yhi,zlo)) continue;}
553  else {if(edge_z_test(c,xlo,ylo,zlo,xhi,yhi,zhi)) continue;}
554  } else if(ej<j) {
555  if(ek>k) {if(corner_test(c,xlo,yhi,zlo,xhi,ylo,zhi)) continue;}
556  else if(ek<k) {if(corner_test(c,xlo,yhi,zhi,xhi,ylo,zlo)) continue;}
557  else {if(edge_z_test(c,xlo,yhi,zlo,xhi,ylo,zhi)) continue;}
558  } else {
559  if(ek>k) {if(edge_y_test(c,xlo,ylo,zlo,xhi,yhi,zhi)) continue;}
560  else if(ek<k) {if(edge_y_test(c,xlo,ylo,zhi,xhi,yhi,zlo)) continue;}
561  else {if(face_x_test(c,xlo,ylo,zlo,yhi,zhi)) continue;}
562  }
563  } else if(ei<i) {
564  if(ej>j) {
565  if(ek>k) {if(corner_test(c,xhi,ylo,zlo,xlo,yhi,zhi)) continue;}
566  else if(ek<k) {if(corner_test(c,xhi,ylo,zhi,xlo,yhi,zlo)) continue;}
567  else {if(edge_z_test(c,xhi,ylo,zlo,xlo,yhi,zhi)) continue;}
568  } else if(ej<j) {
569  if(ek>k) {if(corner_test(c,xhi,yhi,zlo,xlo,ylo,zhi)) continue;}
570  else if(ek<k) {if(corner_test(c,xhi,yhi,zhi,xlo,ylo,zlo)) continue;}
571  else {if(edge_z_test(c,xhi,yhi,zlo,xlo,ylo,zhi)) continue;}
572  } else {
573  if(ek>k) {if(edge_y_test(c,xhi,ylo,zlo,xlo,yhi,zhi)) continue;}
574  else if(ek<k) {if(edge_y_test(c,xhi,ylo,zhi,xlo,yhi,zlo)) continue;}
575  else {if(face_x_test(c,xhi,ylo,zlo,yhi,zhi)) continue;}
576  }
577  } else {
578  if(ej>j) {
579  if(ek>k) {if(edge_x_test(c,xlo,ylo,zlo,xhi,yhi,zhi)) continue;}
580  else if(ek<k) {if(edge_x_test(c,xlo,ylo,zhi,xhi,yhi,zlo)) continue;}
581  else {if(face_y_test(c,xlo,ylo,zlo,xhi,zhi)) continue;}
582  } else if(ej<j) {
583  if(ek>k) {if(edge_x_test(c,xlo,yhi,zlo,xhi,ylo,zhi)) continue;}
584  else if(ek<k) {if(edge_x_test(c,xlo,yhi,zhi,xhi,ylo,zlo)) continue;}
585  else {if(face_y_test(c,xlo,yhi,zlo,xhi,zhi)) continue;}
586  } else {
587  if(ek>k) {if(face_z_test(c,xlo,ylo,zlo,xhi,yhi)) continue;}
588  else if(ek<k) {if(face_z_test(c,xlo,ylo,zhi,xhi,yhi)) continue;}
589  else voro_fatal_error("Compute cell routine revisiting central block, which should never\nhappen.",VOROPP_INTERNAL_ERROR);
590  }
591  }
592 
593  // Now compute the region that we are going to test over, and
594  // set a displacement vector for the periodic cases
595  ijk=con.region_index(ci,cj,ck,ei,ej,ek,qx,qy,qz,disp);
596 
597  // Loop over all the elements in the block to test for cuts. It
598  // would be possible to exclude some of these cases by testing
599  // against mrs, but this will probably not save time.
600  if(co[ijk]>0) {
601  l=0;x2=x-qx;y2=y-qy;z2=z-qz;
602  do {
603  x1=p[ijk][ps*l]-x2;
604  y1=p[ijk][ps*l+1]-y2;
605  z1=p[ijk][ps*l+2]-z2;
606  rs=con.r_scale(x1*x1+y1*y1+z1*z1,ijk,l);
607  if(!c.nplane(x1,y1,z1,rs,id[ijk][l])) return false;
608  l++;
609  } while (l<co[ijk]);
610  }
611 
612  // If there's not much memory on the block list then add more
613  if((qu_s<=qu_e?(qu_l-qu_e)+(qu_s-qu):qu_s-qu_e)<18) add_list_memory(qu_s,qu_e);
614 
615  // Test the neighbors of the current block, and add them to the
616  // block list if they haven't already been tested
617  add_to_mask(ei,ej,ek,qu_e);
618  }
619 
620  return true;
621 }
622 
623 /** This function checks to see whether a particular block can possibly have
624  * any intersection with a Voronoi cell, for the case when the closest point
625  * from the cell center to the block is at a corner.
626  * \param[in,out] c a reference to a Voronoi cell.
627  * \param[in] (xl,yl,zl) the relative coordinates of the corner of the block
628  * closest to the cell center.
629  * \param[in] (xh,yh,zh) the relative coordinates of the corner of the block
630  * furthest away from the cell center.
631  * \return False if the block may intersect, true if does not. */
632 template<class c_class>
633 template<class v_cell>
634 bool voro_compute<c_class>::corner_test(v_cell &c,double xl,double yl,double zl,double xh,double yh,double zh) {
635  con.r_prime(xl*xl+yl*yl+zl*zl);
636  if(c.plane_intersects_guess(xh,yl,zl,con.r_cutoff(xl*xh+yl*yl+zl*zl))) return false;
637  if(c.plane_intersects(xh,yh,zl,con.r_cutoff(xl*xh+yl*yh+zl*zl))) return false;
638  if(c.plane_intersects(xl,yh,zl,con.r_cutoff(xl*xl+yl*yh+zl*zl))) return false;
639  if(c.plane_intersects(xl,yh,zh,con.r_cutoff(xl*xl+yl*yh+zl*zh))) return false;
640  if(c.plane_intersects(xl,yl,zh,con.r_cutoff(xl*xl+yl*yl+zl*zh))) return false;
641  if(c.plane_intersects(xh,yl,zh,con.r_cutoff(xl*xh+yl*yl+zl*zh))) return false;
642  return true;
643 }
644 
645 /** This function checks to see whether a particular block can possibly have
646  * any intersection with a Voronoi cell, for the case when the closest point
647  * from the cell center to the block is on an edge which points along the x
648  * direction.
649  * \param[in,out] c a reference to a Voronoi cell.
650  * \param[in] (x0,x1) the minimum and maximum relative x coordinates of the
651  * block.
652  * \param[in] (yl,zl) the relative y and z coordinates of the corner of the
653  * block closest to the cell center.
654  * \param[in] (yh,zh) the relative y and z coordinates of the corner of the
655  * block furthest away from the cell center.
656  * \return False if the block may intersect, true if does not. */
657 template<class c_class>
658 template<class v_cell>
659 inline bool voro_compute<c_class>::edge_x_test(v_cell &c,double x0,double yl,double zl,double x1,double yh,double zh) {
660  con.r_prime(yl*yl+zl*zl);
661  if(c.plane_intersects_guess(x0,yl,zh,con.r_cutoff(yl*yl+zl*zh))) return false;
662  if(c.plane_intersects(x1,yl,zh,con.r_cutoff(yl*yl+zl*zh))) return false;
663  if(c.plane_intersects(x1,yl,zl,con.r_cutoff(yl*yl+zl*zl))) return false;
664  if(c.plane_intersects(x0,yl,zl,con.r_cutoff(yl*yl+zl*zl))) return false;
665  if(c.plane_intersects(x0,yh,zl,con.r_cutoff(yl*yh+zl*zl))) return false;
666  if(c.plane_intersects(x1,yh,zl,con.r_cutoff(yl*yh+zl*zl))) return false;
667  return true;
668 }
669 
670 /** This function checks to see whether a particular block can possibly have
671  * any intersection with a Voronoi cell, for the case when the closest point
672  * from the cell center to the block is on an edge which points along the y
673  * direction.
674  * \param[in,out] c a reference to a Voronoi cell.
675  * \param[in] (y0,y1) the minimum and maximum relative y coordinates of the
676  * block.
677  * \param[in] (xl,zl) the relative x and z coordinates of the corner of the
678  * block closest to the cell center.
679  * \param[in] (xh,zh) the relative x and z coordinates of the corner of the
680  * block furthest away from the cell center.
681  * \return False if the block may intersect, true if does not. */
682 template<class c_class>
683 template<class v_cell>
684 inline bool voro_compute<c_class>::edge_y_test(v_cell &c,double xl,double y0,double zl,double xh,double y1,double zh) {
685  con.r_prime(xl*xl+zl*zl);
686  if(c.plane_intersects_guess(xl,y0,zh,con.r_cutoff(xl*xl+zl*zh))) return false;
687  if(c.plane_intersects(xl,y1,zh,con.r_cutoff(xl*xl+zl*zh))) return false;
688  if(c.plane_intersects(xl,y1,zl,con.r_cutoff(xl*xl+zl*zl))) return false;
689  if(c.plane_intersects(xl,y0,zl,con.r_cutoff(xl*xl+zl*zl))) return false;
690  if(c.plane_intersects(xh,y0,zl,con.r_cutoff(xl*xh+zl*zl))) return false;
691  if(c.plane_intersects(xh,y1,zl,con.r_cutoff(xl*xh+zl*zl))) return false;
692  return true;
693 }
694 
695 /** This function checks to see whether a particular block can possibly have
696  * any intersection with a Voronoi cell, for the case when the closest point
697  * from the cell center to the block is on an edge which points along the z
698  * direction.
699  * \param[in,out] c a reference to a Voronoi cell.
700  * \param[in] (z0,z1) the minimum and maximum relative z coordinates of the block.
701  * \param[in] (xl,yl) the relative x and y coordinates of the corner of the
702  * block closest to the cell center.
703  * \param[in] (xh,yh) the relative x and y coordinates of the corner of the
704  * block furthest away from the cell center.
705  * \return False if the block may intersect, true if does not. */
706 template<class c_class>
707 template<class v_cell>
708 inline bool voro_compute<c_class>::edge_z_test(v_cell &c,double xl,double yl,double z0,double xh,double yh,double z1) {
709  con.r_prime(xl*xl+yl*yl);
710  if(c.plane_intersects_guess(xl,yh,z0,con.r_cutoff(xl*xl+yl*yh))) return false;
711  if(c.plane_intersects(xl,yh,z1,con.r_cutoff(xl*xl+yl*yh))) return false;
712  if(c.plane_intersects(xl,yl,z1,con.r_cutoff(xl*xl+yl*yl))) return false;
713  if(c.plane_intersects(xl,yl,z0,con.r_cutoff(xl*xl+yl*yl))) return false;
714  if(c.plane_intersects(xh,yl,z0,con.r_cutoff(xl*xh+yl*yl))) return false;
715  if(c.plane_intersects(xh,yl,z1,con.r_cutoff(xl*xh+yl*yl))) return false;
716  return true;
717 }
718 
719 /** This function checks to see whether a particular block can possibly have
720  * any intersection with a Voronoi cell, for the case when the closest point
721  * from the cell center to the block is on a face aligned with the x direction.
722  * \param[in,out] c a reference to a Voronoi cell.
723  * \param[in] xl the minimum distance from the cell center to the face.
724  * \param[in] (y0,y1) the minimum and maximum relative y coordinates of the
725  * block.
726  * \param[in] (z0,z1) the minimum and maximum relative z coordinates of the
727  * block.
728  * \return False if the block may intersect, true if does not. */
729 template<class c_class>
730 template<class v_cell>
731 inline bool voro_compute<c_class>::face_x_test(v_cell &c,double xl,double y0,double z0,double y1,double z1) {
732  con.r_prime(xl*xl);
733  if(c.plane_intersects_guess(xl,y0,z0,con.r_cutoff(xl*xl))) return false;
734  if(c.plane_intersects(xl,y0,z1,con.r_cutoff(xl*xl))) return false;
735  if(c.plane_intersects(xl,y1,z1,con.r_cutoff(xl*xl))) return false;
736  if(c.plane_intersects(xl,y1,z0,con.r_cutoff(xl*xl))) return false;
737  return true;
738 }
739 
740 /** This function checks to see whether a particular block can possibly have
741  * any intersection with a Voronoi cell, for the case when the closest point
742  * from the cell center to the block is on a face aligned with the y direction.
743  * \param[in,out] c a reference to a Voronoi cell.
744  * \param[in] yl the minimum distance from the cell center to the face.
745  * \param[in] (x0,x1) the minimum and maximum relative x coordinates of the
746  * block.
747  * \param[in] (z0,z1) the minimum and maximum relative z coordinates of the
748  * block.
749  * \return False if the block may intersect, true if does not. */
750 template<class c_class>
751 template<class v_cell>
752 inline bool voro_compute<c_class>::face_y_test(v_cell &c,double x0,double yl,double z0,double x1,double z1) {
753  con.r_prime(yl*yl);
754  if(c.plane_intersects_guess(x0,yl,z0,con.r_cutoff(yl*yl))) return false;
755  if(c.plane_intersects(x0,yl,z1,con.r_cutoff(yl*yl))) return false;
756  if(c.plane_intersects(x1,yl,z1,con.r_cutoff(yl*yl))) return false;
757  if(c.plane_intersects(x1,yl,z0,con.r_cutoff(yl*yl))) return false;
758  return true;
759 }
760 
761 /** This function checks to see whether a particular block can possibly have
762  * any intersection with a Voronoi cell, for the case when the closest point
763  * from the cell center to the block is on a face aligned with the z direction.
764  * \param[in,out] c a reference to a Voronoi cell.
765  * \param[in] zl the minimum distance from the cell center to the face.
766  * \param[in] (x0,x1) the minimum and maximum relative x coordinates of the
767  * block.
768  * \param[in] (y0,y1) the minimum and maximum relative y coordinates of the
769  * block.
770  * \return False if the block may intersect, true if does not. */
771 template<class c_class>
772 template<class v_cell>
773 inline bool voro_compute<c_class>::face_z_test(v_cell &c,double x0,double y0,double zl,double x1,double y1) {
774  con.r_prime(zl*zl);
775  if(c.plane_intersects_guess(x0,y0,zl,con.r_cutoff(zl*zl))) return false;
776  if(c.plane_intersects(x0,y1,zl,con.r_cutoff(zl*zl))) return false;
777  if(c.plane_intersects(x1,y1,zl,con.r_cutoff(zl*zl))) return false;
778  if(c.plane_intersects(x1,y0,zl,con.r_cutoff(zl*zl))) return false;
779  return true;
780 }
781 
782 
783 /** This routine checks to see whether a point is within a particular distance
784  * of a nearby region. If the point is within the distance of the region, then
785  * the routine returns true, and computes the maximum distance from the point
786  * to the region. Otherwise, the routine returns false.
787  * \param[in] (di,dj,dk) the position of the nearby region to be tested,
788  * relative to the region that the point is in.
789  * \param[in] (fx,fy,fz) the displacement of the point within its region.
790  * \param[in] (gxs,gys,gzs) the maximum squared distances from the point to the
791  * sides of its region.
792  * \param[out] crs a reference in which to return the maximum distance to the
793  * region (only computed if the routine returns false).
794  * \param[in] mrs the distance to be tested.
795  * \return True if the region is further away than mrs, false if the region in
796  * within mrs. */
797 template<class c_class>
798 bool voro_compute<c_class>::compute_min_max_radius(int di,int dj,int dk,double fx,double fy,double fz,double gxs,double gys,double gzs,double &crs,double mrs) {
799  double xlo,ylo,zlo;
800  if(di>0) {
801  xlo=di*boxx-fx;
802  crs=xlo*xlo;
803  if(dj>0) {
804  ylo=dj*boxy-fy;
805  crs+=ylo*ylo;
806  if(dk>0) {
807  zlo=dk*boxz-fz;
808  crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
809  crs+=bxsq+2*(boxx*xlo+boxy*ylo+boxz*zlo);
810  } else if(dk<0) {
811  zlo=(dk+1)*boxz-fz;
812  crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
813  crs+=bxsq+2*(boxx*xlo+boxy*ylo-boxz*zlo);
814  } else {
815  if(con.r_ctest(crs,mrs)) return true;
816  crs+=boxx*(2*xlo+boxx)+boxy*(2*ylo+boxy)+gzs;
817  }
818  } else if(dj<0) {
819  ylo=(dj+1)*boxy-fy;
820  crs+=ylo*ylo;
821  if(dk>0) {
822  zlo=dk*boxz-fz;
823  crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
824  crs+=bxsq+2*(boxx*xlo-boxy*ylo+boxz*zlo);
825  } else if(dk<0) {
826  zlo=(dk+1)*boxz-fz;
827  crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
828  crs+=bxsq+2*(boxx*xlo-boxy*ylo-boxz*zlo);
829  } else {
830  if(con.r_ctest(crs,mrs)) return true;
831  crs+=boxx*(2*xlo+boxx)+boxy*(-2*ylo+boxy)+gzs;
832  }
833  } else {
834  if(dk>0) {
835  zlo=dk*boxz-fz;
836  crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
837  crs+=boxz*(2*zlo+boxz);
838  } else if(dk<0) {
839  zlo=(dk+1)*boxz-fz;
840  crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
841  crs+=boxz*(-2*zlo+boxz);
842  } else {
843  if(con.r_ctest(crs,mrs)) return true;
844  crs+=gzs;
845  }
846  crs+=gys+boxx*(2*xlo+boxx);
847  }
848  } else if(di<0) {
849  xlo=(di+1)*boxx-fx;
850  crs=xlo*xlo;
851  if(dj>0) {
852  ylo=dj*boxy-fy;
853  crs+=ylo*ylo;
854  if(dk>0) {
855  zlo=dk*boxz-fz;
856  crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
857  crs+=bxsq+2*(-boxx*xlo+boxy*ylo+boxz*zlo);
858  } else if(dk<0) {
859  zlo=(dk+1)*boxz-fz;
860  crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
861  crs+=bxsq+2*(-boxx*xlo+boxy*ylo-boxz*zlo);
862  } else {
863  if(con.r_ctest(crs,mrs)) return true;
864  crs+=boxx*(-2*xlo+boxx)+boxy*(2*ylo+boxy)+gzs;
865  }
866  } else if(dj<0) {
867  ylo=(dj+1)*boxy-fy;
868  crs+=ylo*ylo;
869  if(dk>0) {
870  zlo=dk*boxz-fz;
871  crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
872  crs+=bxsq+2*(-boxx*xlo-boxy*ylo+boxz*zlo);
873  } else if(dk<0) {
874  zlo=(dk+1)*boxz-fz;
875  crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
876  crs+=bxsq+2*(-boxx*xlo-boxy*ylo-boxz*zlo);
877  } else {
878  if(con.r_ctest(crs,mrs)) return true;
879  crs+=boxx*(-2*xlo+boxx)+boxy*(-2*ylo+boxy)+gzs;
880  }
881  } else {
882  if(dk>0) {
883  zlo=dk*boxz-fz;
884  crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
885  crs+=boxz*(2*zlo+boxz);
886  } else if(dk<0) {
887  zlo=(dk+1)*boxz-fz;
888  crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
889  crs+=boxz*(-2*zlo+boxz);
890  } else {
891  if(con.r_ctest(crs,mrs)) return true;
892  crs+=gzs;
893  }
894  crs+=gys+boxx*(-2*xlo+boxx);
895  }
896  } else {
897  if(dj>0) {
898  ylo=dj*boxy-fy;
899  crs=ylo*ylo;
900  if(dk>0) {
901  zlo=dk*boxz-fz;
902  crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
903  crs+=boxz*(2*zlo+boxz);
904  } else if(dk<0) {
905  zlo=(dk+1)*boxz-fz;
906  crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
907  crs+=boxz*(-2*zlo+boxz);
908  } else {
909  if(con.r_ctest(crs,mrs)) return true;
910  crs+=gzs;
911  }
912  crs+=boxy*(2*ylo+boxy);
913  } else if(dj<0) {
914  ylo=(dj+1)*boxy-fy;
915  crs=ylo*ylo;
916  if(dk>0) {
917  zlo=dk*boxz-fz;
918  crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
919  crs+=boxz*(2*zlo+boxz);
920  } else if(dk<0) {
921  zlo=(dk+1)*boxz-fz;
922  crs+=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
923  crs+=boxz*(-2*zlo+boxz);
924  } else {
925  if(con.r_ctest(crs,mrs)) return true;
926  crs+=gzs;
927  }
928  crs+=boxy*(-2*ylo+boxy);
929  } else {
930  if(dk>0) {
931  zlo=dk*boxz-fz;crs=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
932  crs+=boxz*(2*zlo+boxz);
933  } else if(dk<0) {
934  zlo=(dk+1)*boxz-fz;crs=zlo*zlo;if(con.r_ctest(crs,mrs)) return true;
935  crs+=boxz*(-2*zlo+boxz);
936  } else {
937  crs=0;
938  voro_fatal_error("Min/max radius function called for central block, which should never\nhappen.",VOROPP_INTERNAL_ERROR);
939  }
940  crs+=gys;
941  }
942  crs+=gxs;
943  }
944  return false;
945 }
946 
947 template<class c_class>
948 bool voro_compute<c_class>::compute_min_radius(int di,int dj,int dk,double fx,double fy,double fz,double mrs) {
949  double t,crs;
950 
951  if(di>0) {t=di*boxx-fx;crs=t*t;}
952  else if(di<0) {t=(di+1)*boxx-fx;crs=t*t;}
953  else crs=0;
954 
955  if(dj>0) {t=dj*boxy-fy;crs+=t*t;}
956  else if(dj<0) {t=(dj+1)*boxy-fy;crs+=t*t;}
957 
958  if(dk>0) {t=dk*boxz-fz;crs+=t*t;}
959  else if(dk<0) {t=(dk+1)*boxz-fz;crs+=t*t;}
960 
961  return crs>con.r_max_add(mrs);
962 }
963 
964 /** Adds memory to the queue.
965  * \param[in,out] qu_s a reference to the queue start pointer.
966  * \param[in,out] qu_e a reference to the queue end pointer. */
967 template<class c_class>
968 inline void voro_compute<c_class>::add_list_memory(int*& qu_s,int*& qu_e) {
969  qu_size<<=1;
970  int *qu_n=new int[qu_size],*qu_c=qu_n;
971 #if VOROPP_VERBOSE >=2
972  fprintf(stderr,"List memory scaled up to %d\n",qu_size);
973 #endif
974  if(qu_s<=qu_e) {
975  while(qu_s<qu_e) *(qu_c++)=*(qu_s++);
976  } else {
977  while(qu_s<qu_l) *(qu_c++)=*(qu_s++);qu_s=qu;
978  while(qu_s<qu_e) *(qu_c++)=*(qu_s++);
979  }
980  delete [] qu;
981  qu_s=qu=qu_n;
982  qu_l=qu+qu_size;
983  qu_e=qu_c;
984 }
985 
986 // Explicit template instantiation
987 template voro_compute<container>::voro_compute(container&,int,int,int);
988 template voro_compute<container_poly>::voro_compute(container_poly&,int,int,int);
989 template bool voro_compute<container>::compute_cell(voronoicell&,int,int,int,int,int);
990 template bool voro_compute<container>::compute_cell(voronoicell_neighbor&,int,int,int,int,int);
991 template void voro_compute<container>::find_voronoi_cell(double,double,double,int,int,int,int,particle_record&,double&);
992 template bool voro_compute<container_poly>::compute_cell(voronoicell&,int,int,int,int,int);
993 template bool voro_compute<container_poly>::compute_cell(voronoicell_neighbor&,int,int,int,int,int);
994 template void voro_compute<container_poly>::find_voronoi_cell(double,double,double,int,int,int,int,particle_record&,double&);
995 
996 // Explicit template instantiation
997 template voro_compute<container_periodic>::voro_compute(container_periodic&,int,int,int);
998 template voro_compute<container_periodic_poly>::voro_compute(container_periodic_poly&,int,int,int);
999 template bool voro_compute<container_periodic>::compute_cell(voronoicell&,int,int,int,int,int);
1000 template bool voro_compute<container_periodic>::compute_cell(voronoicell_neighbor&,int,int,int,int,int);
1001 template void voro_compute<container_periodic>::find_voronoi_cell(double,double,double,int,int,int,int,particle_record&,double&);
1002 template bool voro_compute<container_periodic_poly>::compute_cell(voronoicell&,int,int,int,int,int);
1003 template bool voro_compute<container_periodic_poly>::compute_cell(voronoicell_neighbor&,int,int,int,int,int);
1004 template void voro_compute<container_periodic_poly>::find_voronoi_cell(double,double,double,int,int,int,int,particle_record&,double&);
1005 
1006 }
void find_voronoi_cell(double x, double y, double z, int ci, int cj, int ck, int ijk, particle_record &w, double &mrs)
Definition: v_compute.cc:71
bool compute_cell(v_cell &c, int ijk, int s, int ci, int cj, int ck)
Definition: v_compute.cc:291
Structure for holding information about a particle.
Definition: v_compute.hh:24
Header file for the classes encapsulating functionality for the regular and radical Voronoi tessellat...
Header file for the voro_compute template and related classes.
#define VOROPP_INTERNAL_ERROR
Definition: config.hh:119
Header file for the container_periodic_base and related classes.
voro_compute(c_class &con_, int hx_, int hy_, int hz_)
Definition: v_compute.cc:23
Header file for the container_base and related classes.
Template for carrying out Voronoi cell computations.
Definition: v_compute.hh:39
Header file for setting constants used in the block worklists that are used during cell computation...